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SUMMARY

In this paper,wepropose a newapproach for variable selection using a collection of
Bayesian neural networks with a focus on quantifying uncertainty over which vari-
ables are selected. Motivated by fine-mapping applications in statistical genetics,
we refer to our framework as an ‘‘ensemble of single-effect neural networks’’
(ESNN) which generalizes the ‘‘sum of single effects’’ regression framework by
both accounting for nonlinear structure in genotypic data (e.g., dominance effects)
and having the capability tomodel discrete phenotypes (e.g., case-control studies).
Through extensive simulations, we demonstrate our method’s ability to produce
calibrated posterior summaries such as credible sets and posterior inclusion prob-
abilities, particularly for traits with genetic architectures that have significant
proportions of non-additive variation driven by correlated variants. Lastly, we
use real data to demonstrate that the ESNN framework improves upon the state
of the art for identifying true effect variables underlying various complex traits.

INTRODUCTION

Variable selection is a fundamental problem in high-dimensional statistical learning that arises in a wide range of

application domains (George andMcCulloch, 1993; Fan and Lv, 2010; Carbonetto and Stephens, 2012; Yamada

et al., 2020). An important benefit of incorporating sparsity when building a predictive model is that it provides

interpretations on which input variables are most important in explaining variation across the output variables.

Such a property is particularly desirable when the end goal of an application also includes scientific discovery.

For example, the goal of many genome-wide association (GWA) studies is not just to predict the disease status

or phenotypic risk of a patient but also to identify the (subsets of) single-nucleotide polymorphisms (SNPs) that

are statistically associatedwith thegenetic architectureof thedisease (Manolio, 2010;Malleret al., 2012). This can

further help with downstream clinical applications such as drug development.

Although many methods for variable selection have been developed in the literature (George and McCul-

loch, 1993; Fan and Lv, 2010; Carbonetto and Stephens, 2012; Yamada et al., 2020; Zou and Hastie, 2005;

Tibshirani, 1996), some significant challenges still remain. One important challenge is assessing the uncer-

tainty in which variables should be selected when they are highly correlated (Wang et al., 2020; Carbonetto

and Stephens, 2012). As an extreme case, imagine there are two variables that are completely collinear. In

this context, it becomes statistically impossible to distinguish them, and many traditional regularization

and shrinkage methods will arbitrarily select one SNP as being associated with the trait of the interest

and disregard the other (Wang et al., 2020). While such a strategy suffices if the goal is to build a predictive

model, it becomes limiting for scientific discovery because the conclusions rely on selecting the correct

subset of genetic variants for downstream investigation. Recently, Wang et al. (2020) introduced the

‘‘sum of single effects’’ model called SuSiE to address these issues. More specifically, SuSiE assesses the

uncertainty of variables by providing ‘‘credible sets’’ which, in the case of our extreme example, effectively

summarize that ‘‘either SNP 1 or 2 is relevant, but we are unsure as to which one.’’ SuSiE uses an iterative

Bayesian stepwise selection (IBSS) procedure where it iteratively regresses out effect variables and feeds

the corresponding residuals to the next iteration for training.

The main limitation of SuSiE is that it is a linear model and therefore does not capture nonlinear effects in

data. In GWA studies, it is well known that the genetic architecture of complex traits can be driven by phe-

nomena such as dominance and epistasis (Minamikawa et al., 2017; Crawford et al., 2017; Ramstein et al.,
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2020; Li et al., 2013). Indeed, machine learning models are most powered in settings when large sets of

training data are available and often exhibit greater predictive accuracy than linear models in applications

driven by non-additive variation. In this paper, we introduce the ‘‘ensemble of single-effect neural net-

works’’ (ESNN) framework which overcomes the limitations of SuSiE while preserving the ability to assess

uncertainty for variable selection (Figure 1). We demonstrate our approach in a simulation study and on

two real GWA datasets.

RESULTS

In this section, we first examine the utility of the ESNNmodel in simulations motivated by fine-mapping applica-

tions for continuousandbinary traits inGWAstudies.Wealso applyourmethod to real-worldGWAdatasets from

the Wellcome Trust Case Control Consortium (WTCCC) and the Wellcome Trust Centre for Human Genetics.

Simulations with continuous phenotypes

In order to evaluate the performance of our model on continuous traits, we simulate data using real geno-

types from chromosome 1 ofN = 5,000 randomly sampled individuals of self-identified European ancestry

in the UK Biobank (Bycroft et al., 2018). After quality control (Demetci et al., 2021), this dataset had 36,518

SNPs (see STARMethods). To simulate fine-mapping applications, we used theNCBI’s Reference Sequence

(RefSeq) database in the UCSC Genome Browser (Pruitt et al., 2005) to annotate SNPs to genes. Here, we

randomly sampled 200 genes on this chromosome where the annotations included both SNPs located

within the gene boundary and SNPs that fall within aG500 kb window of the boundary to also include reg-

ulatory elements (see STAR Methods).

In this study, each gene is considered to be its own dataset with its own complex correlation structure (see

Figure S1) and unique number of SNPs (ranging from J = 50 to 417 variants) encoded as f0; 1; 2g copies of a
reference allele where 0 and 2 represent ‘‘homozygotes’’ and 1 represents ‘‘heterozygotes.’’ For each data-

set, we assign 5 effect SNPs and use the following generative model

y =
X
j˛ C

xjbj1
�
xj = 0 or 2

�
+
X
j˛ C

xjuj1
�
xj = 1

�
+ e; e � N

�
0; s2

y I
�

(Equation 1)

where C represents the set of causal SNPs, and 1ð �Þ is an indicator function. Here, b and u are different

effect sizes for heterozygotes and homozygotes, respectively. Both variables are randomly sampled

from a standard normal distribution and rescaled according to their frequencies. The error term e is also

assumed to be normally distributed and is rescaled during the simulation such that the causal SNPs

explain a certain proportion of the variance in the synthetic trait (i.e., the narrow-sense heritability, h2).

We consider different scenarios where h2 = f0:05;0:1;0:4g.

We compare our method with other fine-mapping approaches: SuSiE (Wang et al., 2020), DAP-G (Wen et al.,

2016), CAVIAR (Hormozdiari et al., 2014), and FINEMAP (Benner et al., 2016). We run all competing methods

under their default parameter settings. We set L = 10 for both SuSiE and our approach. For ESNN, we used

a simple sparse architecture with 5 hidden neurons and tanh activation functions (see STAR Methods). Here,

Figure 1. An example of a single-effect neural network (SNN) with only the first input variable having an effect on

the outcome
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we set the maximum number of epochs to be 30; the hyper-parameter p for the indicator variable g is chosen

from a uniform distribution; we fixed s21 = 1 for all L models, and during training, we take 100 Monte Carlo

samples to evaluate the log likelihood (see STARMethods). Finally, we used an Adam optimizer with a learning

rate of 0.005 and a decay rate of 0.995 after every epoch, and we used an early stopping rule if the likelihood on

validation data stopped increasing (based on 85/15 training/validation splits).

