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Abstract

Dysregulated neural mechanisms in reward and somatosensory circuits result in an

increased appetitive drive for and reduced inhibitory control of eating, which in turn

causes obesity. Despite many studies investigating the brain mechanisms of obesity,

the role of macroscale whole-brain functional connectivity remains poorly under-

stood. Here, we identified a neuroimaging-based functional connectivity pattern

associated with obesity phenotypes by using functional connectivity analysis

combined with machine learning in a large-scale (n � 2,400) dataset spanning four

independent cohorts. We found that brain regions containing the reward circuit posi-

tively associated with obesity phenotypes, while brain regions for sensory processing

showed negative associations. Our study introduces a novel perspective for under-

standing how the whole-brain functional connectivity correlates with obesity pheno-

types. Furthermore, we demonstrated the generalizability of our findings by

correlating the functional connectivity pattern with obesity phenotypes in three inde-

pendent datasets containing subjects of multiple ages and ethnicities. Our findings

suggest that obesity phenotypes can be understood in terms of macroscale whole-

brain functional connectivity and have important implications for the obesity neuro-

imaging community.
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1 | INTRODUCTION

Obesity is thought to be caused by uncontrolled eating, which is

highly associated with the imbalance in reward and inhibitory control

processing of the brain (Martin et al., 2010; Moore, Sabino, Koob, &

Cottone, 2017; Moreno-Lopez, Contreras-Rodriguez, Soriano-Mas,

Stamatakis, & Verdejo-Garcia, 2016; Murray, Tulloch, Gold, &

Avena, 2014; Val-Laillet et al., 2015; Van Opstal, Wijngaarden,

Grond, & Pijl, 2019; Verdejo-Román, Vilar-López, Navas, Soriano-

Mas, & Verdejo-García, 2017; Ziauddeen, Alonso-Alonso, Hill,

Kelley, & Khan, 2015). Neurobiological studies have found that

dysregulation of reward and inhibitory circuits gives rise to an

increased threshold for satiation, ultimately leading to overeating

(Martin et al., 2010; Murray et al., 2014; Steward, Miranda-Olivos,

Soriano-Mas, & Fernández-Aranda, 2019; Val-Laillet et al., 2015; Van

Opstal et al., 2018; Verdejo-Román et al., 2017; Ziauddeen

et al., 2015). Recent neuroimaging studies have increasingly shown

associations between obesity and alterations in cortical and subcorti-

cal morphology (Herrmann, Tesar, Beier, Berg, & Warrings, 2019;

Marqués-Iturria et al., 2013; Shott et al., 2015), brain activity (Brooks,

Cedernaes, & Schiöth, 2013; Goldstone et al., 2009; Gupta

et al., 2018; Opel et al., 2015; Park, Hong, & Park, 2017; Steward,

Juaneda-Seguí, et al., 2019; Stoeckel et al., 2008; Van Meer

et al., 2019), functional connectivity (García-García et al., 2013;

García-García et al., 2015; Lips et al., 2014; Park, Seo, & Park, 2016;

Park, Seo, Yi, & Park, 2015), and diffusivity (Gupta et al., 2017; Olivo

et al., 2017; Steward, Picó-Pérez, et al., 2019). These studies collec-

tively show that the pathophysiology of obesity is associated with

various types of brain measurements.

Despite extensive research on identifying underlying brain mech-

anisms of obesity, few studies have investigated how macroscopic

alterations in functional brain connectivity are related to obesity phe-

notypes (Ding et al., 2020; Park et al., 2016). Some of the primary

challenges that obesity neuroimaging studies face are conflicting

reports concerning obesity-associated brain regions and the magni-

tude and direction of the observed effects. These inconsistencies may

be due to the limited reproducibility of existing studies because of the

small sample size (n < 100) from a single site, highlighting the neces-

sity of using large-scale datasets from multiple centers.

A large amount of data could be analyzed effectively by utilizing

recent advances in neuroimaging processing algorithms. With recent

advances in neuroimaging acquisition and analytics, it is now possible

to assess the whole-brain functional connectivity (FC) patterns, which

may serve as novel biomarkers for neurobiological diseases (Damaraju

et al., 2014; Hong et al., 2019; Lee et al., 2019; Park et al., 2017).

Indeed, FC derived from functional magnetic resonance imaging

(fMRI) approximates the statistical association of brain activity

between different regions, which can be used to estimate the impor-

tance of each brain region based on the degree distributions

(Bullmore & Sporns, 2009; Griffa & Van Den Heuvel, 2018; Rubinov &

Sporns, 2010; Van Den Heuvel, Kahn, Goñi, & Sporns, 2012). Machine

learning is a powerful tool capable of handling large-scale datasets for

constructing analytical models (Kale, Hamde, & Holambe, 2019; Park,

Took, & Seong, 2018). Specifically, a regularized regression framework

identifies predictor variables (such as regional FC) that correlate with

response variables (such as obesity phenotypes) in a data-driven way.

Thus, consolidating whole-brain FC information and advanced

machine learning techniques may help elucidate how subtle and com-

plex brain organizations associate with obesity phenotypes.

