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Titanium wear from magnetically 
controlled growing rods (MCGRs) 
for the treatment of spinal 
deformities in children
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A. Wichmann1, G. H. Dihazi3, F. Streit3, S. E. Güsewell1, T. C. Trüe1, S. Lüders4, J. Schlie4, 
K. Tsaknakis1, H. M. Lorenz1, M. Frankowski2 & A. K. Hell1*

Magnetically controlled growing rods (MCGRs) are an effective treatment method for early-onset 
scoliosis (EOS). In recent years, increasing titanium wear was observed in tissue adjacent to implants 
and in blood samples of these patients. This study aims to investigate the potential correlation 
between amount of metal loss and titanium levels in blood during MCGR treatment as well as 
influencing factors for metal wear. In total, 44 MCGRs (n = 23 patients) were retrieved after an average 
of 2.6 years of implantation and analyzed using a tactile measurement instrument and subsequent 
metal loss calculation. Titanium plasma levels (n = 23) were obtained using inductively coupled 
plasma-mass spectrometry (ICP-MS). The correlation of both parameters as well as influencing factors 
were analyzed. Titanium abrasion on MCGRs was observed in the majority of implants. There was no 
correlation of metal implant wear or titanium plasma values to the duration of MCGR implantation 
time, number of external lengthening procedures, patient’s ambulatory status, gender, weight or 
height. Material loss on the MCGRs showed a positive correlation to titanium blood plasma values. The 
present study is one of the first studies to analyze retrieved MCGRs using high-precision metrological 
techniques and compare these results with ICP-MS analyses determining blood titanium values.

Abbreviations
MCGR​	� Magnetically controlled growing rod
EOS	� Early-onset scoliosis
HR-ICP-MS	� High-resolution inductively coupled plasma-mass spectrometer
mN	� MilliNewton

Children with progressive early-onset scoliosis (EOS) often require surgical treatment to control the deformity, 
to preserve the growth potential of the spine and to prevent thoracic insufficiency syndrome1. During the last 
decades, several growth-friendly spinal implants have been introduced, most of them requiring repetitive surgical 
interventions for implant lengthening to preserve spinal growth. Recently, magnetically controlled growing rods 
(MCGRs) render multiple surgical lengthening procedures obsolete in a subgroup of EOS patients2. A number 
of studies have reported the results on the short- and long-term outcome of MCGRs in the management of early 
spinal deformity3–6. While the ability to control deformity progression and the benefit of outpatient distractions 
of MCGRs is evident, concerns remain about the risk of complications including generation of excessive metal 
debris.

MCGRs consist of a biomedical titanium alloy (Ti-6Al-4V)7. Despite biological and mechanical compatibility 
of titanium, microscopic metal particles have been observed extensively within the rods8 and in the surround-
ing tissue of the rods7,9–11. It has been suggested that titanium wear debris can locally lead to inflammatory 
reactions, osteolysis or implant loosening11–13. Additionally, it is thought that titanium particles enter the blood 
circulation and accumulate in other tissues and distant organs14. With the ability to generate reactive oxygen 
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species, titanium can induce oxidative stress and may increase the risk of cancer15. These possible long-term 
consequences of implant-caused titanium particles have gained attention and raised concerns. Several studies 
showed increased titanium concentrations in the patient’s whole blood, serum or urine after implantation of 
spinal titanium devices in children9,10.

Also wearing marks as a sign of metal abrasion from MCGRs have been observed8,16,17, but only few stud-
ies have used metrological techniques to characterize the extent of metal abrasion16. Measuring abrasion from 
implants is challenging, especially due to the small scale of changes on the material and the individual shapes 
in which abrasion may display. Thus, very precise instrumentation that can detect abrasion in the occurring 
shapes is necessary.

The aim of this study was to investigate the extent of titanium wear (i.e. volume of abrased material) in chil-
dren during MCGR treatment and the potential correlation between material loss on the MCGRs and titanium 
values measured in blood plasma. Furthermore, patient-related factors (weight, height, gender, ambulatory abil-
ity) and implant-related factors (duration of treatment, number of distraction procedures) that possibly affect 
material loss on the rods were evaluated.