To assess performance, we consider three different metrics. The first two metrics focus on evaluating the

credible sets. To our knowledge, since only SuSiE and DAP-G generate credible sets, we only compare

ESNN with these two methods for these metrics (DAP-G produces ‘‘signal clusters,’’ which follows a defi-

nition similar to credible sets in Definition 1; see Wang et al. (2020) for relevant discussion on this distinc-

tion). We begin by assessing the probability that each method creates a credible set containing at least 1

effect SNP (first row Figure 2). Ideally, a 95% level credible set should have at least 95% coverage. When

heritability is high (e.g., h2 = 0.4), signals are easier to detect, and both ESNN and SuSiE achieve the appro-

priate coverage. However, for lowly heritable traits (e.g., h2 = 0.1 and 0.05), the coverage of SuSiE and

DAP-G drops, while the coverage of ESNN remains the same. The second metric we check is the average

number of effect variables included in all credible sets (Figure S3). In practice, each method can report mul-

tiple credible sets. Therefore, this metric essentially helps evaluate the total number of effect variables

discovered by each method. Overall, DAP-G and ESNN consistently outperform SuSiE, with DAP-G having

the advantage. However, because the coverage of DAP-G is poor (Figure 2), this result effectively means

that DAP-G generates a large number of credible sets with false-positive signals. For the final metric, we

assess the ability of ESNN and the competing approaches to accurately prioritize causal variants according

to the posterior inclusion probabilities (PIPs) that each method provides (see STARMethods). Here, we use

receiver operating characteristic (ROC) and precision-recall curves to compare their ability to rank true pos-

itives over false positives (Figures 3 and S4). As h2 decreases, accuracy of the PIPs for all methods de-

creases, while our method is relatively better powered for all scenarios. Since SuSiE is the most comparable

method to the ESNNmodel, we also highlight the scenarios (denoted by an asterisk) where the distribution

of the area under the curve for our method is significantly larger than that for SuSiE (satisfying P < 0:05).

Importantly, the PIPs from ESNN and SuSiE are calibrated similarly (Figure S2).

Simulations with binary phenotypes

We now assess the performance of ESNN on binary traits (e.g., case-control studies). We consider

two generative models for the class labels: (1) logistic regression and (2) a liability threshold (LT) model

Figure 2. Comparisons of coverage for ESNN, SuSiE, and DAP-G in simulation studies under different levels of

heritability

Results are based on 200 data replicates with standard errors represented by the grey bars.
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(Lee et al., 2011; Golan et al., 2014; Falconer, 1965). In the former, we simply use the genotypes from chro-

mosome 1 of the N = 5,000 randomly sampled individuals from the UK Biobank to assume that

y�Bern
�
p
�
; log

�
p

1 � p

�
=
X
j˛ C

xjbj1
�
xj = 0 or 2

�
+
X
j˛ C

xjuj1
�
xj = 1

�
(Equation 2)

where, in addition to the previous notation, the binary traits follow a Bernoulli distribution with probability

p. In the latter simulation model, we take into account disease prevalence and ascertainment bias which

can occur in case-control studies. Here, we adopt the LT model which assumes a latent liability li �
Nð0; 1Þ for each observation. With some known prevalence k, one can determine a threshold t = F� 1ðkÞ
using the quantile function of normal distribution such that an individual is a case yi = 1 if li > t. To simulate

data under the LT model, we first generate 1 million individuals each with J = 200 SNPs (with minor allele

frequency uniformly sampled between 0.05 and 0.5). Next, we select 5 causal SNPs and generate contin-

uous liabilities with a controlled heritability h2 = f0:05; 0:1; 0:4g using a model similar to Equation (1).

Then we consider a prevalence k ˛ f50%; 10%; 1%g and define case-control labels for each of the million

individuals. Finally, we subsample 2,500 cases and 2,500 controls for the analysis.

Once again, we compare ESNN to SuSiE (Wang et al., 2020), DAP-G (Wen et al., 2016), CAVIAR (Hormozdiari

et al., 2014), andFINEMAP (Benner et al., 2016) using coverage (Figure2), the number of effect variables included

in all credible sets per dataset (Figure S3), ROC curves (Figure 3), and precision-recall curves (Figure S4). The

SuSiE framework was originally designed for continuous traits, so we consider two adaptations of the model

for thebinarydata. In thefirst,wesimply treat theclass labelsascontinuousand run themodelas is. In the second,

which we refer to as LT-SuSiE, we use a Markov Chain Monte Carlo to estimate continuous liability scores as

phenotypes (Felsenstein, 2005; Falconer, 1965; Curnow and Smith, 1975). Here, we use all the same parameter

settings as in the regression simulation study, except that we set the learning rate for ESNN to be 0.01. Overall,

performances followa similar trend to the regression simulations such that ESNNconsistently outperforms other

methods. When disease prevalence is very low (e.g., k = 1%), cases are assumed to come from the ‘‘tail’’ of the

distribution. In this scenario, statisticalmodels aregenerally betterpowered (Weissbrodet al., 2015).As theprev-

alence k becomes greater, such that the LTmoves from the tails to the center of the distribution, it will become

harder for a classifier to distinguish cases from controls. This also results in lower power for variable selection.

Notably, even in these cases, our method remains robust.

Fine-mapping in heterogeneous stock of mice

WeappliedESNNandSuSiE to twocontinuous traits: high-density lipoprotein (HDL) and low-density lipoprotein

(LDL) in a heterogeneous stock of mice dataset from the Wellcome Trust Centre for Human Genetics (Valdar

et al., 2006). This dataset contains J = 10,346 SNPs with N = 1594 samples for HDL and N = 1637 samples for

LDL (see STARMethods). To run both methods, we simply partition the whole genome into 21 windows where

eachwindowcontains 500 SNPs. Bydoing so,wefine-mapSNPs in annotatedgenes aswell as SNPs in intergenic

regions. We used the same hyper-parameter settings as in the regression simulations for both methods.

For HDL and LDL, ESNNfinds 41 and 19 credible sets while SuSiE finds 62 and 26 credible sets, respectively.Our

method finding less credible sets can potentially be due to the criterion that we only include an SNNmodel into

the ensemble if it increases the likelihood. This criteriondemonstrated toensure that a credible setgeneratedby

ESNNwould have high coverage in simulations (Figure 2). Therewere 12 SNPs thatwere included in the credible

sets of bothmethods for HDL and 5 for LDL. This potentially means that these SNPs contributed additive effects

to the phenotypic variation. SNPs that are only identified by ESNN probably contribute nonlinear effects (e.g.,

dominance). We highlighted one region for each trait in Figure S5. One SNP found by both methods,

rs3090325 in LDL (Figure S5A), can be mapped to the Smarca2 gene, which has been found to be associated

with cholesterol regulation (Meaney, 2014). In HDL (Figure S5B), SNP gnf04.147.942 can be mapped to the

Panc1 gene, which regulates pancreatic activity and has been shown to be linked with HDL (Mancuso et al.,

2020). Furthermore, SNPs such as rs13483562 (which is only found by ESNN in the LDL analysis), can bemapped

to theAldh1a7gene,whichalsohasbeendemonstrated toaffect related traits suchas lipid, cholesterol level, and

obesity in mice (Yoo and Desiderio, 2003; Lee et al., 2006).