In this study, we identified an obesity phenotype-associated

whole-brain FC pattern using a large-scale (n � 1,500 for training and

n � 900 for validation) multi-center (spanning four independent

cohorts) neuroimaging dataset that was processed using state-of-the-

art methods. Graph-theoretical approach and machine learning tech-

niques were used to estimate how inter-regional brain connectivity

correlated with obesity phenotypes. Our results may help us under-

stand how the whole-brain functional organizations are linked to

obesity phenotypes.

2 | MATERIAL AND METHODS

2.1 | Imaging data and participants

Resting-state fMRI (rs-fMRI) data from 2,390 participants in four dif-

ferent cohorts were obtained. The data from cohort 1 were used to

derive the obesity phenotype-associated FC pattern, and data from

the other cohorts were used for validation. Cohort 1 consisted of

1,497 participants (54% female) from the UK Biobank database of

13,711 participants (Miller et al., 2016). Participants who lacked

rs-fMRI data or full phenotypic data, or those classified as having

neuroticism, depression, or anxiety were excluded. Data from the UK

Biobank database were obtained through application number 34613

entitled “Neuroimaging correlates of obesity.” A detailed demographic

summary of the participants is presented in Table 1, and the imaging

acquisition parameters of the rs-fMRI data are reported in Table S1.

The imaging data were scanned using Siemens 3T Skyra scanner. Rs-

fMRI data from 893 participants were then obtained from three dif-

ferent cohorts for validation. Cohort 2 contained 587 participants

(53% female) from the Human Connectome Project database, which

contains a total of 1,206 participants (Van Essen et al., 2013). Partici-

pants without full rs-fMRI or phenotypic data or those with a history

of drug use or a family history of mental illness were excluded. The

imaging data were scanned using Siemens 3T Skyra scanner. The data

from cohort 3 were obtained from the enhanced Nathan Kline

Institute-Rockland Sample database of 650 participants using Siemens

3T Magnetom scanner (Nooner et al., 2012). Participants without full

rs-fMRI or phenotypic data were excluded. A total of 276 participants

(62% female) from cohort 3 were enrolled in this study. Data from

cohort 4 (50% female, n = 30) were obtained locally from St. Vincent's

Hospital. Detailed demographic information of the participants is

reported in Table 1, and the imaging acquisition parameters of the rs-

fMRI data are reported in Table S1. The imaging data were acquired

with Siemens 3T Magnetom scanner. The Institutional Review Board

(IRB) of Sungkyunkwan University approved this retrospective study

using the UK Biobank, Human Connectome Project, and enhanced
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Nathan Kline Institute-Rockland Sample datasets. This study was

performed in full accordance with local IRB guidelines. All participants

provided written informed consent. The use of the data from

St. Vincent's Hospital was approved by the IRB of the Catholic

University of Korea, and written consent was obtained from all

participants.

2.2 | Data preprocessing

The UK Biobank database provided rs-fMRI data that had been

preprocessed using FSL software (Alfaro-Almagro et al., 2018;

Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012). The

preprocessing pipeline can be described as follows: distortions caused

by gradient nonlinearity and head motion were corrected; intensity

normalization of the 4D volumes and high-pass filtering with 50 s

(�0.009 Hz) were applied; and nuisance variables attributable to

cerebrospinal fluid, white matter, head motion, and cardiac- and large-

vein-related artifacts were removed using the FIX software (Salimi-

Khorshidi et al., 2014). The nuisance variable-free rs-fMRI data were

registered onto the T1-weighted structural data and then subse-

quently registered onto the Montreal Neurological Institute (MNI152)

standard space.

The rs-fMRI data obtained from the Human Connectome Project

had been minimally preprocessed using FSL, FreeSurfer, and Work-

bench (Fischl, 2012; Glasser et al., 2013; Jenkinson et al., 2012). The

gradient distortions and head motion-corrected data were registered

onto the T1-weighted structural data and then onto the MNI standard

space. Magnetic field bias was corrected, and the skull was removed.

Intensity normalization of the 4D volumes was applied. Nuisance

variables were removed via FIX (Salimi-Khorshidi et al., 2014). Addi-

tional steps of high-pass filtering with a frequency of 0.01 Hz and spa-

tial smoothing with a full width at half maximum of 3 mm were

applied manually.

The rs-fMRI data from the enhanced Nathan Kline Institute-

Rockland Sample database and St. Vincent's Hospital were preprocessed

using a fusion of the neuroimaging preprocessing (FuNP) pipeline inte-

grating AFNI, FSL, and ANTs software (Avants et al., 2011; Cox, 1996;

Jenkinson et al., 2012; Park, Byeon, & Park, 2019). Volumes during the

first 10 s were discarded to allow for magnetic field saturation. A slice-

timing correction was performed on the data from St. Vincent's Hospital.

