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For many years, multi-scale models of chromatin domains, such as A/B compartments, sub-compartments, 
topologically associated domains (TADs), sub-TADs, and loops have been popular. However, existing methods 
can only identify structures at a single scale and cannot partition multi-scale structures. In this paper, we 
proposed a method (TORNADOES) for chromatin domain partitioning based on hypergraph clustering. First, 
we use a density clustering algorithm to identify TADs at different scales based on Hi-C data with different 
resolutions. Then, by combining ChIP-seq data features and TAD results at different scales, we generate a 
hypergraph based on these TADs. Finally, we partition the chromatin domain structure at different scales, 
including A/B, A1, A2, B1, B2, and B3 based on the Laplacian matrix feature of the hypergraph. Similarity 
comparison experiments and ChIP-seq signal enrichment analysis are performed on the A/B region and sub-TAD 
levels, respectively, demonstrating that our method can identify chromatin domains with distinct features and 
provide a deeper understanding of the organizational patterns and functional differences in TADs at the genomic 
hierarchical structure. Comparative analysis of multiple cell line data shows that TORNADOES can better classify 
different numbers and types of compartments by changing the factors ChIP-seq data and clustering number used 
to characterize TAD compared to other methods. Source code for the TORNADOES method can be found at 
https://github .com /ghaiyan /TORNADOES.
1. Introduction

Accurately identifying chromatin structures is crucial in fields such 
as biomedical research, bioinformatics, and molecular biology, as it can 
help us better understand gene expression, genetic variation, and the 
mechanisms that underlie many diseases. The hierarchical structure of 
chromatin includes chromosome territories (CT), A/B compartments, 
sub-compartments, and topologically associated domains (TADs) [1], in 
order of larger to smaller scales, and researchers have developed many 
different methods based on Hi-C [2], micro-C [3] and other 3C-based 
[4,5] technologies to study chromatin structure.
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In 2009, Erez Lieberman-Aiden et al. [6] discovered the A/B com-

partments of chromatin using principal component analysis. By analyz-

ing the first principal component that presented a bimodal distribution 
and dividing the chromosome into A (open) and B (closed) compart-

ments based on gene density, the authors found that regions with 
positive eigenvalues displayed characteristics such as a higher number 
of genes, higher gene expression levels, stronger signals for DNase-

sensitive sites, and higher GC content, indicating that these regions were 
more open and accessible. In 2012, Lin et al. [7] proposed HOMER 
for performing PCA on Hi-C data, and in 2015, Fortin et al. [8] pre-

dicted the A/B compartments of chromatin in multiple cell lines. The 
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authors used DNA methylation data, DNase hypersensitivity data, and 
single-cell epigenetic data to validate the structural and functional char-

acteristics of the A/B compartments. In the same year, Servant et al. [9]

introduced the Hi-C-Pro software package, a tool for processing Hi-C 
data that provides several methods for identifying the A/B compart-

ments of chromatin, of which the Insulation Score [10], Directionality 
Index [1], TopDom [11] and TADbit [12] are also used to define A/B 
compartments. In 2016, Durand et al. [13] subsequently proposed the 
Juicer method, which uses PCA to reduce the high-dimensional inter-

action frequency matrix to a two- or three-dimensional space and then 
applies the k-means clustering algorithm to cluster each region of chro-

matin. Similarly, the Miura et al. [14], CscoreTool [15], FAN-C [16], 
POSSUMM [17], and PENtad [18] methods all follow the PCA based 
idea to identify the A/B compartment. In 2017, Dong et al. [19] applied 
constrained clustering to partition the chromatin interaction matrix into 
blocks with similar contact probabilities and computed the feature vec-

tors of each block to infer its local A/B compartment. This enabled the 
display of typical euchromatin and heterochromatin features. Rao et al. 
[20] performed a more detailed analysis of A/B compartments using 
high-coverage Hi-C data from the GM12878 cell line, further dividing 
them into five major sub-compartments: A1, A2, B1, B2, and B3. Im-

portantly, these sub-compartments exhibit unique and more complete 
associations with various genomic and epigenomic features.

In recent years, several new methods have been developed to under-

stand the three-dimensional structure of chromatin. For example, the 
Calder method [21] infers a complete hierarchical structure of partition 
domains solely from chromatin interactions using a similarity measure 
between genome loci and a hierarchical clustering method to cluster 
block domains, ignoring their continuity in the genome sequence. More-

over, SCI algorithm proposed by Ashoor et al. [22] predicts genome sub-

compartments using graph embedding and K-means clustering. It starts 
from a normalized full-genome Hi-C chromatin interaction matrix, con-

structs a Hi-C interaction graph, and projects the interaction graph 
onto a low-dimensional vector space for K-means clustering to predict 
sub-compartments. These new methods provide a more comprehensive 
and accurate approach to understanding the three-dimensional struc-

ture and function of chromatin. In addition, the SNIPER [23] method 
uses a Gaussian Hidden Markov model (HMM) to cluster the rows of 
the inter-chromosome matrix. Clusters are then classified into A1, A2, 
B1, B2 or B3 sub-compartments according to the Spearman correlation 
between clusters.