Fine-mapping in the WTCCC 1 study

We next apply ESNN and SuSiE to two binary traits: type 1 diabetes (T1D) and type 2 diabetes (T2D) from

theWTCCC 1 study (Wellcome Trust Case Control Consortium, 2007). This dataset hasN = 1963 cases and

N = 2938 controls for T1D, N = 1924 cases and N = 2938 controls for T2D, along with J = 458,868
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genotyped SNPs for each individual (see STAR Methods). Similarly, we run ESNN and SuSiE with a window

size of 500 SNPs and use the same model settings as in the binary simulations.

ESNN identifies 32 and 19 credible sets for T1D and T2D, respectively, whereas SuSiE finds 67 and 30 sets for

each trait, respectively. There are 5 SNPs that are found by both methods for T1D but none for T2D. This is

likely due to the fact that SuSiE was not originally developed for binary traits and also due to the potential

role of nonlinear genetic architecture. We highlight two interesting results in Figure 4 where we plot the

PIPs of SNPs computed by ESNN and SuSiE. In panel (a), we show awindow near the human leukocyte antigen

(HLA) region on chromosome 6, which has been well studied in the literature and found to be associated with

T1D (Hu et al., 2015; Nejentsev et al., 2007; Erlich et al., 2008; Noble and Valdes, 2011). One of the two SNPs

found only by ESNN, rs3129051, is located upstream (within 50kb) of the HLA-G gene, which is a well-known

gene that is related to T1D. The other SNP, rs16894900, is located betweenMAS1L (within 50kb downstream)

and UBD (within 50kb upstream), both of which have been shown to be related to T1D (Noble and Valdes,

2011). In panel (b), we highlight the region around NOS1AP on chromosome 1. This gene has been found

to be linked with T2D in several studies (Hu et al., 2010; Chu et al., 2010; Qin et al., 2010). Our method iden-

tified 2 SNPs in this region, but SuSiE reports none. It has been suggested that this region may not play a

dominant role in susceptibility to T2D, but a minor effect may exist (Hu et al., 2010). Similar to SuSiE, these

conclusions were previously made using linear models. We hypothesize that this region may contribute to

T2D nonlinearly, and thus, the traditional hypothesis-testing methods would have missed this signal.

DISCUSSION

In this paper, wepresent the ESNNwhichgeneralizes the sumof single-effects regression framework byaccount-

ing for nonlinear genetic architecture and extending to non-continuous phenotypes. The ESNN approach

Figure 3. Receiver operating characteristic (ROC) curves for simulation studies of different scenarios

Listed in each panel are p values indicating the level of significant difference between results for ESNN and SuSiE according to their respective areas under

the curve (AUCs) across the simulations. Asterisks (*) denote scenarios where ESNN is significantly better powered than SuSiE (i.e., satisfying P < 0:05).

Results are based on 200 data replicates.

ll
OPEN ACCESS

iScience 25, 104553, July 15, 2022 5

iScience
Article



provides PIPs and credible sets that can guide variable selection (see STARMethods).While we focus on genetic

fine-mapping, this method is also applicable to other fields especially when data are correlated and sparse. We

provide a variational algorithm with several relaxation techniques that enables scalable inference (see STAR

Methods).WeshowthatESNNcaneffectively increasepower for variable selectionusingsimulations.Weapplied

ESNN to two real-world genetic datasets and demonstrated its ability to make discoveries that are biologically

meaningful.

LIMITATIONS OF THE STUDY

There are a few limitations to the current ESNN framework. Similar to most deep learning models, our

method requires large sample sizes for training and requires hyper-parameter fine-tuning. For high-

dimensional settings, we currently run the method by splitting the whole dataset into small windows

so that the training algorithm can quickly converge. However, this may ignore some long-range interac-

tions. Therefore, a focus for future work will be extending the current model with more complex network

architectures.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B The sum of single-effects regression model

B The ensemble of single-effect neural networks

B Posterior inference via variational bayes

B Details of the variational algorithm

B Iterative bayesian stepwise selection

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2022.104553.

A B

Figure 4. Posterior inclusion probabilities (PIP) of ESNN and SuSiE in the WTCCC analysis

(A) Highlighted region for type 1 diabetes (T1D). Significant SNPs found only by ESNN (included in the credible sets), only

by SuSiE, and by both methods are color coded in red, black, and blue, respectively.

(B) Highlighted region for type 2 diabetes (T2D).

ll
OPEN ACCESS

6 iScience 25, 104553, July 15, 2022

iScience
Article

https://doi.org/10.1016/j.isci.2022.104553


ACKNOWLEDGMENTS

S.R. is supported by USNational Institutes of Health (NIH) grant R01 GM118652, NIH grant R35 GM139628, and

National Science Foundation (NSF) CAREER award DBI1452622. L.C. is supported by a David & Lucile Packard

Fellowship for Science and Engineering. Data from the UK Biobank Resource weremade available under appli-

cation numbers 22419 (S.R.) and 14649 (L.C.). This study also makes use of data generated by the Wellcome

Trust CaseControl Consortium (WTCCC). Funding for theWTCCCproject was provided by theWellcome Trust

under award 076113, 085475, and 090355. Any opinions, findings, and conclusions or recommendations ex-

pressed in this material are those of the author(s) and do not necessarily reflect the views of any of the funders.

AUTHOR CONTRIBUTIONS

W.C. and L.C. conceived themethods.W.C. developed the software and carried out all analyses.W.C., S.R.,

and L.C. wrote and reviewed the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: February 23, 2022

Revised: May 9, 2022

Accepted: June 1, 2022

Published: July 15, 2022

REFERENCES
Barron, A.R. (1993). Universal approximation
bounds for superpositions of a sigmoidal
function. IEEE Trans. Inf. Theor. 39, 930–945.
https://doi.org/10.1109/18.256500.

Benner, C., Spencer, C.C., Havulinna, A.S.,
Salomaa, V., Ripatti, S., and Pirinen, M. (2016).
Finemap: efficient variable selection using
summary data from genome-wide association
studies. Bioinformatics 32, 1493–1501. https://
doi.org/10.1093/bioinformatics/btw018.

Bycroft, C., Freeman, C., Petkova, D., Band, G.,
Elliott, L.T., Sharp, K., Motyer, A., Vukcevic, D.,
Delaneau, O., O’Connell, J., et al. (2018). The UK
biobank resource with deep phenotyping and
genomic data. Nature 562, 203–209. https://doi.
org/10.1038/s41586-018-0579-z.

Carbonetto, P., and Stephens, M. (2012). Scalable
variational inference for bayesian variable
selection in regression, and its accuracy in genetic
association studies. Bayesian Anal. 7, 73–108.
https://doi.org/10.1214/12-ba703.

Chen, Y., Gao, Q., Liang, F., and Wang, X. (2021).
Nonlinear variable selection via deep neural
networks. J. Comput. Graph. Stat. 30, 484–492.
https://doi.org/10.1080/10618600.2020.1814305.

Chu, A.Y., Coresh, J., Arking, D.E., Pankow, J.S.,
Tomaselli, G.F., Chakravarti, A., Post, W.,
Spooner, P.H., Spooner, P., Boerwinkle, E., Kao,
W.H.L., and Kao, W. (2010). Nos1ap variant
associated with incidence of type 2 diabetes in
calcium channel blocker users in the
atherosclerosis risk in communities (aric) study.
Diabetologia 53, 510–516. https://doi.org/10.
1007/s00125-009-1608-0.