However, slice-timing correction was not performed on data from the

enhanced Nathan Kline Institute-Rockland Sample database due to their

short (< 1 s) repetition times, as recommended by a previous study

(Bijsterbosch, Smith, & Beckmann, 2017). Volumes with large head

motion (frame-wise displacement >0.5 mm) were removed (Power, Bar-

nes, Snyder, Schlaggar, & Petersen, 2012), and head motion correction

was performed on the remaining data. Skull was removed and the inten-

sity normalization of the 4D volumes was applied. The rs-fMRI data

were co-registered to the T1-weighted structural data and subsequently

mapped to MNI152 standard space. The nuisance variables were

removed using FIX (Salimi-Khorshidi et al., 2014). High-pass filtering with

a frequency of 0.01 Hz and spatial smoothing with a full width at half

maximum of 3 mm were applied.

2.3 | Functional connectivity analysis

FC analysis based on graph theory was used to quantify the strength

of interconnection between different brain regions (Bullmore &

Sporns, 2009; Rubinov & Sporns, 2010; Watts & Strogatz, 1998). The

graph nodes were brain regions defined by the Brainnetome atlas,

which divides the whole brain into 246 regions involving frontal,

temporal, parietal, insular, limbic, and occipital lobes, as well as sub-

cortical nuclei including amygdala, hippocampus, basal ganglia, and

thalamus (Fan et al., 2016). The graph edges were the connections

between different brain regions as defined by the partial correlation

coefficients of the time-series between two nodes (Smith et al., 2011;

Smith et al., 2013). Partial correlation coefficients were computed

using FSLNets (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets) with a

ridge (i.e., L2) regularization of rho = 0.5 as previously used in the UK

Biobank study (Alfaro-Almagro et al., 2018). The correlation coefficients

TABLE 1 Demographic summary of the study participants

Information

UKB (n = 1,497) HCP (n = 587) eNKI-RS (n = 276) SVH (n = 30)

NHW
(n = 1,007)

HW
(n = 490)

NHW
(n = 291)

HW
(n = 296)

NHW
(n = 276)

HW
(n = 0)

NHW
(n = 27)

HW
(n = 3)

Age 56.78 (8.14) 55.37 (8.40) 28.74 (3.56) 28.49 (3.79) 48.33 (19.26) N/A 38.89 (10.60) 41.33 (3.79)

Sex (male:Female) 534:473 156:334 164:127 109:187 106:170 N/A 14:13 1:2

Body mass index

(kg/m2)

29.61 (3.97) 22.82 (1.65) 28.45 (2.85) 22.31 (1.78) 30.65 (4.83) N/A 28.19 (2.66) 23.77 (0.74)

Waist circumference

(cm)

96.23 (11.38) 78.17 (8.08) N/A N/A 96.93 (11.99) N/A 93.51 (7.17) 87.85 (3.11)

Waist-to-hip ratio 0.90 (0.09) 0.81 (0.07) N/A N/A 0.87 (0.09) N/A 0.92 (0.05) 0.86 (0.04)

Purpose FC pattern development Validation

Note: Mean (SD) are reported.

Abbreviations: eNKI-RS, enhanced Nathan Kline Institute-Rockland Sample; HCP, Human Connectome Project; HW, healthy weight (18.5 ≤ body mass

index <25); N/A, not available; NHW, non-healthy weight (body mass index ≥25); SVH, St. Vincent's Hospital; UKB, UK Biobank.
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were entered into a matrix referred to as the connectivity matrix. The

correlation coefficients were then soft-thresholded using the formula

{(r + 1)/2}β to satisfy the scale-free topology, where r was the correlation

coefficient and β (set to six) was the scale-free index (Mumford

et al., 2010; Schwarz & McGonigle, 2011). The coefficients were further

processed with Fisher's r-to-z transformation to ensure the correlation

values were normally distributed (Thompson & Fransson, 2016). Degree

centrality values representing the strength of FC of a given node were

calculated by determining the sum of edge weights connected to a given

node (Bullmore & Sporns, 2009; Rubinov & Sporns, 2010). We chose

degree centrality as the nodal connectivity measure among many other

graph-theoretical measures including betweenness and eigenvector

centrality, as well as local efficiency, because our prior works found its

usefulness for associating brain function and body mass index, as well as

eating behaviors in individuals with obesity (Park et al., 2015; Park

et al., 2016; Park, Lee, Kim, Kim, & Park, 2018).

2.4 | Quantification of FC

A schematic for quantifying FC patterns associated with obesity

phenotype is shown in Figure 1. We calculated degree centrality

values from the preprocessed fMRI data (Figure 1a-1, a-2) and fed

these values into the elastic net regularization framework to associate

nodal degree centrality with an obesity phenotype (i.e., waist circum-

ference) (Figure 1a-3) (Zou & Hastie, 2005). We used waist circumfer-

ence as the dependent variable as it is a better measure to assess

obesity than body mass index regarding evaluating metabolically

unhealthy obesity with obesity-related complications (Bujalska,

Kumar, Bujalska, Kumar, & Stewart, 1997; Després et al., 2008; Des-

prés & Lemieux, 2006; Folsom et al., 1993; Folsom et al., 2000). Here,

the waist circumference was controlled for age and sex. Elastic net

regression is a representative machine learning approach for feature

selection, which estimates regression coefficients of brain regions at a

given sparsity that maximally correlate with the dependent variable.