With the development of high-throughput sequencing technologies, 
more and more studies [20–23] have begun to focus on investigating 
the spatial and hierarchical structure of chromatin to gain a deeper 
understanding of the three-dimensional structure and function of the 
genome. However, the spatial structure and organization of chromatin 
are complex areas that remain unexplored. The classification of TADs 
structures, however, is conducive to a more detailed understanding of 
chromatin structure and function. Analysis of chromatin hierarchical 
structure relies primarily on Hi-C technology and ChIP-seq technology, 
which identify chromatin structures at different scales by calculating 
Hi-C data with different resolutions and analyzing various histone mod-

ifications and transcription factor binding information in ChIP-seq data 
to explore chromatin function and regulation mechanisms. With this in 
mind, this paper combines the analysis of Hi-C and ChIP-seq signal data 
to classify different types of TAD structures.

Graph models are effective tools for discovering hidden correlations 
and inherent structures in data, and hypergraphs, as a generalization 
of graph models, can better capture higher-order information in data 
and provide great assistance for learning tasks. Compared to ordinary 
graphs, each edge in a hypergraph can link multiple vertices, thus better 
representing complex relationships in data. Additionally, hypergraphs 
can also surround vertices with similar features with hyperedges in an 
elegant way, making it easier to understand and process data. What’s 
more, hypergraph learning is related to graph learning because hyper-
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graphs are derived from graphs. Similar to graph learning, learning 
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on hypergraphs can be seen as a process of information propagation 
along the hypergraph structure when analyzing structured data and 
solving problems such as node classification, link prediction, and com-

munity detection. From this perspective, graph learning is a special 
case of hypergraph learning that only considers pairwise connections 
between data. Unlike graph learning, hypergraph learning models ex-

plore higher-order associations between data, extending graph learning 
models to a high-dimensional, more complete nonlinear space, resulting 
in higher modeling capacity for correlations and better practical perfor-

mance [24]. In the face of challenges representations of learning data, 
especially when dealing with complex data, hypergraphs exhibit more 
flexibility in data modeling as well.

Due to these advantages, there have already been various hyper-

graph-based applications, such as the application of hypergraphs to so-

cial networks [25], where communities can be regarded as hyperedges, 
that capture higher-order interactions in social and communication net-

works beyond simple pairwise relations. In bioinformatics, hypergraphs 
can be used to represent network data such as single-cell Hi-C data [26]

and brain data [27]. Currently, hypergraphs have also been proposed in 
various machine learning methods, among which hypergraph spectral 
clustering, hypergraph semi-supervised learning, and hypergraph neu-

ral networks utilize hypergraph structures for relevant tasks processing 
and learning. Furthermore, hypergraph spectral clustering implements 
the extension of spectral graph theory through Laplacian hypergraphs, 
and hypergraph semi-supervised learning can constrain results by intro-

ducing hypergraph structures. In addition, hypergraph neural networks 
(HGNN) [28] use hyperedge convolutional operations to handle data 
correlations, which is well-suited to traditional hypergraph learning.

Considering the many advantages of hypergraph learning, in this 
paper we propose a chromatin domain partitioning algorithm called 
TORNADOES (a method for chromaTin dOmain paRtitioNing bAseD On 
hypErgraph cluStering). We first introduce the model and algorithm, fo-

cusing on hypergraph construction, feature generation, and hypergraph 
learning modules. Then, experimental results are analyzed at different 
scales. By comparing the similarity between A/B compartments, and 
sub-compartments, we find that TORNADOES can yield similar chro-

matin partitions with both of these chromatin domains. What’s more, 
by setting the number of clustering, we can obtain useful biological 
chromatin domains.

2. Related work

2.1. Definition of a hypergraph

The basic definition of a hypergraph is as follows: let a hypergraph 
be denoted as 𝐺 and consist of a set of vertices 𝑉 and a set of hyper-

edges 𝜀. In a weighted hypergraph, each hyperedge 𝑒 ∈ 𝜀 is assigned 
a weight to indicate its importance in the connectivity of the hyper-

graph. Let 𝑑𝑖𝑎𝑔(𝑊 ) = [𝑤(𝑒1), 𝑤(𝑒2), ...𝑤(𝑒|𝜀|)] be the diagonal matrix of 
the hyperedge weights. For a hypergraph represented as 𝐺 = (𝑉 , 𝜀, 𝑊 ), 
its structure is typically represented by the adjacency matrix 𝐻(𝑣, 𝑒)
which indicates whether a vertex 𝑣 is in a hyperedge 𝑒. The degrees of 
hyperedges and vertices are defined by Equation (1) and (2), respec-

tively.

𝛿(𝑒) =
∑

𝑣∈𝑉
𝐻(𝑣, 𝑒) (1)

𝑑(𝑣) =
∑
𝑒∈𝜀

𝑤(𝑒) ∗𝐻(𝑣, 𝑒) (2)

The Laplacian matrix plays a crucial role in graph theory, particu-

larly in spectral analysis of graphs by means of spectral clustering and 
spectral partitioning. For a simple graph, the Laplacian matrix can be 
defined using the diagonal matrix of vertex degrees and the adjacency 
matrix as Δ =𝐷−𝐴, where 𝐷 is the diagonal matrix of vertex degrees, 
and 𝐴 is the adjacency matrix of the graph. However, in hypergraphs, 

the Laplacian matrix needs to be defined based on the relationship be-
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Fig. 1. Workflow of the TORNADOES method. (a) Workflow of analyzing the 
chromatin domains. (b) Workflow of generating the clusters based on hyper-

graph learning.

tween hyperedges and hypernodes. Specifically, in a hypergraph, the 
Laplacian matrix is defined as in Equation (3).