Crawford, L., Zeng, P., Mukherjee, S., and
Zhou, X. (2017). Detecting epistasis with the
marginal epistasis test in genetic mapping
studies of quantitative traits. PLoS Genet. 13,
e1006869. https://doi.org/10.1371/journal.
pgen.1006869.

Curnow, R.N., and Smith, C. (1975). Multifactorial
models for familial diseases inman. J. R. Stat. Soc.
138, 131. https://doi.org/10.2307/2984646.

Demetci, P., Cheng, W., Darnell, G., Zhou, X.,
Ramachandran, S., and Crawford, L. (2021). Multi-
scale inference of genetic trait architecture using
biologically annotated neural networks. PLoS
Genet. 17, e1009754. https://doi.org/10.1371/
journal.pgen.1009754.

Erlich, H., Valdes, A.M., Noble, J., Carlson, J.A.,
Varney, M., Concannon, P., Mychaleckyj, J.C.,
Todd, J.A., Bonella, P., Fear, A.L., et al. (2008). Hla
dr-dq haplotypes and genotypes and type 1
diabetes risk: analysis of the type 1 diabetes
genetics consortium families. Diabetes 57, 1084–
1092. https://doi.org/10.2337/db07-1331.

Falconer, D.S. (1965). The inheritance of liability
to certain diseases, estimated from the incidence
among relatives. Ann. Hum. Genet. 29, 51–76.
https://doi.org/10.1111/j.1469-1809.1965.
tb00500.x.

Fan, J., and Lv, J. (2010). A selective overview of
variable selection in high dimensional feature
space. Stat. Sin. 20, 101–148.

Felsenstein, J. (2005). Using the quantitative
genetic threshold model for inferences between
and within species. Phil. Trans. Biol. Sci. 360,
1427–1434. https://doi.org/10.1098/rstb.2005.
1669.

George, E.I., and McCulloch, R.E. (1993). Variable
selection via Gibbs sampling. J. Am. Stat. Assoc.
88, 881–889. https://doi.org/10.1080/01621459.
1993.10476353.

Ghosh, S., Yao, J., and Doshi-Velez, F. (2019).
Model selection in bayesian neural networks via
horseshoe priors. J. Mach. Learn. Res. 20, 1–46.

Golan, D., Lander, E.S., and Rosset, S. (2014).
Measuring missing heritability: inferring the

contribution of common variants. Proc. Natl.
Acad. Sci. USA 111, E5272–E5281. https://doi.
org/10.1073/pnas.1419064111.

Hochreiter, S. (1998). The vanishing gradient
problem during learning recurrent neural nets
and problem solutions. Int. J. Uncertain.
Fuzziness Knowl.-Based Syst. 06, 107–116.
https://doi.org/10.1142/s0218488598000094.

Hormozdiari, F., Kostem, E., Kang, E.Y., Pasaniuc,
B., and Eskin, E. (2014). Identifying causal variants
at loci with multiple signals of association.
Genetics 198, 497–508. https://doi.org/10.1534/
genetics.114.167908.

Hu, C., Wang, C., Zhang, R., Ng, M.C., Bao, Y., So,
W., So, W.Y., Ma, R., Ma, R.C., Ma, X., et al. (2010).
Association of genetic variants of nos1ap with
type 2 diabetes in a Chinese population.
Diabetologia 53, 290–298. https://doi.org/10.
1007/s00125-009-1594-2.

Hu, X., Deutsch, A.J., Lenz, T.L., Onengut-
Gumuscu, S., Han, B., Chen, W.-M., Howson,
J.M.M., Todd, J.A., de Bakker, P.I.W., Rich, S.S.,
and Raychaudhuri, S. (2015). Additive and
interaction effects at three amino acid positions in
hla-dq and hla-dr molecules drive type 1 diabetes
risk. Nat. Genet. 47, 898–905. https://doi.org/10.
1038/ng.3353.

Jang, E., Gu, S., and Poole, B. (2017). Categorical
reparametrization with gumbel-softmax. In
Proceedings International Conference on
Learning Representations (ICLR).

Kingma, D.P., and Welling, M. (2014). Auto-
encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, Y. Bengio and Y.
LeCun, eds..

Lee, K.-Y., Kim, S.-J., Cha, Y.-S., So, J.-R.,
Park, J.-S., Kang, K.-S., and Chon, T.-W.

ll
OPEN ACCESS

iScience 25, 104553, July 15, 2022 7

iScience
Article

https://doi.org/10.1109/18.256500
https://doi.org/10.1093/bioinformatics/btw018
https://doi.org/10.1093/bioinformatics/btw018
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1214/12-ba703
https://doi.org/10.1080/10618600.2020.1814305
https://doi.org/10.1007/s00125-009-1608-0
https://doi.org/10.1007/s00125-009-1608-0
https://doi.org/10.1371/journal.pgen.1006869
https://doi.org/10.1371/journal.pgen.1006869
https://doi.org/10.2307/2984646
https://doi.org/10.1371/journal.pgen.1009754
https://doi.org/10.1371/journal.pgen.1009754
https://doi.org/10.2337/db07-1331
https://doi.org/10.1111/j.1469-1809.1965.tb00500.x
https://doi.org/10.1111/j.1469-1809.1965.tb00500.x
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref12
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref12
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref12
https://doi.org/10.1098/rstb.2005.1669
https://doi.org/10.1098/rstb.2005.1669
https://doi.org/10.1080/01621459.1993.10476353
https://doi.org/10.1080/01621459.1993.10476353
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref15
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref15
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref15
https://doi.org/10.1073/pnas.1419064111
https://doi.org/10.1073/pnas.1419064111
https://doi.org/10.1142/s0218488598000094
https://doi.org/10.1534/genetics.114.167908
https://doi.org/10.1534/genetics.114.167908
https://doi.org/10.1007/s00125-009-1594-2
https://doi.org/10.1007/s00125-009-1594-2
https://doi.org/10.1038/ng.3353
https://doi.org/10.1038/ng.3353
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref21
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref21
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref21
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref21
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref22
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref22
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref22
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref22
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref22
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref22


(2006). Effect of exercise on hepatic gene
expression in an obese mouse model using
cdna microarrays. Obesity 14, 1294–1302.
https://doi.org/10.1038/oby.2006.147.

Lee, S.H., Wray, N.R., Goddard, M.E., and
Visscher, P.M. (2011). Estimating missing
heritability for disease from genome-wide
association studies. Am. J. Hum. Genet. 88,
294–305. https://doi.org/10.1016/j.ajhg.2011.
02.002.

Leshno, M., Lin, V.Y., Pinkus, A., and Schocken, S.
(1993). Multilayer feedforward networks with
a nonpolynomial activation function can
approximate any function. Neural Netw. 6,
861–867. https://doi.org/10.1016/s0893-6080(05)
80131-5.

Li, J., Glessner, J.T., Zhang, H., Hou, C., Wei, Z.,
Bradfield, J.P., Mentch, F.D., Guo, Y., Kim, C., Xia,
Q., et al. (2013). Gwas of blood cell traits identifies
novel associated loci and epistatic interactions in
caucasian and african-american children. Hum.
Mol. Genet. 22, 1457–1464. https://doi.org/10.
1093/hmg/dds534.

Maddison, C.J., Mnih, A., and Teh, Y.W. (2017).
The concrete distribution: a continuous
relaxation of discrete random variables. In 5th
International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings.