F IGURE 1 Flowchart of
this study. (a) Quantification of
FC pattern using data from the
UK Biobank database. FC
analysis was applied to the
preprocessed rs-fMRI data, and
degree centrality values were

calculated. Elastic net
regularization was used to
estimate regression coefficients.
A single scalar score was
computed using a linear
combination of the estimated
coefficients and degree
centrality values, and it was
correlated with obesity
phenotypes. (b) Validation
procedures. The same FC
analysis was performed in
independent datasets. The FC
pattern developed using the UK
Biobank dataset was
transferred to the independent
dataset to calculate the FC
pattern score via a linear
combination of the developed
FC pattern and regional degree
centrality values for all
participants, which was
correlated with their obesity
phenotypes
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This approach has shown good performance for feature selection

at a given sparsity level compared to L1 (least absolute shrinkage

and selection operator)- and L2 (ridge)-norm regularization

methods (Zou & Hastie, 2005). The two tuning parameters of the

elastic net, corresponding to L1 and L2 penalty terms, were deter-

mined with five-fold cross-validation. Using the optimized tuning

parameters, we applied the elastic net regression to associate

degree centrality and obesity phenotypes with five-fold cross-

validation using strictly separated training and test data to avoid

overfitting. For each cross-validation, we estimated regression

coefficients from the training data only. A linear combination of the

estimated regression coefficients and regional degree centrality

values was computed and further correlated with waist circumfer-

ence of the test data to assess model performance (Figure 1a-4).

We averaged the regression coefficients across cross-validations,

and the mean coefficient values were considered to be the FC

pattern associated with obesity phenotypes (Figure 1a-5). To

assess whether this FC pattern could predict obesity phenotypes in

all participants, we first computed FC pattern score by calculating a

linear combination of the FC pattern and regional degree centrality

values for each participant. Then, we correlated the FC pattern

score with obesity phenotypes, including body mass index, waist

circumference, and waist-to-hip ratio, for all participants in the UK

Biobank database. Age and sex were added as covariates to control

for their possible effects on obesity for the correlation analysis

(Table S2).

2.5 | Validation of FC pattern

The reliability and reproducibility of the FC pattern (i.e., averaged

regression coefficients across cross-validations) were assessed by

applying the same FC analysis used on the UK Biobank dataset to the

independent Human Connectome Project, enhanced Nathan Kline

Institute-Rockland Sample, and St. Vincent's Hospital datasets

(Figure 1b-1, b-2). The FC pattern score was calculated and correlated

with obesity phenotypes (Figure 1b-3). The Human Connectome

Project dataset provided only body mass index values, while the

enhanced Nathan Kline Institute-Rockland Sample and St. Vincent's

Hospital datasets provided body mass index, waist circumference, and

waist-to-hip ratio values. Multiple comparisons of correlations were

corrected using the false discovery rate (FDR) (Benjamini &

Hochberg, 1995). To assess how changing the number of brain

regions correlate differently to obesity phenotypes, we tested how

well the FC pattern score performed in different sparsity levels

between 10 and 106 in steps of 10. The maximum number (i.e., 106)

was determined by the number of brain regions with nonzero FC

pattern. Changes in sparsity levels lead to choosing how many brain

regions to include for computing the FC pattern score. For example, if

we set a sparsity level at ten, then ten brain regions with the highest

FC pattern were included to calculate the FC pattern score. The FC

pattern scores calculated with different sparsity levels were correlated

with the obesity phenotypes.

3 | RESULTS

3.1 | Study participants

The rs-fMRI data used in this study were from a total of 2,390 partici-

pants across four different cohorts. Data from 1,497 participants were

obtained from the UK Biobank database (Miller et al., 2016), data from

587 participants were obtained from the Human Connectome Project

database (Van Essen et al., 2013), data from 276 participants were

obtained from the enhanced Nathan Kline Institute-Rockland Sample

database (Nooner et al., 2012), and data from 30 participants were

obtained from a local site of St. Vincent's Hospital, Suwon, Korea. Data

from UK Biobank were used to develop the FC pattern, and other

datasets were used for validation. The participants' ages spanned from

adolescence to late adulthood, and their ethnicities differed across

cohorts. Detailed demographic information is reported in Table 1.

3.2 | Quantification of the MRI-based FC pattern
of obesity

The obesity-associated FC pattern was developed using rs-fMRI data

from 1,497 participants from the UK Biobank database after five cross-

validations. For each cross-validation, a combination score was calculated

using a linear combination of the selected regional degree centrality

values and the elastic net coefficients. The linear combination score was

then correlated with waist circumference. The mean correlation value

between the score and waist circumference across cross-validations was

0.275 (standard deviation [SD] 0.074) for the training set and 0.102

(SD 0.086) for the test set (Table S3). Although the effect size

(i.e., correlation value) was reduced for the test data compared to training

data, it reached statistical significance (p < .05). Overfitting was mini-

mized as we separated training and test data. The estimated coefficients

for the selected brain regions were averaged across cross-validations,

and the averaged value was considered to be the obesity phenotype-

associated FC pattern (Data S1). The FC pattern (i.e., averaged regression

coefficients across cross-validations) was mapped onto the whole brain

(Figure 2a). The top 15 brain regions with the highest magnitudes of the

FC pattern involved reward and sensory networks, where the ventrome-

dial and ventrolateral prefrontal cortex, superior temporal gyrus, superior

parietal lobule, cingulate gyrus, and globus pallidus showed strong

positive associations with waist circumference, while regions associated

with sensorimotor skills and perception such as the precentral gyrus,

fusiform gyrus, and superior temporal sulcus, as well as thalamus,

showed negative associations with obesity phenotype (Figure 2b).