Δ=𝐷𝑣 −𝐻𝑊𝐷−1
𝑒

𝐻𝑇 (3)

The standardized Laplacian matrix can be expressed by Equation 
(4).

Δ= 𝐼 −𝐷
− 1

2
𝑣 𝐻𝑊𝐷−1

𝑒
𝐻𝑇𝐷

− 1
2

𝑣 (4)

2.2. Generation of hypergraph

The quality of a generated hypergraph structure directly affects 
the effectiveness of data correlation modeling. Hypergraph genera-

tion methods can generally be classified into four categories: distance-

based methods [29], representation-based methods [30], attribute-

based methods [31], and network-based methods [32].

In this paper, we employ an attribute-based approach to construct 
a hypergraph. The attribute-based hypergraph generation method uti-

lizes attribute information to construct hyperedges. Each hyperedge in 
the attribute-based hypergraph is viewed as a clique, and the average 
heat kernel weight between any two edges in the clique is taken as 
the weight of the hyperedge. Since attributes can be hierarchical, the 
generated hyperedges can have different levels, resulting in different 
hyperedges that represent multi-scale attribute connections. Although 
attribute information has significant advantages in representing data, 
in some cases, such information may not be available. One possible so-

lution is to define a set of attributes that can be learned from existing 
data. Therefore, we add ChIP-seq attributes to the hypergraph.

3. Materials and methods

Fig. 1 (a) depicts the workflow of our methods (TORNADOES) for 
chromatin domain structure partitioning and analysis. This method con-

sists of three main modules: hypergraph construction, feature genera-

tion, and hypergraph learning. The hypergraph construction module is 
used to combine different TADs to form a hypergraph; the feature gen-

eration module generates corresponding feature vectors for the nodes 
in the hypergraph; and the hypergraph learning module is used to iden-

tify chromatin domain clusters based on the constructed hypergraph for 
further analysis. The next three sections provide detailed descriptions of 
1586

each module.
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3.1. The hypergraph construction module

The hypergraph construction module is based on the CASPIAN [33]

method we previously proposed to combine domain structures iden-

tified at different scales to generate a nested hypergraph of nodes. 
Specifically, it includes the following steps:

(1). Determination of nodes in the hypergraph: Each TAD structure 
is considered to be a node in the hypergraph. Therefore, TAD par-

titioning is performed before constructing the hypergraph. Using the 
CASPIAN method [33], TAD structures are identified using a density-

based clustering method and each TAD is labeled as a node. The center 
of each TAD can be used to represent the node.

(2). Defining hyperedges: Hyperedges define the interaction be-

tween TADs. Sub-compartments located between A/B compartments 
and topologically associating domain hierarchical structures are typi-

cally at the Mb level. Therefore, by setting parameters such as MinPts, 
the CASPIAN method is used to obtain domain structure partitioning 
results. After identifying domain structures at different scales, each ge-

nomic interval of the TADs included in each sub-compartment is used 
as a hyperedge. Then, each domain structure partition is traversed, 
and TAD partitions with overlapping regions are connected by a hy-

peredge. Specifically, if two TADs belong to the same domain structure, 
a hyperedge is created between them. When a TAD overlaps with mul-

tiple domain structures, the corresponding hypergraph node will exist 
in multiple hyperedges simultaneously.

(3). Hypergraph construction and representation: Based on the 
above steps, all nodes and hyperedges are combined to construct the 
hypergraph. The hypergraph can be represented using a graph, with 
each node represented by a circle and each hyperedge represented by 
a line. Alternatively, the hypergraph can be represented using an ad-

jacency matrix, where each row represents a node and each column 
represents a hyperedge. The elements in the matrix indicate whether 
the node belongs to the corresponding hyperedge.

After hypergraph construction, each node in the hypergraph rep-

resents a TAD, and each hyperedge represents interactions between 
multiple TADs. This hypergraph representation can thus effectively de-

scribe the interactions and correlations between chromatin domains, 
thereby helping us to understand the 3D structure and function of the 
genome further. Additionally, this representation method provides pow-

erful tools and ideas for further analyzing the structure and function of 
the genome.

3.2. The feature generation module

To understand the three-dimensional structure and function of the 
genome better, researchers often need to perform feature analysis on 
chromatin TADs. ChIP-seq signal data can provide information on dif-

ferent components of chromatin, such as transcription factor binding 
sites and histone modifications, that can be used to describe the fea-

tures of chromatin TADs. Therefore, in this study, ChIP-seq signal data 
from CTCF, H3K4me3, and H3K27ac were selected, and the signal val-

ues of each genomic bin were calculated. The mean signal value of all 
bins within each TAD was then used as the signal feature of that TAD, 
forming an 3 × 3 feature matrix, where n is the number of TADs. Since 
each node in the hypergraph represents a TAD, this feature matrix is 
the node feature matrix of the hypergraph. We therefore combine ChIP-

seq signal data with the structural features of TADs, in order to provide 
more comprehensive and accurate information for subsequent analysis. 
As Fig. 1 (b) shows, the feature extraction is described by the following 
steps:

(1). Calculation of the Laplacian matrix. The Laplacian matrix of 
the hypergraph is used to describe its structure, with diagonal elements 
representing the sum of the degrees of hyperedges, and off-diagonal 
elements representing the number of overlapping nodes between hy-
peredges.
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(2). Calculation of eigenvalues and eigenvectors. After obtaining the 
Laplacian matrix of the hypergraph, double QR decomposition is used 
to transform the matrix into a Hessenberg matrix. The Hessenberg ma-

trix is an upper triangular matrix with zero elements below the diagonal 
except for the element immediately below the diagonal. QR decompo-

sition is a method for decomposing a matrix into an orthogonal matrix 
and an upper triangular matrix. By repeatedly applying QR decompo-

sition, any matrix can be transformed into a Hessenberg matrix, with 
specific implementation methods including Householder transformation 
or Givens rotation. An iterative process based on implicit QR decompo-

sition is then applied to the Hessenberg matrix to obtain the eigenvalues 
and eigenvectors. In the iterative process, the Hessenberg matrix is first 
transformed into a tridiagonal matrix, which is then subjected to QR 
decomposition to obtain a new tridiagonal matrix, and a series of itera-

tions are then performed until this converges to a diagonal matrix. The 
elements on this diagonal represent the eigenvalues of the matrix, and 
the eigenvectors can be obtained through backward iteration.

(3). Combination of eigenvectors: The final features of each hyper-

graph node can be obtained by combining the features from the ChIP-

seq signal data and the Laplacian matrix eigenvectors. This method has 
the advantage of integrating information from different sources to de-

scribe the structure and function of chromatin TADs more accurately. 
In addition, the hypergraph model can well reflect the interactions and 
connections between chromatin TADs, providing more comprehensive 
and accurate information for subsequent analysis. Furthermore, this 
method has good scalability and adaptability, making it applicable for 
analyzing chromatin TADs in different biological systems.

3.3. Hypergraph learning module

Clustering is one of the most commonly used methods for studying 
the three-dimensional (3D) structure and function of genomes. Prior 
to conducting clustering analysis, it is necessary to construct a hyper-

graph in order to extract features from and generate features for the 
hypergraph nodes. Once this node feature matrix is obtained, cluster-

ing algorithms such as k-means [34] or spectral clustering [35] can be 
used to classify hypergraph nodes into different types, in order to study 
the differences in 3D structure and function of different types of TADs. 
Specifically, the feature matrix of hypergraph nodes can be used as in-

put, and clustering algorithms such as k-means or spectral clustering 
can be run on these vectors, with the expectation that vertices can be 
well separated in k-dimensional Euclidean space. In addition to k-means 
[34] and spectral clustering [35], there are other clustering algorithms 
that can be used for hypergraph clustering, such as hierarchical cluster-

ing [36] and density clustering [37]. These algorithms can be selected 
based on the specific research question at hand. In this way, TADs can 
be classified into different categories and the similarities and differ-

ences in 3D structure and function of different categories of TADs can 
be compared. Additionally, this method can help researchers discover 
TADs with special functions, such as regulatory elements and bound-

aries of chromatin higher-order structures.

3.4. Datasets

The real Hi-C data of IMR90, GM12878, H1-hESC, HepG2, and 
K562 cell lines were obtained from https://data .4dnucleome .org /files -
processed /4DNFIH7TH4MF/, and the Hi-C contact matrix data were ex-

tracted from the original .hic file using the Juicer tool [38]. ChIP-Seq 
data from the Encyclopedia of DNA Elements (ENCODE) project [39]

(https://www .encodeproject .org/) were used to analyze the enrichment 
of genome loci for CTCF and other histone modifications. The ChIP-Seq 
data files were in the bigWig format, which describes the signal p-value 
on contiguous genome loci. All datasets used in this paper are listed in 
1587

Table S1.
Computational and Structural Biotechnology Journal 23 (2024) 1584–1593

3.5. Evaluation metrics

To evaluate the similarity between chromatin structure clusters 
generated by TORNADOES as well as A/B compartments and sub-

compartments at genomic locations, several metrics based on existing 
research are used for comparison [40]:

(1). Pearson correlation coefficient: This metric is used to measure 
the linear correlation between two datasets. The value of the Pearson 
correlation coefficient ranges from -1 to 1, indicating the strength and 
direction of the correlation between the two datasets.

(2). Jaccard similarity coefficient: This metric calculates the ratio of 
the intersection to the union of two sets, 𝐽 (𝐴, 𝐵) = |𝐴∩𝐵|

|𝐴∪𝐵| . It can be used 
to measure the number of common elements between two datasets.

(3). Cosine similarity: This metric is used to measure the similarity 
between two vectors. For our purposes we treat the datasets as a vec-

tor space, and calculating the cosine value of the angle between them, 
𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) = 𝐴∙𝐵

||𝐴||∗||𝐵|| .
(4). Euclidean distance: This metric can calculate the distance 

between two vectors and can also be used to calculate the dif-

ference between two datasets. The Euclidean distance formula is 
𝑑(𝐴, 𝐵) = 𝑠𝑞𝑟𝑡(𝑠𝑢𝑚((𝐴[𝑖] −𝐵[𝑖])2)), where 𝑖 represents each element 
in the datasets.

(5). Manhattan distance: This metric can also be used to calcu-

late the distance between two vectors, with the formula 𝑑(𝐴, 𝐵) =
𝑠𝑢𝑚(𝑎𝑏𝑠(𝐴[𝑖] −𝐵[𝑖])), where 𝑖 represents each element in the datasets.