Material and methods
After approval of the institutional ethical review committee, we performed a prospective study on 23 children 
(average age 10.7 years, range 7.4–14.9) diagnosed with scoliosis (neuromuscular n = 19, congenital n = 2, idi-
opathic n = 1, syndromic n = 1), who were treated with paraspinal MCGRs with a rib cradle and pelvic hook 
fixation with one standard and one off-set implant (Fig. 1). All participants were instructed about the purpose of 
the study and oral and written informed consent was obtained from all subjects and their legal guardians. After 
implantation of the MCGRs, repetitive standardized outpatient distraction procedures of 5 mm per rod were 
carried out every 3 months. After maximal extension and/or complications requiring surgery, surgical MCGR 
exchange was performed after an average of 2.6 years. During surgery, patient blood samples were acquired and 
explanted MCGRs were harvested. We did not observe any technical difficulty with revisions owing to metal-
losis. Patient demographic and clinical data were sampled for correlation to titanium abrasion and blood levels.

Plasma analysis.  After induction of anesthesia and before starting the exchange or revision surgery, 2–5 mL 
whole blood of each patient (n = 23) was collected in EDTA-monovettes (Sarstedt AG & Co. KG, Germany). 
Whole blood samples of control group patients (n = 9) were collected after anesthesia accordingly. Centrifuga-
tion for 10 min at 2000×g at room temperature separated the cells from the plasma. The supernatant designated 
as plasma was transferred and aliquoted in clean tubes and immediately preserved at − 20 °C.

An inductively coupled plasma-mass spectrometer (ICP-MS) model 2030 (Shimadzu, Japan) was used to 
assay blood plasma for titanium (Table 1).

Serial dilutions of ICP-MS single titanium standard solutions were used for calibration (Sigma Aldrich Merck 
group, Poland). Additionally, for ICP-MS Sc in 1% HNO3 ≥ 99.999% trace metals basis (Sigma Aldrich Merck 
group, Poland) was used as internal standards (automatically added during analysis through T-piece). Deion-
ized water was obtained from the Milli-Q Direct 8 Water Purification System (Merck Millipore) and applied 
for sample (pre) treatment and dilutions. A series of spikes samples (S1 Human Serum, Normal, BCR637 and 
S7023 as a matrix simulation samples) were prepared and analyzed to validate the sample preparation method 
(no CRM and SRM are available for Ti analysis). Analysis was in the range of recovery from 86 to 110%. The 
plasma samples were prepared using the method of additions 100 µl sample + 300 µl HNO3 (70%, purified by 
redistillation, Sigma Aldrich, Poland) and pretreatment in a 60 °C on water bath for 2 h. The detection limit for 
titanium was 0.2 ng/mL. Any concentrations below this limit of detection were assigned as zero.

Figure 1.   Bilateral MCGR system for spinal deformity correction in children. Anterior–posterior (a,c) and 
lateral radiographs (b,d) of a 6-year old boy with neuromuscular scoliosis. The main scoliotic curve was 
corrected from 71° (a) to 32° (c) with additional improvement of the sagittal profile (b,d). Intraoperatively, 
discoloration of the adjacent soft tissue was found (e).



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10811  | https://doi.org/10.1038/s41598-022-15057-1

www.nature.com/scientificreports/

Analysis of MCGRs.  In total, 44 implants (NuVasive, USA) were retrieved from 23 patients (21 patients 
with bilateral and two patients with unilateral implant systems). After explantation, MCGRs were cleaned with 
H2O2. If not yet completely expanded, MCGR were magnetically expanded to their maximum length, so that the 
inner part of the rod, which is located in a cylinder in the retracted condition, became accessible. On this inner 
part, consisting of four segments (Fig. 3a), obvious traces of metal wear were visible (Fig. 2a). To determine the 
volume of metal loss, all angular segments with visible metal wear were measured using a tactile measurement 
instrument, the MarSurf LD260 (Mahr GmbH, Germany) (Fig. 2b,c). A probe arm with a diamond-tip meas-

Table 1.   ICP-MS 2030 (Shimadzu, Japan) measurement parameters.