The associations of all brain regions with waist circumference (i.e., FC

pattern) are shown in Figure 2c.

3.3 | Validity of FC pattern

The quality of the obesity phenotype-associated FC pattern was

assessed by calculating the correlation between the FC pattern score
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from the UK Biobank dataset (n = 1,497) and the obesity phenotypes,

which consisted of body mass index, waist circumference, and waist-

to-hip ratio. The FC pattern score was significantly correlated with all

three obesity phenotypes (all p < .05, FDR corrected) (Figure 3a). To

further validate this finding, we performed correlation analyses using

different sample sizes (200, 700, and 900 samples). Firstly, we ran-

domly selected a subsample of 200 subjects from the 1,497 subjects

in the UK Biobank database 1,000 times with different sets of sub-

samples. We performed the same correlation analysis described above

for each 200-subject subsample. The correlation results from the sub-

samples were largely similar to the results from the whole dataset (-

Figure S1). The mean correlation for subsamples between FC pattern

score and body mass index was 0.262 (0.265 for the whole dataset),

waist circumference was 0.307 (0.308 for the whole dataset), and

waist-to-hip ratio was 0.236 (0.236 for the whole dataset). All correla-

tion analyses showed significant results on average for subsamples

(mean p < .05, FDR corrected). We repeated the procedure using sub-

samples of 700 and 900 subjects and found that the r- and p-values

were similar to those of the whole dataset (Table S4). These results

indicate that the significance of the correlation was not driven by the

large sample size.

We also tested how well our FC pattern performed against differ-

ent sparsity levels. Regression coefficients were sorted based on their

magnitude from large to small, and we changed the sparsity level by

selecting various numbers of coefficients starting from the top. The

correlation results showed a monotonically increasing pattern, with

saturation occurring at a low sparsity of approximately 30 (Figure 3b).

Saturation was defined as the point at which the correlation value

exceeded 80% of the maximum value. Brain regions involved in the

reward network were consistently observed until saturation at 30 (-

Table S5). These results indicate that regions involved in the reward

network had strong coefficient magnitudes, indicating that they were

the primary regions associated with obesity phenotypes.

3.4 | Generalization of the FC pattern

3.4.1 | Validation to independent dataset

To confirm the generalizability of the obesity-associated FC pattern,

we tested the pattern against independent datasets from the

(a) Human Connectome Project database (n = 587), (b) enhanced

F IGURE 2 An obesity phenotype-associated FC pattern derived from the UK Biobank data. (a) The obesity phenotype-associated FC pattern
mapped onto the whole brain. The red/blue colors represent positive/negative FC pattern to associate brain regions and an obesity phenotype
(i.e., waist circumference). (b) FC pattern of the regions with the 15 highest magnitudes. (c) FC pattern for all brain regions. Error bars represent
±1 standard error of the mean. The dotted line indicates the threshold for the 15 highest magnitudes of the FC pattern. The brain regions over
the threshold are marked with an asterisk. VMPFC, ventromedial prefrontal cortex; VLPFC, ventrolateral prefrontal cortex; STG, superior
temporal gyrus; SPL, superior parietal lobule; ITG, inferior temporal gyrus; pSTS, posterior superior temporal sulcus
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Nathan Kline Institute-Rockland Sample database (n = 276), and (c) St.

Vincent's Hospital (n = 30). Correlations between the FC pattern score

and the obesity phenotypes were significant (all p < .05, FDR

corrected) except for the waist-to-hip ratio in the enhanced Nathan

Kline Institute-Rockland Sample dataset (p > .4, FDR corrected;

Table 2 and Figure S2). The waist circumference and waist-to-hip ratio

in the St. Vincent's Hospital showed marginal, but strong correlations

(p < .1, FDR corrected). The four cohorts used in this study included

participants of varying ages. The FC pattern was constructed using

data from the UK Biobank database, which consisted of middle-aged

adults (mean age = 56.32 y, range [40–70 y]). The FC pattern was

generalizable across cohorts of different ages spanning from adoles-

cents to the elderly (Human Connectome Project: mean 28.61 y;

range [22–36 y]; enhanced Nathan Kline Institute-Rockland Sample:

mean 48.33 y; range [13–83 y]; St. Vincent's Hospital: mean 39.13 y;

range [23–62 y]).