3.6. Benchmark models

To validate the effectiveness of the proposed TORNADOES method, 
we need to generate the A/B compartment and sub-compartment par-

titioning results as groundwork for subsequent experimental compar-

isons. The HOMER [7], CscoreTool [15], FAN-C [16], POSSUMM [17], 
and PENtad [18] methods all being PCA based A/B compartment recog-

nition methods, but the FAN-C tool integrates PCA based A/B com-

partment recognition methods. Therefore, we select the FAN-C tool 
for A/B compartment recognition. SNIPER and Calder are both suit-

able for the identification of sub-compartments, so we selected Calder 
in this paper for the identification of A1/A2/B1/B2 compartments, 
and SNIPER method is selected for the identification and comparison 
of A1/B1/A2/B2/B3 compartments. The recognition and acquisition 
methods for these structures are described as follows:

(1). A/B Compartment Recognition: The recognition of A/B com-

partments is based on Hi-C matrix data generation. First, the correlation 
matrix is calculated, where each entry 𝑖, 𝑗 of the correlation matrix cor-

responds to the Pearson correlation between row 𝑖 and column 𝑗 of the 
Hi-C matrix. Then, the inter-chromosomal type and strength of each 
genomic bin in the matrix are deduced using the eigenvectors of the 
correlation matrix. These are assigned using the sign of the eigenvectors 
(EV) of the correlation matrix. Generally, regions with positive values 
are assigned as “A” compartments, and regions with negative values are 
assigned as “B” compartments. Continuous bins with the same eigenvec-

tor sign are considered part of a “domain”. FAN-C tool [16] was used 
to detect A/B compartments.

(2). Sub-compartment Recognition: we use the Calder method pro-

posed by Liu et al. [21] to recognize sub-compartments. First, the 
repository is cloned and installed from https://github .com /CSOgroup /
CALDER and the input is in triple format, (𝑝𝑜𝑠_𝑥, 𝑝𝑜𝑠_𝑦, 𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑣𝑎𝑙𝑢𝑒). 
This method includes three modules: (i) calculation of chromatin 
structure domains; (ii) inference of hierarchical organization and ob-

tainment of sub-compartments; and (iii) computation of nested sub-

compartments within each domain. Finally, a bed format file is obtained 
that contains information about the subinterval to which each genomic 
region belongs.

(3). A1/A2/B1/B2/B3 compartment Recognition: SNIPER [23] is 
used to detect A1/A2/B1/B2/B3 compartments after cloning and in-
stalling the source code from https://github .com /ma -compbio /SNIPER.

https://data.4dnucleome.org/files-processed/4DNFIH7TH4MF/
https://data.4dnucleome.org/files-processed/4DNFIH7TH4MF/
https://www.encodeproject.org/
https://github.com/CSOgroup/CALDER
https://github.com/CSOgroup/CALDER
https://github.com/ma-compbio/SNIPER
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Fig. 2. Visualization of A/B compartments and eigenvector values.

The type of each genomic bin can be obtained using the A/B 
compartment recognition method, and sequence position comparison 
can give the compartment type of each TAD. Similarly, after sub-

compartment recognition, the sub-compartment type of each contin-

uous domain can be obtained, including A1, A2, B1, and B2, and the 
subinterval type of each TAD can be obtained through overlapping in-

tervals calculation.

4. Results and discussion

4.1. Analysis of two clusters

First, we obtained the A/B compartment scores of each genomic bin 
through the feature decomposition of the correlation matrix of the Hi-C 
matrix. Fig. 2 shows the visualization of the A/B compartment division 
results of chromosome 19 in the IMR90 cell line. The red area corre-

sponds to the A compartment, and the blue area corresponds to the 
B compartment. The line chart shows the feature vector values corre-

sponding to the genomic loci. Those with values greater than or equal 
to 0 are assigned to the A compartment, and those with values less than 
0 are assigned to the B compartment.

To analyze the features of the two domains clustered by TORNA-

DOES, we compared the chromatin structural domains identified by the 
TORNADOES method with the A/B compartment structure. First, we 
set the number of clusters to 2 and clustered the nodes in the hyper-

graph into two clusters. Then, we used the evaluation metrics to verify 
the similarity between the TAD clustering sequence and the A/B com-

partment partition sequence. Fig. 3 (a) shows the Jaccard, cosine, and 
Pearson similarities between the 122 chromatin domains partitioned 
by TORNADOES into two types and the A/B compartment sequence. 
The positive correlations between the two types of partition sequences 
on each chromosome, indicating that the different structural domains 
identified by this method correspond to A/B compartments at the com-

partment level, demonstrating the similarities and differences between 
different TADs and laying a foundation for inferring the similarities and 
differences of these TADs in chromatin structure and function.

Table 1 presents the similarity metrics between chromatin domains 
obtained using different clustering methods with IMR90 cell line data 
from chromosome 19 as input. The k-means and spectral clustering 
(SC) methods achieved similar results, indicating the stability of the 
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methods. Moreover, all similarity metrics had high positive values, 
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Table 1

Similarity results between two chromatin domains 
under different clustering methods.