Maller, J.B., McVean, G., Byrnes, J., Vukcevic, D.,
Palin, K., Su, Z., Howson, J.M.M., Auton, A.,
Myers, S., Morris, A., et al. (2012). Bayesian
refinement of association signals for 14 loci in 3
common diseases. Nat. Genet. 44, 1294–1301.
https://doi.org/10.1038/ng.2435.

Mancuso, E., Mannino, G.C., Fuoco, A., Leo, A.,
Citraro, R., Averta, C., Spiga, R., Russo, E., De
Sarro, G., Andreozzi, F., and Sesti, G. (2020). Hdl
(high-density lipoprotein) and apoa-1 (apolipo-
protein a-1) potentially modulate pancreatic
a-cell glucagon secretion. Arterioscler. Thromb.
Vasc. Biol. 40, 2941–2952. https://doi.org/10.
1161/atvbaha.120.314640.

Manolio, T.A. (2010). Genomewide association
studies and assessment of the risk of disease.
N. Engl. J. Med. 363, 166–176. https://doi.org/10.
1056/nejmra0905980.

Meaney, S. (2014). Epigenetic regulation of
cholesterol homeostasis. Front. Genet. 5, 311.
https://doi.org/10.3389/fgene.2014.00311.

Minamikawa, M.F., Nonaka, K., Kaminuma, E.,
Kajiya-Kanegae, H., Onogi, A., Goto, S.,
Yoshioka, T., Imai, A., Hamada, H., Hayashi, T.,
et al. (2017). Genome-wide association study and
genomic prediction in citrus: potential of
genomics-assisted breeding for fruit quality traits.
Sci. Rep. 7, 4721. https://doi.org/10.1038/s41598-
017-05100-x.

Nejentsev, S., Howson, J.M.M., Walker, N.M.,
Szeszko, J., Field, S.F., Stevens, H.E., Reynolds, P.,
Hardy, M., King, E., Masters, J., et al. (2007).
Localization of type 1 diabetes susceptibility to
the mhc class i genes hla-b and hla-a. Nature 450,
887–892. https://doi.org/10.1038/nature06406.

Noble, J.A., and Valdes, A.M. (2011). Genetics of
the hla region in the prediction of type 1 diabetes.
Curr. Diabetes Rep. 11, 533–542. https://doi.org/
10.1007/s11892-011-0223-x.

Pickrell, J.K. (2014). Joint analysis of
functional genomic data and genome-wide
association studies of 18 human traits. Am. J.
Hum. Genet. 94, 559–573. https://doi.org/10.
1016/j.ajhg.2014.03.004.

Pruitt, K.D., Tatusova, T., and Maglott, D.R.
(2004). Ncbi reference sequence (refseq): a
curated non-redundant sequence database of
genomes, transcripts and proteins. Nucleic Acids
Res. 33, D501–D504. https://doi.org/10.1093/nar/
gki025.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L.,
Ferreira, M.A., Bender, D., Maller, J., Sklar, P., De
Bakker, P.I., Daly, M.J., and Sham, P.C. (2007).
Plink: a tool set for whole-genome association
and population-based linkage analyses. Am. J.
Hum. Genet. 81, 559–575. https://doi.org/10.
1086/519795.

Qin, W., Zhang, R., Hu, C., Wang, C.-r., Lu, J.-y.,
Yu, W.-h., Bao, Y.-q., Xiang, K.-s., and Jia, W.-p.
(2010). A variation in nos1ap gene is associated
with repaglinide efficacy on insulin resistance in
type 2 diabetes of Chinese. Acta. Pharmacol.
Sin. 31, 450–454. https://doi.org/10.1038/aps.
2010.25.

Ramstein, G.P., Larsson, S.J., Cook, J.P., Edwards,
J.W., Ersoz, E.S., Flint-Garcia, S., Gardner, C.A.,
Holland, J.B., Lorenz, A.J., McMullen, M.D., et al.
(2020). Dominance effects and functional
enrichments improve prediction of agronomic
traits in hybrid maize. Genetics 215, 215–230.
https://doi.org/10.1534/genetics.120.303025.

Servin, B., and Stephens, M. (2005). Imputation-
based analysis of association studies: candidate

regions and quantitative traits. PLoS Genet. 3,
e114. https://doi.org/10.1371/journal.pgen.
0030114.eor.

Tibshirani, R. (1996). Regression shrinkage and
selection via the lasso. J. Roy. Stat. Soc. B 58,
267–288. https://doi.org/10.1111/j.2517-6161.
1996.tb02080.x.

Valdar, W., Solberg, L.C., Gauguier, D., Burnett,
S., Klenerman, P., Cookson, W.O., Taylor, M.S.,
Rawlins, J.N.P., Mott, R., and Flint, J. (2006).
Genome-wide genetic association of complex
traits in heterogeneous stock mice. Nat. Genet.
38, 879–887. https://doi.org/10.1038/ng1840.

Wang, G., Sarkar, A., Carbonetto, P., and
Stephens, M. (2020). A simple new approach to
variable selection in regression, with application
to genetic fine mapping. J. Roy. Stat. Soc. B 82,
1273–1300. https://doi.org/10.1111/rssb.12388.

Weissbrod, O., Lippert, C., Geiger, D., and
Heckerman, D. (2015). Accurate liability
estimation improves power in ascertained case-
control studies. Nat. Methods 12, 332–334.
https://doi.org/10.1038/nmeth.3285.

Wellcome Trust Case Control Consortium (2007).
Genome-wide association study of 14, 000 cases
of seven common diseases and 3, 000 shared
controls. Nature 447, 661–678. https://doi.org/10.
1038/nature05911.

Wen, X., Lee, Y., Luca, F., and Pique-Regi, R.
(2016). Efficient integrative multi-snp association
analysis via deterministic approximation of
posteriors. Am. J. Hum. Genet. 98, 1114–1129.
https://doi.org/10.1016/j.ajhg.2016.03.029.

Yamada, Y., Lindenbaum, O., Negahban, S., and
Kluger, Y. (2020). Feature selection using
stochastic gates. In International Conference on
Machine Learning (PMLR), pp. 10648–10659.

Yoo, J.-Y., and Desiderio, S. (2003). Innate and
acquired immunity intersect in a global view of
the acute-phase response. Proc. Natl. Acad. Sci.
USA 100, 1157–1162. https://doi.org/10.1073/
pnas.0336385100.

Zhou, X., Carbonetto, P., and Stephens, M. (2013).
Polygenic modeling with Bayesian sparse linear
mixed models. PLoS Genet. 9, e1003264. https://
doi.org/10.1371/journal.pgen.1003264.