3.4.2 | FC pattern with different ethnicity

The participants' ethnicities differed across the cohorts (Table S6 and

Figure S3). Participants from the UK Biobank database were primarily

Caucasian (93.7% Caucasian, 2.0% African-American, 2.3% Asian,

0.3% mixed, and 1.6% unknown). The FC pattern was generalizable to

the Human Connectome Project and enhanced Nathan Kline

Institute-Rockland Sample cohorts, which had similar ethnic

F IGURE 3 Correlation
between FC pattern score and
obesity phenotypes controlled for
age and sex. (a) Correlation
coefficients and FDR-corrected p-
values. (b) Correlations with
obesity phenotypes at various
sparsity levels of the FC pattern.
The maximum number (=106) was

computed from the number of
brain regions with nonzero
regression coefficients by using
the original FC pattern without
changing the sparsity

TABLE 2 Correlation between the
FC pattern score and obesity phenotypes
for all datasets

Purpose Database Obesity phenotypes r
p-value, FDR
corrected

FC pattern

development

UKB (n = 1,497) Body mass index 0.265 <.001

Waist circumference 0.308 <.001

Waist-to-hip ratio 0.236 <.001

Validation HCP (n = 587) Body mass index 0.146 <.001

eNKI-RS (n = 276) Body mass index 0.150 .020

Waist circumference 0.169 .015

Waist-to-hip ratio 0.049 .450

SVH (n = 30) Body mass index 0.463 .020

Waist circumference 0.556 .060

Waist-to-hip ratio 0.371 .068

Abbreviations: eNKI-RS, enhanced Nathan Kline Institute-Rockland Sample; HCP, Human Connectome

Project; SVH, St. Vincent's Hospital; UKB, UK Biobank.
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distributions (Human Connectome Project: 79.2% Caucasian, 9.2%

African-American, 7.8% Asian, 2.2% mixed, and 1.5% unknown;

enhanced Nathan Kline Institute-Rockland Sample: 72.5% Caucasian,

19.6% African-American, 6.5% Asian, and 1.5% mixed) as well as the

St. Vincent's Hospital cohort, which had a different ethnicity distribu-

tion (100% Asian). These results indicate that the FC pattern is

observable across varied populations and may be associated with obe-

sity phenotypes in participants with varying ethnicities.

However, obesity-related characteristics might vary across differ-

ent ethnicities. To determine whether the overall results could be rep-

licated in a subsample with a homogeneous ethnicity (i.e., Caucasian),

we performed the same analysis only using data from Caucasians in

the UK Biobank database. The derived FC pattern had a root mean

squared error of 1.231 compared to the previous FC pattern (all eth-

nicities), indicating that these FC patterns were similar. The brain

regions with large FC pattern magnitudes (top 15) were as follows:

the ventromedial and ventrolateral prefrontal cortex, superior tempo-

ral gyrus, superior parietal lobule, insular gyrus, and nucleus

accumbens were positively correlated with obesity, while the superior

frontal gyrus, precentral gyrus, inferior temporal gyrus, fusiform gyrus,

parahippocampal gyrus, and thalamus were negatively correlated (-

Figure S4a). These findings were consistent with our overall results,

especially those for the ventromedial and ventrolateral prefrontal cor-

tex, superior temporal gyrus, superior parietal gyrus, precentral gyrus,

inferior temporal gyrus, fusiform gyrus, superior temporal sulcus, and

thalamus. We then calculated the correlation between the FC pattern

score and obesity phenotypes (body mass index, waist circumference,

and waist-to-hip ratio) in Caucasian participants (n = 1,403) from the

UK Biobank database. The correlation results in the Caucasian sub-

sample were 0.270 for body mass index (0.265 for all ethnicities),

0.321 for waist circumference (0.308 for all ethnicities), and 0.271 for

waist-to-hip ratio (0.236 for all ethnicities). All FDR-corrected p-values

were lower than .05 (Figure S4b). These results indicate that the FC

pattern observed in Caucasians was largely similar to the FC pattern

observed in all ethnicities. Therefore, the FC pattern observed in Cau-

casians might effectively validate ethnically diverse datasets.

3.4.3 | FC pattern associated with body mass
index

We also estimated the FC pattern associated with body mass index

(not waist circumference) to compare the whole-brain connectivity

patterns between different obesity phenotypes. A root mean squared

error of FC patterns between those derived from waist circumference

and body mass index was 1.523. The brain regions with strong FC pat-

tern mostly overlapped (ventrolateral prefrontal cortex, superior parie-

tal lobule, cingulate gyrus, globus pallidus, precentral gyrus, fusiform

gyrus, and thalamus), indicating consistency of FC pattern across dif-

ferent obesity phenotypes (Figure S5a). Although the FC pattern score

derived from body mass index exhibited significant correlation with

obesity phenotypes, the effect sizes (i.e., correlation value) for corre-

lating with obesity phenotypes (i.e., waist circumference and waist-to-

hip ratio) were slightly reduced compared to the FC pattern score

based on waist circumference (Figure S5b).

3.4.4 | FC pattern of a non-healthy weight
population

Lastly, we computed the FC pattern using the data from enhanced

Nathan Kline Institute-Rockland Sample database, which contains

only non-healthy weight individuals (body mass index ≥ 25), to com-

pare the pattern with that derived from the UK Biobank dataset.