Evaluation metrics Cluster methods Value

Jaccard similarity K-Means 0.325

Spectral Clustering 0.333

Cosine similarity K-Means 0.564

Spectral Clustering 0.603

Pearson correlation K-Means 0.368

Spectral Clustering 0.322

Euclidean distance K-Means 7.681

Spectral Clustering 7.615

Manhattan distance K-Means 59

Spectral Clustering 58

with the cosine similarity reaching 0.603, indicating a high positive 
correlation between the two chromatin domains obtained by the TOR-

NADOES method and the A/B compartment structure. In addition, the 
enrichment of ChIP-seq signals within TADs and boundaries helps to 
measure the correlation between the three-dimensional structure of 
chromatin and gene expression even better. TADs and boundaries are 
often enriched with certain histone modifications, such as H3K4me1, 
H3K4me3, and H3K27ac, and these histone modifications are usually 
associated with the binding of gene promoters, enhancers, and tran-

scription factors. In this section, ChIP-seq data related to transcription-

promoting factors including H3K27ac, H3K4me3, CTCF, POLR2A, and 
transcription-inhibiting factor H3K9me3 were selected to validate the 
distribution of ChIP-seq signals in different chromatin domains iden-

tified by the TORNADOES method. As shown in Fig. 3 (b), the first 
type of domains contains more ChIP-seq signals related to transcrip-

tion promotion, and the second type contains more signals related to 
transcription inhibition. These results indicate that the TORNADOES 
method can effectively identify chromatin domains with different fea-

tures. They also demonstrate the interaction between different types of 
TADs, which are organized into corresponding A/B compartments to 
achieve specific gene expression.

Next, we visualized and analyzed the identified chromatin domains 
and related ChIP-seq signals. As shown in Fig. 3 (c), the different chro-

matin domains obtained by applying the TORNADOES method to the 
genomic loci in chromosome 19 (2450000-9900000) of the IMR90 cell 
line are displayed, with each triangle representing a TAD region and 
different colors representing different types of identified regions. The 
A/B compartment distribution is also visualized, with red representing 
the A compartment and blue representing the B compartment., and the 
two distributions exhibit a strong similarity. Additionally, the figure 
displays the distribution of different ChIP-seq signals in this genomic 
region, including H3K27ac, H3K4me3, CTCF, POLR2A, and H3K9me3. 
From the figure we can see that the ChIP-seq signals associated with 
transcriptional activation are mostly enriched at the TAD boundaries 
and exhibit a high level of enrichment in the A compartment and cor-

responding structural clusters and that the H3K9me3 signal associated 
with transcriptional inhibition is mainly distributed in the B compart-

ment. Therefore, we conclude that the two types of chromatin domains 
clustered by TORNADOES method have similar biological properties to 
the A/B compartments.

4.2. Analysis of three clusters

We next clustered the nodes of the hypergraph into three types and 
used evaluation metrics to examine the similarity of the two node clus-

tering results with the A/B compartmentalization sequence. Fig. 4 (a) 
shows the Jaccard similarity, cosine similarity, and Pearson correla-

tion coefficient between the chromatin domains identified by TORNA-

DOES and the A/B compartmentalization sequence for chromosomes 
122 when two types of chromatin domains are identified. The results 

show that there is still a positive correlation between the two types of 
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Fig. 3. Evaluation of two clusters. (a) the Similarity between two types of chromatin domains and A/B compartment sequences. (b) comparison of ChIP-seq signal 
values of two domains. (c) visualization of chromatin domains and ChIP-seq tracks.

Fig. 4. Evaluation of three clusters. (a) The similarity between three types of chromatin domains and A/B compartment sequences. (b) Comparison of ChIP-seq 
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signal values of three domains. (c) Visualization of chromatin domains and ChIP-seq tracks.
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Table 2

Similarity results between three chromatin do-

mains under different clustering methods.

Evaluation metrics Cluster methods Value

Jaccard similarity K-Means 0.350

Spectral Clustering 0.358

Cosine similarity K-Means 0.674

Spectral Clustering 0.713

Pearson correlation K-Means 0.400

Spectral Clustering 0.382

Euclidean distance K-Means 6.48

Spectral Clustering 6.78

Manhattan distance K-Means 42

Spectral Clustering 46

partitioning sequences on each chromosome, and the similarity results 
are better compared to the two cluster results.

Table 2 shows the similarity metrics for different clustering meth-

ods with three clusters on the IMR90 cell line chromosome 19 data. A 
ll similarity metrics achieve high positive values, with cosine similarity 
reaching 0.713, indicating a high positive correlation between the two 
chromatin domain structure partitions. Compared to the two clusters, 
there is an improvement, suggesting that a more detailed clustering is 
more in line with the complexity of chromatin domain structure distri-

bution.

Similarly, the ChIP-seq signal values for each type of chromatin do-

main were also calculated, and the results are shown in Fig. 4 (b), which 
indicates that the first type of chromatin cluster contains more ChIP-seq 
signals associated with transcriptional activation, that the second type 
of chromatin cluster has low values for all signals, and that the third 
type of chromatin domain contains more ChIP-seq signals associated 
with transcriptional repression. Finally, the distribution of chromatin 
structural domains and the ChIPseq signal factor distribution were vi-

sualized. As shown in Fig. 4 (c), the TORNADOES method identified 
domains with different colors that still had a certain correlation with 
the A/B compartment, and the three types of structural clusters were 
mostly distributed in the A compartment, B compartment, and A/B com-

partment boundaries. These results demonstrate the effectiveness of the 
TORNADOES method in identifying chromatin domains with different 
features and also suggest that some gene loci do not exhibit obvious 
features of transcriptional activation or repression.