Parameter and accessories Value

Radio frequency power generator 1.2 kW

Gas type Argon

Plasma gas flow rate 8.0 L/min

Auxiliary gas flow rate 1.1 L/min

Nebulization gas flow rate 0.7 L/min

Torch Mini-torch (quartz)

Nebulizer Coaxial

Spray chamber temperature 3 °C

Drain Gravity fed

Internal standard Automatic addition

Sampling depth 7 mm

Collision cell gas flow (He) 4.0 mL/min

Cell voltage − 35 V

Energy filter 5.0 V

Number of replicates 3

Integration conditions/number of scans 10

Integration time 2 s

Figure 2.   Tactile measurement of MCGRs. Selection of MCGRs with completely expanded inner segments, 
displaying one rod without detectable abrasion (left rod) and five rods with metal abrasion (a). Display of an 
individual MCGR fixed within the MarSurf LD260 machine (Mahr GmbH, Germany) with one segment facing 
upwards at a time (b). The diamond-tip of the probe arm was set to record longitudinal tactile traces along this 
segment of the MCGR (c). Screenshot of the software MarWin (Mahr GmbH, Germany), which was used to 
measure the depth, width and area of individual notches, representing metal abrasion along the tactile traces (d).
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ured tactile traces longitudinally along the segments. The speed was set at 0.5 mm/s, resolution in z was 0.8 nm 
and the tactile force was 0.75 mN (recommended tactile force for roughness measurements after ISO 3274). The 
measuring point density was set at 4.000 measuring points per mm (one measuring point every 0.25 µm). The 
traces were analyzed using the software MarWin v.11.00-19 (Mahr GmbH, Germany) (Fig. 2d) and the volume 
of abrased material was calculated (Fig. 3).

In order to calculate the volume of abrased material, nine parallel tactile traces with a distance of 0.5 mm 
to each other were recorded longitudinally along a segment, so that the entire width of the segment of approxi-
mately 5 mm was covered with regular tactile traces. Performing pre-tests, we determined that nine traces with a 
distance of 0.5 mm to each other were suitable to portray the surface with a good coverage area of the rod, while 
keeping the measurement time reasonable (approximately 15 min per segment). The Software MarWin was used 
to calculate the 2D-area of each notch on a trace, with notches representing abrased material. The 3D-volume of 
abrased material was calculated by numerical integration (i.e. multiplying the 2D-areas by 0.5 mm) (Fig. 3). The 
accuracy of the measurement was estimated using error propagation based on the technical data of the measuring 
device and the described evaluation procedure. The calculated uncertainty is about 15% of the estimated values.

The obtained data were reviewed statistically using GraphPad Prism (Microsoft Corporations, USA). All data 
are presented as mean ± standard deviation. Statistical significance was determined with p < 0.05 (*).

Ethics approval and consent to participate.  All procedures performed in studies involving human 
participants were in accordance with the ethical standards of the institutional and/or national research com-
mittee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All 
participants were informed about the purpose of the study and oral and written informed consent was obtained. 
The Institutional Ethics Committee of University Medical Center Göttingen approved the study (reference num-
ber 33/8/17).

Results
Data of 23 scoliotic children (14 females, 9 males) with progressive scoliosis and implanted MCGRs were analyzed 
(Table 2). Surgical implantation of the initial rods was carried out at a mean age of 6.4 years (range 1.8–10.9). Rod 
analysis was performed using the initial MCGRs in twelve cases, whereas eleven patients had implant exchange 
before MCGR device analysis was performed. All analyzed rods were implanted between 2015 and 2019. There-
fore, the newest possible implant generation was used. Implant revision and subsequent MCGR device analysis 
were performed after 2.6 years (range 0.8–3.4) due to maximum extension of the MCGRs (n = 20) or a required 
complication-related revision surgery (n = 3). Complications requiring revisions occurred in three patients and 
were implant failure (breakage of the pelvic hook n = 1, dislocation of the rod n = 1) or implant infection (n = 1). 
All except one rod were functioning at removal. End of skeletal growth was reached in four cases and thus, spinal 
fusion was performed some weeks after MCGR removal, whereas 16 patients received a new MCGR at the surgery 
of removal of the maximally expanded rod. MCGR revision and blood sampling of all participating patients 

Figure 3.   Volume of abrased material calculated from tactile traces. Schematic representation of the inner 
segment of a MCGR with five representative notches on one angular segment; with b being the width of 
the segment (a). Nine longitudinal traces (A–I) with a distance of 0.5 mm from each other were recorded 
longitudinally along the segment, so that the entire width b (approximately 5 mm) of the segment was covered 
by regular traces. In (b) two representative notches (1) and (2) are shown. Schematic representation of a notch 
as displayed in the software MarWin. Using the software, the 2D-area of each individual notch (here FC2) on 
each individual trace was determined (c). The volume was calculated from the areas by numerical integration. 
Therefore, the area of each notch on a trace (e.g. FA1, FB1 etc.) was multiplied by 0.5 mm, which is the distance 
between the traces (d).
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(n = 23) was done at an average age of 10.7 years (range 7.4–14.9). At that time point, patients had been treated 
with MCGRs for 4.2 years (range 0.9–10.7) on average. No apparent clinical symptoms or complaints related to 
metallosis were observed. Plasma samples from nine control scoliotic children with no implants so far at average 
age of 7.7 years (range 4.8–13.8) were analyzed in accordance with the patients’ samples.