Comparison of FC patterns between the enhanced Nathan Kline

Institute-Rockland Sample and UK Biobank databases yielded quite a

large root mean squared error of 3.916. In addition, we found differ-

ent connectivity patterns, especially in the precentral gyrus, fusiform

gyrus, posterior superior temporal sulcus, and cingulate gyrus (-

Figure S6). The FC pattern developed from enhanced Nathan Kline

Institute-Rockland Sample showed low generalizability when we

applied it to the independent datasets to correlate obesity pheno-

types (all p > .1; UK Biobank: r = 0.034 for body mass index, r = 0.062

for waist circumference, r = 0.054 for waist-to-hip ratio; Human

Connectome Project: r = 0.003 for body mass index; St. Vincent's

Hospital: r = 0.067 for body mass index, r = 0.043 for waist circumfer-

ence, r = 0.350 for waist-to-hip ratio). This inconsistency may be due

to differences in participant demographics between the databases.

The UK Biobank contains both healthy and non-healthy weight

populations, while the enhanced Nathan Kline Institute-Rockland

Sample only contains non-healthy weight subjects. Thus, the FC pat-

tern developed using enhanced Nathan Kline Institute-Rockland Sam-

ple data is biased to the non-healthy weight subjects, which is not

suitable to be applied to the general population.

4 | DISCUSSION

Understanding the relation between whole-brain functional organiza-

tion and clinical or behavioral phenotypes is a challenge for neurosci-

ence, as reproducible findings are scarce (Masouleh, Eickhoff,

Hoffstaedter, & Genon, 2019). Our study identified a robust obesity

phenotype-associated FC pattern that correlated with body mass

index, waist circumference, and waist-to-hip ratio in a large-scale rs-

fMRI dataset (n � 1,500). Notably, reproducibility was assessed in

demographically diverse three independent datasets (n � 900).

We found that the FC pattern showed a positive association with

obesity phenotypes in brain regions regulating reward processing,

while the brain regions that process sensory information showed a

negative association. Specifically, reward brain regions including the

ventromedial and ventrolateral prefrontal cortex, superior parietal lob-

ule, superior temporal gyrus, and cingulate gyrus, as well as a subcorti-

cal structure of globus pallidus showed strong positive FC pattern.

The results indicate an increase in functional connectivity in these

brain areas as a function of adiposity, supporting prior studies (Chao

et al., 2018; García-García et al., 2013; García-García et al., 2015; Park
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et al., 2016; Park, Moon, & Park, 2018). In particular, the ventromedial

and orbitofrontal cortex track food-related reward values (Goldstone

et al., 2009; Hare, Camerer, & Rangel, 2009; Holland &

Gallagher, 2004; Kable & Glimcher, 2007; O'Doherty, Deichmann,

Critchley, & Dolan, 2002; Rolls, 2011). In line with these results, our

findings support the fact that individuals with obesity show altered

reward system (García-García et al., 2014; Volkow, Wang, Fowler, &

Telang, 2008) by showing higher susceptibility to gustatory and visual

cues in a delay discounting paradigm (Morys, Bode, &

Horstmann, 2018) and increased responsivity to passive food picture

viewing tasks (Pursey et al., 2014; van den Akker, Stewart, Antoniou,

Palmberg, & Jansen, 2014). Further, increased macroscale connectiv-

ity, particularly in the prefrontal, parietal, and cingulate cortices is

known to be related to eating behaviors in people with obesity (Park

et al., 2016; Park, Lee, et al., 2018; Park, Moon, et al., 2018). Indeed,

imbalance in inhibitory control and food-related reward system in the

prefrontal cortex and paralimbic areas is associated with increased

feelings of hunger (Tataranni et al., 1999; Tataranni & DelParigi, 2003)

and may lead to overeating and weight gain (Brooks et al., 2013;

Ding et al., 2020; Olivo et al., 2017; Steward, Juaneda-Seguí,

et al., 2019; Steward, Picó-Pérez, et al., 2019; Vainik, Dagher, Dubé, &

Fellows, 2013; Van Meer et al., 2019; Van Opstal et al., 2018; Van

Opstal et al., 2019; Verdejo-Román et al., 2017; Volkow, Wang, Telang,

et al., 2008; Ziauddeen et al., 2015). In contrast, we found negative asso-

ciations with obesity phenotypes in brain regions involved in multisen-

sory processing, particularly precentral gyrus, inferior temporal gyrus,

fusiform gyrus, superior temporal sulcus, and thalamus. The results indi-

cate that greater adiposity is related to lower functional connectivity

within sensory-related brain regions, which is supported by prior work

that found altered sensory processing in people with obesity (Park

et al., 2015; Scarpina et al., 2016; Van der Laan, de Ridder, Viergever, &

Smeets, 2011; Wang et al., 2002). Indeed, previous studies have

suggested the presence of atypical multisensory integration in obesity

(Olde Dubbelink et al., 2008; Scarpina et al., 2016; Stice, Spoor, Bohon,

Veldhuizen, & Small, 2008). It should be noted that the underlying mech-

anisms of atypical multisensory processing in obese individuals are still

matters of debate, which may need validation based on microcircuit or

transcriptomic analysis. Overall, our findings are consistent with a large

body of literature that relates obesity to alterations in reward and sen-

sory processing, where increased sensitivity to rewarding food cues via

the reward system coupled with altered inhibitory control might be

related to overeating and hence lead to obesity. How the neural mecha-

nisms differentially affect macroscale connectome between reward cir-

cuits (i.e., positively associated) and sensory processing (i.e., negatively

associated) needs to be investigated further.