4.3. Analysis of four clusters

We also conducted a correlation analysis between the four types of 
chromatin domains identified by TORNADOES and the sub-compart-

ment hierarchy using the Calder method [18] to identify sub-compart-

ments. Hi-C data from chromosomes 1-22 of the IMR90 cell line were 
used as input, with the resolution set to 50 kb. Fig. 5 (a) shows the 
visualization of the sub-compartment regions identified by Calder on 
chromosome 19 of the IMR90 cell line, with different colors repre-

senting different sub-compartment categories. The visualization clearly 
demonstrates that this method can identify multiple sub-compartments.

The Calder method assigns a normalized level between 0 and 1 
to each partition within each chromosome, with 0 being the least ac-

tive partition and 1 being the most active. The method then calculates 
the Spearman correlation coefficient (SCC) between the partition lev-

els and the reference genome’s raw sequence, represented by 𝜌 (Rho 
in Fig. 5 (b)). When 𝜌 is less than 0.4, it indicates inaccurate compart-

mentalization. Fig. 5 (b) shows the SCC values between the partition 
levels and the reference genome for chromosomes 1-22 during the cal-

culation of sub-compartments using the Calder method. The curve in 
Fig. 5 (b) demonstrates that all 𝜌 values are greater than 0.4, with a 
maximum of 0.79, indicating that the method achieved accurate sub-

compartmentalization.

In order to evaluate the correlation between the four types of chro-
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matin domains identified by TORNADOES and sub-compartments, as 
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Fig. 5. Visualization of sub-compartments identified by Calder method. (a) the 
visualization of sub-compartments sequences. (b) the SCC values between the 
partition levels and the reference genome.

Table 3

Similarity results between four chromatin domains 
under different clustering methods.

Evaluation metrics Cluster methods Value

Jaccard similarity K-Means 0.358

Spectral Clustering 0.402

Cosine similarity K-Means 0.556

Spectral Clustering 0.738

Pearson correlation K-Means 0.390

Spectral Clustering 0.365

Euclidean distance K-Means 8.520

Spectral Clustering 6.190

Manhattan distance K-Means 51

Spectral Clustering 44

Fig. 6 (a) depicts, we calculated the Jaccard similarity, cosine simi-

larity, and Pearson correlation coefficients between the four types of 
chromatin domain partitioning and the sub-compartment sequence, and 
found a positive correlation between the two partitioning sequences on 
each chromosome.

Table 3 shows the similarity metrics results between chromatin 
domains obtained using different clustering methods with a cluster 
number of 4 as input using IMR90 cell line chromosome 19 data. All 
similarity metrics achieved high positive values, with cosine similarity 
reaching 0.738, indicating a high positive correlation between the two 
chromatin domain structure partitions. Compared to the A/B compart-

ment level with three clusters, there was an improvement, indicating 
that a more detailed classification better conforms to the inherent com-

plexity of the chromatin domain structure distribution.

Next, the ChIP-seq signal values contained in the four types of chro-

matin domains were calculated, and the results are shown in Fig. 6 (b). 
Here we see that the first and second types of chromatin domains con-

tain more ChIP-seq signals related to transcription promotion, which is 
more in line with the characteristics of the A sub-compartment. How-

ever, the third and fourth types of chromatin domains have lower levels 
of factors related to transcription promotion, and contain more en-

richment of signals related to transcriptional inhibition, which is more 

in line with the characteristics of the B sub-compartment. This result 
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Fig. 6. Visualization of sub-compartments identified by the Calder method. (a) The visualization of sub-compartments sequences. (b) The SCC values between the 
partition levels and the reference genome.
demonstrates that the TORNADOES method can effectively distinguish 
different types of chromatin domains.

Furthermore, as shown in Fig. 6 (c), the distribution of chromatin 
domains and ChIP-seq factor signals was also visualized. The different 
types of TADs identified by TORNADOES were then displayed using 
different colors, and they still exhibited a certain correlation with the 
sub-compartmentalization chromatin sequence. The four types corre-

spond to the A1, A2, B1, and B2 sub-compartments.

4.4. Analysis of five clusters

Finally, we conducted a correlation analysis between the five 
types of chromatin domains identified by TORNADOES and the 
A1/A2/B1/B2/B3 sub-compartments identified by the SNIPER [23]

method. Hi-C data from chromosomes 1-22 of the IMR90 cell line were 
used as input, with a resolution of 50 kb. Similar to sections 4.1-4.3, 
we calculated the cosine similarity between the four types of chromatin 
domain partitioning and the sub-compartment sequence to evaluate the 
correlation between the five types of TADs identified by TORNADOES 
and the sub-compartments identified by SNIPER.