Zou, H., and Hastie, T. (2005). Regularization and
variable selection via the elastic net. J. Roy. Stat.
Soc. B 67, 301–320. https://doi.org/10.1111/j.
1467-9868.2005.00503.x.

ll
OPEN ACCESS

8 iScience 25, 104553, July 15, 2022

iScience
Article

https://doi.org/10.1038/oby.2006.147
https://doi.org/10.1016/j.ajhg.2011.02.002
https://doi.org/10.1016/j.ajhg.2011.02.002
https://doi.org/10.1016/s0893-6080(05)80131-5
https://doi.org/10.1016/s0893-6080(05)80131-5
https://doi.org/10.1093/hmg/dds534
https://doi.org/10.1093/hmg/dds534
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref27
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref27
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref27
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref27
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref27
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref27
https://doi.org/10.1038/ng.2435
https://doi.org/10.1161/atvbaha.120.314640
https://doi.org/10.1161/atvbaha.120.314640
https://doi.org/10.1056/nejmra0905980
https://doi.org/10.1056/nejmra0905980
https://doi.org/10.3389/fgene.2014.00311
https://doi.org/10.1038/s41598-017-05100-x
https://doi.org/10.1038/s41598-017-05100-x
https://doi.org/10.1038/nature06406
https://doi.org/10.1007/s11892-011-0223-x
https://doi.org/10.1007/s11892-011-0223-x
https://doi.org/10.1016/j.ajhg.2014.03.004
https://doi.org/10.1016/j.ajhg.2014.03.004
https://doi.org/10.1093/nar/gki025
https://doi.org/10.1093/nar/gki025
https://doi.org/10.1086/519795
https://doi.org/10.1086/519795
https://doi.org/10.1038/aps.2010.25
https://doi.org/10.1038/aps.2010.25
https://doi.org/10.1534/genetics.120.303025
https://doi.org/10.1371/journal.pgen.0030114.eor
https://doi.org/10.1371/journal.pgen.0030114.eor
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1038/ng1840
https://doi.org/10.1111/rssb.12388
https://doi.org/10.1038/nmeth.3285
https://doi.org/10.1038/nature05911
https://doi.org/10.1038/nature05911
https://doi.org/10.1016/j.ajhg.2016.03.029
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref47
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref47
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref47
http://refhub.elsevier.com/S2589-0042(22)00825-2/sref47
https://doi.org/10.1073/pnas.0336385100
https://doi.org/10.1073/pnas.0336385100
https://doi.org/10.1371/journal.pgen.1003264
https://doi.org/10.1371/journal.pgen.1003264
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x


STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Lorin Crawford (lcrawford@microsoft.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d This paper analyzes existing, publicly available data. These accession URLs for the datasets are listed in

the Key resources table.

d Source code and tutorials for implementing the ‘‘ensemble of single-effect neural networks’’ (ESNN)

framework are publicly available online at https://github.com/ramachandran-lab/ESNN.

d Any additional information required to reanalyze the data reported in this paper is available from the

Lead contact upon request

METHOD DETAILS

The sum of single-effects regression model

In this section, we provide background on single-effects regression (SER) and state a rigorous definition of

credible sets for variable selection. The original SER model (Servin and Stephens, 2007; Pickrell, 2014) as-

sumes that exactly one of J input variables has a non-zero coefficient. More specifically,

y = Xb+ e; e � N
�
0; s2

y I
�

b = bg;b � N �
0;s2

1

�
; g � Multð1;pÞ

(Equation 3)

where y is an N-dimensional response vector (e.g., continuous phenotypes); X is an N3J design matrix

(e.g., genotypes); e is an N-dimensional error term; b is a J-dimensional vector of regression coefficients;

g is a binary indicator that determines which regression coefficient is to be non-zero; and Multðm;pÞ de-
notes the multinomial distribution with m samples drawn with class probability distribution p. For

simplicity, we will consider a uniform prior such that p = ð1 =J;.; 1 =JÞ. Note that m is set to equal to

one so that the coefficient vector b has exactly one non-zero entry for modeling the single-effect. To

estimate the statistical association of each variable, one would fit J-univariate models corresponding

to regressing each j-th column xj of X onto the response y and computing posterior inclusion probabil-

ities defined as PIPjhPr½bbj s0
�� y;X�.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Mouse Resources Valdar et al. (2006) http://mtweb.cs.ucl.ac.uk/mus/www/mouse/index.shtml

WTCCC 1 Study Wellcome Trust Case Control Consortium (2007) www.wtccc.org.uk

UK Biobank Bycroft et al. (2018) https://www.ukbiobank.ac.uk

Software and algorithms

ESNN This Study https://github.com/ramachandran-lab/ESNN

SuSiE Wang et al. (2020) https://github.com/stephenslab/susieR

DAP-G Wen et al. (2016) https://github.com/xqwen/dap

CAVIAR Hormozdiari et al. (2014) http://genetics.cs.ucla.edu/caviar

FINEMAP Benner et al. (2016) http://www.christianbenner.com
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In the context of statistical genetics, the original SER model only assumes one causal SNP. However, we

know that in many real-world applications, it is desired to have a method that flexibly allows for many var-

iants to have an effect on trait architecture (Carbonetto and Stephens, 2012; Demetci et al., 2021). The

SuSiE framework is based on an extension of summing over L-multiple SER models (Wang et al., 2020).

Here, the main idea is to construct an overall effect vector b from multiple single-effect coefficients

b1;.;bL via the following

y = Xb+ e; e � N
�
0; s2

y I
�
;

b =
XL

l = 1

bðlÞ
; bðlÞ = bðlÞgðlÞ; bðlÞ � N �

0; s2
1

�
; gðlÞ � Multð1;pÞ

(Equation 4)

In practice, SuSiE uses an iterative Bayesian stepwise selection (IBSS) algorithm (i.e., coordinate ascent vari-

ational inference) to estimate the model parameters. More specifically, at each iteration, it fits the SER

model for bðlÞ using the residuals from the model y � P
l0sl

Xbðl0 Þ. At the end of training, the SuSiE model pro-

vides L estimated coefficient vectors bb and L corresponding PIP vectors aðlÞ = fPr½bðlÞ
1 s0

��� y; X�; .;

Pr½bðlÞ
J s0

��� y;X�g. Computation of a final inclusion probability assumes that effects are independent across

the L different models and is computed as

PIPj hPr
	 bbj s 0jy;X
z1 �

YL
l = 1

�
1 � a

ðlÞ
j

�
(Equation 5)

A key component of SuSiE is that it uses these PIPs to naturally construct credible sets. Effectively, a level

r credible set Sða; rÞ can be estimated by simply sorting variables in descending order and then including

variables into the set until their cumulative probability exceeds r (Wang et al., 2020). Below we give the

rigorous definition for credible sets.

Definition 1 (Wang et al., (2020))

In the context of a multiple-regression model, a level r credible set is defined to be a subset of

variables that has probability r or greater of containing at least one effect variable (i.e., a var-

iable with non-zero regression coefficient). Equivalently, the probability that all variables in the

credible set have zero regression coefficients is 1 � r or less.

The definition above yields a metric for assessing the uncertainty when conducting variable selection. A

credible set will determine if a subset of collinear variables have effects on the response even when we

are unclear as to which specific ones. This differs from the results produced by the conventional regulari-

zation and shrinkage methods (Carbonetto and Stephens, 2012; Tibshirani, 1996; Zou and Hastie, 2005)

where the effect sizes for an arbitrarily selected subset of correlated variables will be penalized while the

others are retained.

The ensemble of single-effect neural networks

In this section, we detail the full specification of our proposed nonlinear framework for variable selection.