Measurement of abrasion on the 44 explanted MCGRs of the 23 patients showed metal loss on all except for 
one MCGR (97.7%). Metal loss was measurable on one out of the four segments in 30 rods (68.2%), two segments 
in 10 rods (22.7%) and three segments in 4 rods (9.1%). The volume of abrased material per rod was > 0.001 mm3 
in 37 of 44 cases (84%), > 0.002 mm3 in 31 of 44 cases (70.5%), > 0.01 mm3 in 17 cases (38.6%), > 0.05 mm3 in 10 
cases (22.7%) and > 0.1 mm3 (0.15 mm3) in one case (2.3%). No difference between MCGRs on the concave and 
convex side of the scoliotic curve could be observed (Fig. 4). The extent of implant abrasion did not correlate 
with the time of MCGR implantation, number of elongation procedures, patient’s ambulatory status, gender, 
weight or height (data not shown).

To evaluate a potential correlation of measured metal loss on the MCGR implants to titanium plasma values, 
blood samples were taken during the MCGRs exchange or explantation surgery and these were also compared 
to healthy controls (n = 9). Titanium values were significantly different (p = 0.020) when comparing patients 
(averaged 14.7 ± 11.4 ng/mL) to age-matched healthy individuals (7.4 ± 4.9 ng/mL) (Fig. 5).

Plasma titanium values did not correlate with the time of MCGR implantation (the measured implant time 
as well as the overall time), number of elongation procedures, patient’s ambulatory status, gender, weight or 
height (data not shown).

To determine whether metal loss on the rods correlates with blood titanium, analysis was only performed 
of those patients, whose implants at the time of blood sampling were the initial ones (n = 12). Linear regression 
analysis showed a positive correlation between both titanium wear measurements (abrasion on implants and 
titanium particles in blood samples) with R2 = 0.3743 and a none-negligible scattering (Fig. 6a). Additionally, we 
extrapolated the plasma titanium value of each patient to the blood volume to exclude bias due to high variance 

Table 2.   Patient demographics.

Variable Value

Number of patients 23

Age analysis (years) 10.7 ± 2.3 (range 7.4–14.9)

Number of patients without prior implant exchange at time of analysis 12

Number of patients with prior implant exchange at time of analysis 11

Analysis of metal loss on MCGRs (n = 23)

Age implantation of analyzed MCGR (years) 8.1 ± 2.2 (range 4.7–12.1)

Follow-up until implant exchange surgery (years) 2.6 ± 0.7 (range 0.8–3.4)

Age at MCGR revision (years) 10.7 ± 2.3 (range 7.4–14.9)

Analysis of plasma samples (n = 23)

Age implantation of initial MCGR (years) 6.4 ± 2.5 (range 1.8–10.9)

Follow-up with MCGR until blood sampling (years) 4.2 ± 2.1 (range 0.9–10.7)

Age at blood sampling (years) 10.7 ± 2.3 (range 7.4–14.9)

Number of implants 1.7 (range 1–5)

Control children (n = 9): age at blood sampling (years) 7.7 ± 2.5 (range 4.8–13.8)

Figure 4.   Titanium abrasion in mm3 for all measured rods of the 23 patients. 21 patients had two rods 
implanted (concave, convex), whereas two patients (patient number 13 and 18) only had one implant on 
the concave side. The convex rods of patient 6 and 12 displayed no and very little abrasion (0.00016 mm3) 
respectively, while patient 10 showed maximum values (a). No significant difference was detected between 
abrasion of MCGRs implanted on the concave or convex side of the scoliotic spine (paired t test; p = 0.9913) (b).
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in age, weight and therefore blood volume of the participants. Blood volume was estimated by 80 mL/kg body 
weight and ranged from 1.4 to 4.2 L. We assumed the plasma to be 55% of the total blood and expressed the value 
in mg titanium in total estimated plasma volume for each patient. A positive relationship between the abrasion 
method and this extrapolated titanium value in plasma remained with R2 = 0.2041 (Fig. 6b).