Our study has made several contributions. First, we used a large-

scale (n � 2,400) fMRI dataset spanning four independent sites. Many

previous studies had used small sample sizes and single cohorts,

perhaps resulting in conflicting reports concerning obesity phenotype-

associated brain regions (Ding et al., 2020; Gupta et al., 2017;

Herrmann et al., 2019; Marqués-Iturria et al., 2013; Van Meer

et al., 2019; Opel et al., 2015; Van Opstal et al., 2019; Park et al., 2015;

Park et al., 2016; Park, Lee, et al., 2018; Park, Moon, et al., 2018; Shott

et al., 2015; Steward, Picó-Pérez, et al., 2019; Stoeckel et al., 2008). Our

study attempted to circumvent these shortcomings by leveraging a

large-scale dataset from different cohorts, which included a wide range

of ages and ethnicities. Second, the confounding effects caused by the

different acquisition parameters of the four centers in this study were

controlled for using standardized data processing pipelines (Table S7).

The pipelines adopted state-of-the-art methods and were largely consis-

tent in the major preprocessing components of the preprocessing steps,

namely: head motion correction, intensity normalization, spatial registra-

tion, nuisance variable removal, and temporal filtering. Despite some dif-

ferences across the pipelines such as correction for gradient distortions,

slice-timing, and volume scrubbing, our results showed that the FC pat-

tern was well-validated across demographic characteristics. Third, our

findings were relatively robust across a broader age span (from 13 to

83 years) and different ethnicities (Caucasian, African-American, Asian,

and mixed). This finding is even more interesting because both age and

ethnicity are known to differentially affect obesity (El-Hazmi &

Warsy, 2002; Menigoz, Nathan, & Turrell, 2016; Rai, Sandell, Cheverud, &

Brophy, 2013). We believe the relationship between the FC pattern

score and obesity phenotypes could be better described if the effects of

age and ethnicity are considered. This issue should also be explored in

future studies. Fourth, the FC pattern score is easy to calculate, which

means it is feasible to replicate our findings using independent datasets.

The full pipeline is available at https://gitlab.com/by9433/fcobesity. Last,

our study extended prior obesity-related neuroimaging studies in terms

of identifying whole-brain FC pattern correlates with obesity pheno-

types, not focusing on a few local brain regions. The succinct summary

of the whole-brain FC pattern provides novel insights for the under-

standing of functional connectivity across a range of obesity phenotypes.

This was accomplished by combining graph-theoretical connectivity anal-

ysis and machine learning. Prior obesity-related neuroimaging studies

focused on identifying brain regions that activate for specific tasks

(e.g., food-cue task) (Brooks et al., 2013; Goldstone et al., 2009; Opel

et al., 2015; Stoeckel et al., 2008; Van Meer et al., 2019) and comparing

intrinsic connectivity of local brain regions between individuals with

healthy and non-healthy weights (García-García et al., 2013; García-Gar-

cía et al., 2015; Lips et al., 2014), lacking the probing of FC at the whole-

brain level. Leveraging advanced machine learning techniques with strict

cross-validation, we developed a reliable and reproducible whole-brain

FC pattern that maximally correlates with obesity phenotypes, which

can be generally applied to an independent dataset.

In this study, we used the Brainnetome atlas (Fan et al., 2016)

rather than other parcellation schemes such as a pre-defined atlas and

data-driven approaches such as clustering algorithms or independent

component analysis (Beckmann, DeLuca, Devlin, & Smith, 2005;

Craddock, James, Holtzheimer, Hu, & Mayberg, 2012; Fan et al., 2016;

Glasser et al., 2016; Li, Song, Fan, Liu, & Jiang, 2015; Park, Tark, Shim, &

Park, 2018). Data-driven approaches are advantageous in that the

defined networks are tailored to the given data. However, they are not

easily transferable to other data with different characteristics. The pre-

defined atlas reduces this problem because it divides brain regions

based on clear boundaries, which can be reliably registered and

identified.
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Our study has several limitations. First, we only included neuro-

logically healthy subjects in this study. Further validation is required

to generalize the model to people with obesity-related medical com-

plications. Second, we did not prove a causal relationship between the

FC pattern and obesity because our study is cross-sectional. Future

longitudinal work may help identify and characterize such causal asso-

ciations. Last, we used degree centrality to quantify the connection

strength of the given nodes. We selected degree centrality to repre-

sent the strength of nodal connectivity because previous studies used

it to associate body mass index and eating behaviors in people with

obesity (Park et al., 2015; Park et al., 2016; Park, Lee, et al., 2018).

Different nodal centrality measures based on graph theory such as

betweenness and eigenvector centrality, as well as local efficiency,

could be used to characterize the brain networks (Rubinov &

Sporns, 2010). By comparing the test–retest reproducibility of these

measures, we can find the most stable measure to associate whole-

brain function and obesity phenotypes, from which future studies

could benefit. In addition, comparing the segregation and integration

patterns of modular architectures according to obesity phenotypes

may provide complementary insights for understanding functional

connectome organization associated with obesity phenotypes.
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