While there exist many nonlinear models, neural networks are well known to have the ability to approximate

complex systems (Leshno et al., 1993; Barron, 1993). For simplicity, we will focus on multi-layer perceptrons

throughout this paper; however, we also want to emphasize that the theoretical concepts we describe can

also be applied broadly to other architectures (e.g., convolutional neural networks). Formally, we specify a

K-layer probabilistic neural network as a generalized nonlinear model

gðmÞ = f = ZKQK + eK ; .; zk = hðZk� 1Qk� 1 + ek� 1Þ; .; z1 = hðXW+ e0Þ (Equation 6)

where, in expectation, the response variable is related to the input data by E½y j X� = m; f is an N-dimen-

sional latent vector to be learned; gð �Þ denotes a general cumulative link function which, for example, is set

to be the identity if y is continuous or the logit if y is binary; Zk denotes the matrix of nonlinear neurons from

the k-th hidden layer with corresponding weight matrix Qk ; εk are deterministic biases that are produced

during the network training phase for the k-th hidden layer; hð �Þ is a nonlinear activation function (e.g.,

ReLU or tanh); and W is a matrix of weights for the input layer.
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Similar to the SER model, the key design that leads to our ability to model single-effect is through the prior

we place on the input layer weights in W. Let Hk represent the number of neurons in the k-th hidden layer

such that W is J3H1 dimensions (i.e., the number of input variables by the number of neurons in the first

hidden layer). Next, let wj� denote the j-th row of the weight matrixW. We place a grouped ‘‘single-effect’’

shrinkage prior on the input weights

W = A+G; a � N �
0; s2

1I
�
; g � Multð1;pÞ (Equation 7)

where G is a matrix that is H1 copies of the binary vector g, a is a H1-dimensional row-vector of continuous

weights in A = ½a1�;.;aJ��, and + denotes the Hadamard product between two parameters. Note that this

shrinkage prior mimics the sparse assumption of previous neural network architectures in the literature

(Chen et al., 2021; Ghosh et al., 2019), except that the binary indicator variable g is assumed to be multi-

nomial with one trial. Hence, since the j-th row of W contains the weights connected to the j-th column

in X, when only gj = 1, the rest of the input variables are excluded from the model (see proof-of-concept

example in Figure 1). Together, we refer to the model above as a ‘‘single-effect neural network’’ (SNN). The

SNN resembles the SER model in that it assumes that only one input variable has an effect on the response

and, thus, posterior summaries of g can be similarly used to compute credible sets.

We now extend the SNN to incorporate multiple effect variables. Analogous to the SuSiE framework, we

now consider training on the response variable to be based on an ensemble of single-effect neural net-

works (ESNN). Probabilistically, ESNN maybe specified as a summation of L-latent nonlinear models of

the form

f ðlÞ = ZðlÞ
K Q

ðlÞ
K + e

ðlÞ
K ; .; zðlÞk = h

�
ZðlÞ
k� 1Qk� 1 + e

ðlÞ
k� 1

�
; .; zðlÞ1 = h

�
XWðlÞ + e

ðlÞ
0

�
(Equation 8)

where, in expectation, the response variable is now related to the input data as E½y j X� = g

�P
l

f ðlÞ
�
and the

sparse prior for the weights of the network are now specified as the following

WðlÞ = AðlÞ+GðlÞ; aðlÞ � N �
0;s2

1I
�
; gðlÞ � Multð1;pÞ (Equation 9)

Notice that at theendof training, each l-th neural networkwill also yield anestimated setof input layerweightscW
and a corresponding set of inclusion probabilities aðlÞ = fPr½wðlÞ

1� s0
��� y;X�;.;Pr½wðlÞ

J� s0
��� y;X�g which each

assess whether all weights connected to the j-th input node are equal to zero. Then, given these Lposterior sum-

maries, we can compute credible setsSða; rÞ in the sameway as SuSiE bydefining the overall posterior inclusion

probabilities as

PIPj hPr
	 bw j� s 0j y;X
z1 �

YL
l = 1

�
1 � a

ðlÞ
j

�
(Equation 10)

which we use to determine variable significance. A motivating example of the benefits of the ESNN model

can be found in Figure S6.

Posterior inference via variational bayes

As the size of many high-throughput genome-wide sequencing studies continue to grow, both in the num-

ber of individuals and the number of genetic variants, it has become less feasible to implement traditional

Markov Chain Monte Carlo (MCMC) algorithms for inference. To this end, we use variational inference to

approximate the posterior distribution of the weights and hyper-parameters within the ESNN framework.

We take the hierarchical model specified in (Equations 8 and 9) and replace the intractable true posterior

distribution over the parameters pðW1:L;G1:L j DÞ with an approximating family of distributions qðW1:L;

G1:L;41:LÞ—where we use shorthand 1 : L = 1;.; L to represent the Lmodels in the ensemble, 41:L represent

the collection of free parameters in the approximations, and D is used to denote the observed data and all

relevant hyper-parameters. The basic idea behind the variational inference is to iteratively adjust the free

parameters such that they minimize the the difference between the two distributions, which amounts to

maximizing the so-called evidence lower bound (ELBO)

Lð41:LÞ = Eq

	
log pðy jW1:L;G1:L;DÞ
+KL

�
qðW1:L;G1:L;41:LÞk pðW1:L;G1:LÞ

�
(Equation 11)

Here, the first term is the expectation of the log likelihood taken with respect to the variational distribution,

and the second term is the Kullback-Leibler divergence which measures the similarity between two
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distributions. We then use a stochastic gradient descent based method to train models under the ESNN

framework. In this work, we choose the variational distributions to factorize across L models and for

each model we have the following proposals

q
�
WðlÞ;GðlÞ

�
= q

�
AðlÞ

�
q
�
GðlÞ�; q

�
aðlÞ

�
= N �

m; t21I
�
; q

�
gðlÞ� = Multð1; kÞ (Equation 12)

Based on these choices, the gradients of the KL term are available in closed form, while the expectation of

the log likelihood is evaluated using Monte Carlo samples and the local re-parameterization trick (see

below for theoretical details and corresponding pseudocode in Algorithm 1). In a regression task with

continuous responses, the log likelihood term is chosen to be Gaussian and maximizing the lower bound

corresponds to minimizing mean square error. In classification tasks for case-control studies, the log likeli-

hood term is taken to be a binomial distribution which corresponds to minimizing the cross-entropy loss.

Since we use gradient descent basedmethod for optimization, ESNN can be applied for both types of data

analyses.

Details of the variational algorithm

To find the expectation of the log likelihood during posterior inference, we use Monte Carlo samples and a

local re-parameterization trick to compute gradients. More specifically, when assuming Gaussian distribu-

tions for the variational approximating families

qðaÞ = N �
m; t21I

�
5 a = m+ t11e; e � Nð0; 1Þ (Equation 13)

This technique has been shown to successfully reduce the variance of gradients (Kingma andWelling, 2014)

and stabilizes the training process. Next, we assume that the indicator variables gðlÞ are sampled from a

categorical distribution. We adopt a continuous relaxation technique for re-parameterizing these variables

Algorithm 1. Training Algorithm for the ESNN Framework

1: Input genotype data X and phenotypic vector y.

2: Choose the number of models L, number of maximum iterations T, and credible set level r.

3: Randomly initialize variational parameters 41;.;4L for the L models.

4: Initialize the models l = 1 and iterations t = 1.

5: while l% L and t%T do

6: Fix hyper-parameters 41;.;4l� 1.