Discussion
MCGR devices have become a preferred treatment option for children with severe progressive spinal deformity2, 
thus avoiding repetitive surgical implant lengthening. Efficiency of these implants could be proven in several 
studies3–5, however, implant related complications still remain. MCGRs are usually implanted for several years 
during the critical pediatric growth period, therefore, the extent of metal wear and the potential hazards of tita-
nium in the pediatric organism gains importance for the evaluation of the current standard treatment of EOS.

The presented data report on titanium wear analysis of 23 pediatric patients with scoliosis both in blood 
samples and on the explanted MCGR implant itself. Three main observations could be found: Firstly, titanium 
abrasion was observed in the majority of analyzed rods. Secondly, duration of MCGR implantation time, number 
of external lengthening procedures, patient’s ambulatory status, gender, weight or height did not influence metal 

Figure 5.   Titanium plasma analysis. Significant difference in titanium wear in MCGR-patients (n = 23) in 
comparison to age-matched controls (n = 9; p = 0.020). Unpaired t test with Welch’s correction (different SD 
assumed).

Figure 6.   Correlation of abrasion and titanium analysis in plasma. For patients, whose implants at the time of 
blood sampling were the initial ones (n = 12), linear regression analysis between abrasion on implants in mm3 
(x-axis) and titanium in plasma samples in ng/mL (y-axis) display a positive correlation (R2 = 0.3743; deviation 
of slope from zero significant p = 0.0345) (a). When extrapolating the measured titanium concentrations to the 
estimated entire plasma volume of each patient, the positive relationship remained (R2 = 0.2041; deviation of 
slope from zero not significant p = 0.1404) (b).
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wear or titanium plasma values. Thirdly, material loss on the MCGRs showed a positive correlation to titanium 
blood plasma values.

Other studies could find titanium wear debris inside the rods for all observed cases8. It is suggested that off 
axis loading causes the extending bar of the rod to contact on the internal surface of the rod housing8. Obvious 
metallosis in the surrounding tissue of the implants can be explained either by growth marks on the extending 
bar of the rod as a result of high stress of the rods during the lengthening procedures18 or by leakage of titanium 
wear from inside the rod8. We could find a certain correlation between extent of metal loss on the rods and 
measured titanium values in the blood. However, blood plasma titanium values do not reflect local titanium 
debris in the surrounding tissue or titanium that may have been deposited in organs or excreted. Therefore, a 
direct correlation to the overall titanium content in the pediatric body cannot be made from the presented data.

In the present study, patients showed on average twice as high values of blood titanium compared to controls 
without a device implanted (with a high variance among individual patients). Other studies could also detect 
increased blood titanium values after implantation of titanium spinal implants. Li et al. determined three times 
higher values for patients with MCGRs (4.5 ng/mL) than controls (1.5 ng/mL)19. Yilgor et al. found four times 
higher values of titanium in patients with MCGRs (10.2 ng/mL) than in controls (2.8 ng/mL)7. Borde et al. found 
even higher values (15.9 ng/mL) for patients with MCGRs20. Therefore, our measured values of 14.7 ng/mL are 
in the range of the literature values.

In the control group, certain titanium plasma values were detected in some individuals, probably due to expo-
sure to personal care products and cosmetics, such as sunscreen or toothpaste, as well as to food products (e.g. 
chewing gums and sweets)21, which are sources of titanium exposure unrelated to pediatric orthopedic titanium 
implants. A few authors tried to determine the range of “normal” titanium blood levels to establish a threshold 
value for titanium-induced implant failure22. However, individual ranges are wide and different methodological 
approaches to measure metals in blood rarely give the same values for the same sample.

Reliable methods to measure titanium in biological fluids are scarce. The most commonly used approaches 
are ICP-MS-based techniques. However, these methods require well-trained operators and have high running 
costs. Additionally, comparisons across laboratories are challenging, mainly due to lack of standardized sample 
preparation, instrument type and settings and analytical approach23. Therefore, absolute titanium blood values 
should be interpreted carefully.