As shown in Fig. 7(a), the cosine similarity metric achieved the 
highest positive value yet (0.84), indicating a high positive correlation 
between the two chromatin domain structure partitions. The ChIP-seq 
signal values contained in the five types of TADs were then calculated, 
and as shown in Fig. 7 (b) the density distribution of the different factors 
can be divided into five types. To observe the distribution of different 
factors at the TAD boundaries in these five TAD types, we calculated the 
proportion of the peaks of various ChIP-seq factors anchored within the 
20kb range of the TAD boundaries. As shown in Fig. 7(c), taking IMR90 
cell line 1 chromatin as an example, we found that the third and fifth 
types have a higher ratio of anchoring factors associated with promot-

ing transcription (CTCF, POLR2A, rad21, SMC3, H3K27ac, H3K36me3) 
and that the first, second and fourth types have a higher ratio of anchor-
1591

ing factors associated with inhibiting transcription (EZH2, H3K9me3). 
Therefore, we suppose that the third and fifth type TADs are more 
related to the function of promoting transcription, to the A1 and B1 do-

mains and that the first, second, and fourth type TADs are more related 
to the function of inhibiting transcription, the B1, B2, and B3 domains.

4.5. TORNADOES on other cell lines

In order to test the performance of TORNADOES in other cell line 
data, we selected the Hi-C data of GM12878, H1-hESC, HepG2, and 
K562 cell lines at 50kb resolution for all chromatins. Hypergraphs were 
then constructed based on CTCF, POLR2A, H3K4me3, H3K27ac, and 
H3K9me3 ChIP-seq signal features. For the GM12878 and K562 cell 
lines, type=2,3,4,5 was set for clustering, and the TADs were divided. 
For the H1-hESC and HepG2 cell lines, type=2,3,4 was set for cluster-

ing, and the TADs were divided here as well.

First, we calculated the cosine similarity value of the chamber divi-

sion result obtained when type was set to different values and the cham-

ber cosine similarity value of A/B, A1/A2/B1/B2, A1/A2/B1/B2/B3, as 
shown in Figure S1-S3. When type=2, the cosine similarity with the 
A/B area was generally the highest; when type=3 and 4, the cham-

ber cosine similarity with A1/A2/B1/B2 was generally the highest; and 
when type=5, the chamber cosine similarity with A1/A2/B1/B2/B3 
was generally the highest. Therefore, we conclude that by clustering 
TADs by setting type=2,3,4,5 they can be mapped to different types of 
compartments.

Next, we observed the density distribution of different factors when 
the cluster number was 2, 3, 4, or 5 in different cell lines. As shown in 
Figures S4, S6, S8, and S10, the TORNADOES results for different types 
have highly differentiated ChIP-seq signal distributions. Therefore, we 
believe that the TORNADOES method can be used to classify TADs ac-

cording to different ChIP-seq signal distribution ranges.

Last, we observed the count ratio for different factors when the 
cluster number was 2, 3, 4, or 5 and the chromosome number was 1 

in the different cell lines. As shown in Figures S5, S7, S9, S11, when 
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Fig. 7. Evaluation of five clusters. (a) Cosine similarity with A1/A2/B1/B2/B3 sub-compartment in the IMR90 cell line. (b) Density distribution of different factors 
when the cluster number equals 5 in the IMR90 cell line. (c) Count ratio for different factors when the cluster number equals 5 and the chromosome number equals 

1 in the IMR90 cell line.

type=2, the first type has a higher ratio of anchoring factors associated 
with promoting transcription, and the second type has a higher ratio of 
anchoring factors associated with inhibiting transcription (H3K9me3). 
Therefore, the first type corresponds to compartment A, and the second 
type corresponds to compartment B. When type=3, the first type has a 
higher ratio of anchoring factors associated with promoting transcrip-

tion, but the second and third type have a higher ratio of anchoring 
factors associated with inhibiting transcription. Therefore, the first type 
corresponds to compartment A, and the second and third types corre-

spond to compartment B. We thus conclude that TORNADOES can also 
be used with other cell line data.

5. Conclusion

In this paper, we proposed a chromatin domain partitioning algo-

rithm, TORNADOES, based on hypergraph partitioning. First, we used 
the CASPIAN algorithm, which is based on spatial density, to identify 
TADs. Then, based on these resulting TADs, we combined correspond-

ing ChIP-seq data of histone modifications and transcription factors 
for the specific cell line, and generate hypergraphs and their corre-

sponding features. Finally, by using different clustering algorithms, we 
performed hypergraph learning to cluster the TADs. The experimental 
results showed that by comparing the similarity of different numbers 
of clustering results with A/B compartments and sub-compartments, 
and the enrichment levels of different types of ChIP-seq correspond-

ing to different types, TORNADOES obtained chromatin domains with 
different biological meanings, such as the A compartment associated 
with gene expression and the B compartment associated with gene 
repression. Although we only tested our method using the TAD iden-
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tification method CASPIAN and two clustering methods (k-means and 
spectral clustering), users can change the TAD identification method 
and clustering methods when performing the hypergraph learning to 
get a potentially better result.

The TORNADOES method can be used to cluster different types of 
TADs successfully, but it does have some limitations. For example, ob-

taining accurate classification of TAD types requires a combination of 
TAD identification method and ChIP-seq factor selection. Therefore, we 
recommend that users choose a TAD identification method with high 
classification accuracy. In terms of ChIP-seq factor selection, if users 
want to divide TADs with different levels of promoting transcription, 
they can choose more common factors related to promoting transcrip-

tion, such as CTCF, POLR2A, H3K4me3, and H3K27ac. If users want 
to differentiate TADs with different levels of transcriptional inhibition, 
they can choose more common factors associated with transcriptional 
inhibition, such as H3K9me3. All of these ChIP-seq data are available 
on the ENCODE platform.
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