7: Sample WðlÞ;GðlÞ � qð4lÞ using re-parameterization trick.

8: Compute the approximate log likelihood Lð41;.;4L;DÞ.
9: Compute the gradients for only 4l using the approximate log likelihood.

10: Update 4l using the gradients with optimizers.

11: Compute PIPs and credible sets for the l-th model.

12: if ll > 1 then 9 ‘‘Purity’’ Check

13: l = l + 1

14: if y is continuous then

15: y = y � Pl� 1
m = 1f

ðmÞ 9 IBSS Procedure

16: end if

17: end if

18: t = t + 1

19: end while

20: Compute (marginal) posterior inclusion probabilities (PIP) for each variable.

21: Determine credible sets Sða;rÞ.
22: Return fPIP;Sða;rÞg.
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by sampling them from aGumbel-Softmax distribution which is specified as the following (Jang et al., 2017;

Maddison et al., 2017),

~gj �
exp

�
log

�
aj

�
+wj

��
dP

j0
exp

�
log

�
aj0

�
+wj0

��
d
; wj = � log

�� log
�
vj
��
; vj � Uð0;1Þ; (Equation 14)

where ~gj are the approximate samples for g, t is a temperature parameter, and vj uniformly

sampled random variable. As t/0, samples ~gj will become closer to the desired vector where only one en-

try is one and the rest are zeros. In our experiments, we choose t > 0:1 for numerical stability.

The convergence of the inclusion probabilities aj is also important for the ESNN model as it directly influ-

ences the performance of variable selection. Importantly, aj appears very early in the computational pipe-

line since they are defined for the weights in first hidden layer. As a result, the gradients for a can be very

small and hinder convergence during training. This problem is commonly known as ‘‘vanishing gradients’’

(Hochreiter, 1998). For our work, we found that simply scaling up the learning rate when updating aj works

well in practice. Note that the Kullback-Leibler (KL) divergence term in the approximate likelihood can be

decomposed as the following

KL
�
qðW;G;4ÞkpðW;GÞ � =

XJ

j = 1

q
�
gj = 1;4

�
KL

�
q
�
aj�

��gj = 1;4
�kp�aj� ��gj = 1

� �
+KL

�
q
�
gj = 1;4

�kp�gj = 1
� � (Equation 15)

where the KL divergence for the J3H1 weights W = A+G is between two normal distributions with A =

½a1�;.; aJ�� and aj� being anH1-dimensional row-vector; while the KL divergence for the indicator variables,

where G is a matrix that is H1 copies of the J-dimensional binary vector g, is taken between two discrete

multinomial distributions. Importantly, these terms have closed-form solutions with which gradients can

be computed.

Iterative bayesian stepwise selection

Similar to the SuSiE framework, the ESNN model also uses an iterative Bayesian stepwise selection (IBSS)

procedure where it trains L models by first fitting one model with a coordinate ascent algorithm and then

regressing out that model to compute residuals for training next model. By doing so, we can generate cred-

ible sets (Wang et al., 2020). It is worth noting that, when the model is uncertain about which variables to

choose (e.g., when there are no significant effect variables), a will become diffuse such that Sða; rÞ will
contain many variables that are not correlated. Under these scenarios, it makes sense to ignore those

sets. Previous work have outlined the concept of ‘‘purity’’ as the smallest absolute correlation between

all pairs of variables within a credible set which can be used as a criteria for filtering out nonsensical results

(Wang et al., 2020). This same strategy is not particularly useful on its own for the ESNN framework. An intu-

itive explanation for this is because since the optimizing objective for neural networks is non-convex,

training algorithms can get stuck in local optima where the estimated variational parameters 4 are not

optimal. In the scenario where the model is unable to find correct effect variable, regressing out 4 will

only introduce noise during training. Therefore, we take an extra approach where we also check to ensure

that a trained model is informative before computing the residuals. One simple way to do this is by moni-

toring whether the likelihood is larger with the l-th model trained versus it be excluded from consideration.

More specifically, the criteria to include the l-th model can be expressed via the (approximate) likelihood

ratio

lðlÞ =
Lð41;.;4l� 1;4l;4l + 1;.;4LÞ
Lð41;.;4l� 1;4l + 1;.;4LÞ

(Equation 16)

where we keepmodels that satisfy lðlÞ > 1. Note that we only regress out variables on continuous data as this

is the scenario where it is meaningful to compute the residuals. For the binary classification case, we simply

fix the trained models and add up the logits if the criteria is satisfied.

QUANTIFICATION AND STATISTICAL ANALYSIS

Our study made use of three real datasets. The simulation results made use of imputed data released

from the UK Biobank (Bycroft et al., 2018). Quality control for these data were carried out using the

following procedure. First, we only studied individuals who self-identified as being of European
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ancestry. From this cohort, we further excluded individuals identified by the UK Biobank to have high

heterozygosity, excessive relatedness, or aneuploidy (1,550 individuals removed). We also removed in-

dividuals whose kinship coefficient was greater than 0.0442 (i.e., close relatives). Next, we removed (i)

monomorphic SNPs, (ii) SNPs with minor allele frequency less than 2.5 %, (iii) SNPs not in Hardy-Wein-

berg Equilibrium (Fisher exact test P > 13 10� 6), (iv) SNPs with missingness greater than 1 %, and (v)

SNPs in high linkage disequilibrium (using the flag –indep-pairwise 50 5 0.9 with PLINK 1.9 (Purcell

et al., 2007)). After all QC steps, we had a final dataset of N = 349,414 individuals from which we could

downsample and J = 36,518 SNPs on the first chromosome. Next, we used the NCBI’s Reference

Sequence (RefSeq) database in the UCSC Genome Browser (Pruitt et al., 2005) to annotate SNPs

with appropriate genes. We defined genes using the UCSC gene boundary and augmenting those

boundaries by adding SNPs within a G 500 kilobase (kb) buffer to account for possible regulatory el-

ements. Genes with only one SNP within their boundary were excluded.

One part of the analysis results in this work made use of GWA data from the Wellcome Trust Centre for

Human Genetics. This study contains a total of N = 1,814 heterogeneous stock of mice from 85 families

(all descending from eight inbred progenitor strains) (Valdar et al., 2006), and 131 quantitative traits that

are classified into six broad categories including behavior, diabetes, asthma, immunology, haematology,

and biochemistry. Here, we focused on two specific phenotypes from these categories including: high-

density lipoprotein content (Biochem.HDL) and low-density lipoprotein content (Biochem.LDL). Both phe-

notypes were corrected for sex, age, body weight, season, year, and cage effects. For individuals with

missing genotypes, we imputed values by the mean genotype of that SNP in their corresponding mouse

family. Only polymorphic SNPs with minor allele frequency above 5% were kept for the analyses. This

left a total of J = 10,346 autosomal SNPs that were available for all mice.

The second part of the data analysis used data from the Wellcome Trust Case Control Consortium

(WTCCC) one study (Wellcome Trust Case Control Consortium, 2007) which consists of about 14,000 cases

of seven common diseases, including 1,963 cases of type 1 diabetes (T1D) and 1,924 cases of type 2 dia-

betes (T2D), as well as 2,938 shared controls. We selected a total of 458,868 shared single nucleotide poly-

morphisms (SNPs) following a previous study (Zhou et al., 2013).
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