To our knowledge, this is the first study to determine the volume of abrased material from MCGRs. Biases of 
visual scoring were excluded and we could determine width and depth of notches, and thereby volume of abrased 
material, by great precision (resolution in z 0.8 nm, measuring point density was set at one measuring point per 
0.25 µm). Measuring tactile traces furthermore revealed a rotating structure on the surface of the material that 
is invisible to the eye. In some areas, material appeared shiny, suggesting abrasion in form of a notch by visual 
impression, however the tactile trace revealed no notches, but only superficial abrasion of the rotating structure.

It was not possible to record some small marks of abrasion directly at the edges of individual segments, which 
occurred on some rods, therefore total abrasion from the segments may be slightly higher than our measured 
values. The rather regular patterns of notches imply that movement of the inner and outer cylinder against 
each other cause abrasion during the wear time in a certain position, which changes upon regular lengthening, 
additionally to stress during the lengthening procedure18. The observation that notches occur at only one or two, 
sometimes three adjacent segments in our study supports the hypothesis of off-axis loading causing one-sided 
abrasion16. However, further investigations with more parameters such as curve stiffness and coronal and sagittal 
balance are needed to define reasons for abrasion.

In our study, the leakage from the actuator of the MCGRs was not put into account as a source of titanium 
wear debris. However, this leakage was proven as a significant source of metallosis in a previous study where the 
MCGRs were cut open to allow internal components to be evaluated for metal wear8.

We could neither detect an influence of implantation time, number of elongations, nor of weight, height, gen-
der or ambulatory status of the patient on metal implant abrasion or titanium plasma values. However, it cannot 
be excluded that influences of individual factors were overshadowed by the complex interactions of several factors 
for this study cohort, and that influencing factors may be found with a larger, more homogenous population.

In our study, linear regression analysis of metal abrasion and the values of titanium in plasma showed a posi-
tive correlation. Elevated levels of titanium in blood have also been observed in patients with implant failure24 
or implant loosening25 and it has been proposed that titanium levels in blood, serum or plasma may be used as a 
biomarker for orthopedic implant performance22,24–26. Measurements of serum cobalt and chromium can serve 
as biomarker for wear of metal joint implants27,28 and reference levels are available for well and poorly function-
ing hip implants29. However, neither guidelines nor normal or abnormal blood values have been established for 
titanium, partly due to technical challenges and lacking comparability of results gained across laboratories23. 
Recently, a laboratory reference level for blood and plasma titanium in patients with well-functioning titanium 
hip implants has been proposed (2.2 and 2.56 µg/L for blood and plasma respectively)30. The authors suggested 
this to be a “starting point for further studies to explore the clinical usefulness of blood titanium as a biomarker 
of orthopedic implant performance”30. While technical challenges exist and elevated titanium levels may not be 
indicators for implant performance for all patients, it is worth further exploring the possibility of using titanium 
levels in plasma or other body fluids as potential biomarkers for implant performance.

The fact that we have established a protocol to measure small-scale abrasion reasonably fast and economically 
with our applied tactile technique, makes it appealing to use this in future larger scale studies—where potentially 
influencing factors for abrasion may be detected. Also, given that levels of toxicity of titanium may be understood 
better in the future, potential clinical application of this method may be taken into account—i.e. measuring abra-
sion from an implant upon removal, either instead of or additionally to measuring blood-titanium levels, may 
help to assess titanium load within a patient and decide about treatment with further implants.
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Limitations of this study are the small sample size and even more importantly the lack of data on blood tita-
nium values before implantation to estimate the individual increase of titanium particles in the blood. Further 
studies on possible transport routes of titanium ions, their distribution in organs and therapeutic approaches 
against spreading of titanium within the children’s body would provide better understanding of the extent and 
long-term effects of metal wear by implants in children.

Conclusions
This study analyzed titanium abrasion from magnetically controlled growing rods (MCGRs), which were 
implanted in children for spinal deformity correction for an average of 2.6 years and correlated these findings to 
titanium plasma values. Using metrological techniques, titanium abrasion from MCGRs could be determined 
with great precision and linear regression analysis of abrasion values and the titanium plasma values determined 
by ICP-MS showed a positive correlation. Influencing factors on abrasion such as time of implantation, number 
of elongations or the patient’s ambulatory status could not be detected. Further studies are necessary to deter-
mine the effects and potential hazards of titanium in the pediatric body caused by implants treating scoliosis.

Data availability
All data generated or analyzed during this study are included in this published article.
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