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Background. Atherosclerosis (AS) is a common chronic vascular inflammatory disease and one of the main causes of cardio-
vascular/cerebrovascular diseases (CVDs). Autophagy-related genes (ARGs) play a crucial part in pathophysiological processes of
AS. However, the expression profile of ARGs has rarely been adopted to explore the relationship between autophagy and AS.
+erefore, using the expression profile of ARGs to explore the relationship between autophagy and AS may provide new insights
for the treatment of CVDs.Methods. +e differentially expressed ARGs of the GSE57691 dataset were obtained from the Human
Autophagy Database (HADb) and the Gene Expression Omnibus (GEO) database, and the GSE57691 dataset contains 9 aortic
atheroma tissues and 10 normal aortic tissues. +e differentially expressed ARGs of the GSE57691 dataset were analyzed by
protein-protein interaction (PPI), gene ontology analysis (GO), and Kyoto Encyclopedia of Genes and Genomes analysis (KEGG)
and were chosen to explore related miRNAs/transcriptional factors. Results. +e GSE57691 dataset had a total of 41 differentially
expressed ARGs. +e GO analysis results revealed that ARGs were mainly enriched in autophagy, autophagosome, and protein
serine/threonine kinase activity. KEGG analysis results showed that ARGs were mainly enriched in autophagy-animal and
longevity regulating signaling pathways. Expressions of ATG5, MAP1LC3B, MAPK3, MAPK8, and RB1CC1 were regarded as
focus in the PPI regulatory networks. Furthermore, 11 related miRNAs and 6 related transcription factors were obtained by
miRNAs/transcription factor target network analysis. Conclusions. Autophagy and ARGs may play a vital role in regulating the
pathophysiology of AS.

1. Introduction

Autophagy, a capacity of maintaining cellular homeostasis,
is a process of damaging cytosolic material and delivering to
lysosomes for degradation, leading to the turnover of cell
material and providing macromolecular precursors [1, 2].
Autophagy deficiency is closely related to multiple diseases,
such as cancers, CVDs, and immune disorders [3, 4].

CVDs still remain a prevalent cause of mortality and
morbidity worldwide, affecting 16.7 millions of individuals
each year [5]. One of main causes of acute cardiovascular
death is AS. AS is a common chronic inflammatory disease
characterized by atherosclerotic plaque and vascular stenosis
[6, 7].

Studies have shown that autophagy may be involved in
regulating cell survival and death during the occurrence and
development of AS [8, 9]. In the early stage of atherosclerotic
lesions, autophagy can inhibit the apoptosis of vascular
endothelial cells and delay the development of atheroscle-
rotic plaques. In the late stage of atherosclerotic lesions,
excessive activation of autophagy leads to autophagic death
of vascular cells, decreased collagen synthesis, and weak
fibrous caps that cause plaque rupture. Vascular smooth
muscle cells (VSMCs) play a significant role in atherogen-
esis. Autophagy in VSMCs protects cells in AS plaque by
suppressing oxidative stress, inhibiting mitochondrial de-
polarization and degrading damaged substances [10]. Fur-
thermore, successful autophagy inhibits VSMCs senescence,
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whereas defective autophagy accelerates atherogenesis. +e
role of autophagy in AS remains undefined though a series of
studies have reported that autophagy is activated in AS.

In the past few years, bioinformatics and microarray
technologies have been widely used to excavate the genetic
targets of multiple diseases, which have helped researchers in
identifying the differentially expressed genes and potentially
different signaling pathways. However, few research studies
applied to explore the relationship between autophagy and AS.

In this study, we used ARGs to explore the relationship
between AS and autophagy. +e differentially expressed
ARGs were screened, and the relevant data were processed
by GO and KEGG analysis.+e complex interaction between
miRNAs/transcriptional factors and genes was predicted.
+is main aim of study is to explore the relationship between
autophagy and AS.

2. Methods

2.1. Data Collection. A total of 232 ARGs were gathered
from the HADb (http://www.autophagy.lu/index.html) [11].
GEO (http://www.ncbi.nlm.nih.gov/geo) is a high-
throughput resource functional genomics database that
includes chips, microarrays, and gene expression data [12].
GSE57691 dataset was obtained from the GEO database,
which contains 9 aortic atheroma tissues and 10 normal
aortic tissues. Meanwhile, the probe is converted into a
homologous gene symbol using the annotation information
on the platform.

2.2. Differentially Expressed ARGs. +e limma method in R
was used to analyze the differential expression of ARGs
between the AS group and control group [13]. +e threshold
was the adjusted P value <0.05 and | log2 fold change (FC) |
>2 [14].

2.3. Data Repeatability Test. +e intragroup data repeat-
ability of each group was verified by Pearson’s correlation. R
programming language provides operating environment
and software for drawing of graphs and statistical analysis
[15]. Use heatmaps to visualize correlations between samples
in the same dataset and using R to draw the heatmap.
Principal component analysis (PCA) is a sample clustering
method for gene expression, diversity analysis, and rese-
quencing [16]. +e sample cluster analysis method is used to
verify the intragroup data repeatability of the dataset.

2.4. GO and KEGG Online Enrichment Analysis. +e en-
richment analysis of GO [17] and KEGG [18] in ARGs were
performed through DAVID (version 6.8, Database for
Annotation, Visualization, and Integrated Discovery,
https://david.ncifcrf.gov/) [19]. +e visual GO and KEGG
enrichment plots of annotation results were analyzed
through “digest” and “GO plot” packages in R [20].

2.5. PPI Regulatory Network Construction. Evaluate the in-
teraction between ARGs through the STRING database
(version 11.0, https://string-db.org/) [21]. In addition, a

combined score >0.4 was considered to be a statistically
significant interaction. +en, the PPI regulatory network
analysis results are loaded into Cytoscape for visualization
[22, 23].

2.6. miRNAs/Transcription Factor Networks Construction.
+e miRNAs/transcription factor was analyzed by Web-
Gestalt (http://www.webgestalt.org/) [24]. +e correlation
between the miRNA/transcription factor and ARGs in
significant clustered modules was analyzed by overrepre-
sentation enrichment analysis (http://amp.pharm.mssm.
edu/Enrichr/) [25]. Finally, Cytoscape was used to visual-
ize the miRNAs/transcription factor network [24].

3. Results

3.1. Repeatability Verification of Dataset. We used the PCA
and Pearson’s correlation test to validate the GSE57691 dataset
repeatability. According to the PCA, the intragroup repeat-
ability of the GSE57691 dataset was acceptable. In the control
group and the AS group, the distances between per sample
were close in the dimension of principal component 1. In
addition, the distances between the control group and the AS
group were far (Figure 1(b)). Pearson’s correlation test revealed
that there was a strong correlation among the samples in the
control group and there was a strong correlation among the
samples in the AS group of the GSE57691 dataset. Moreover,
sample in the control group and sample in the AS group exist a
negative correlation (Figure 1(a)).

3.2. Differentially Expressed ARGs Identified between the AS
Group and Control Group. In the GSE57691 dataset, 41
differentially expressed ARGs, including 20 upregulated
ARGs (TBK1, BID, GNAI3, PTK6, and so on) and 21
downregulated ARGs (ITGA3, WIPI2, MAPK3, FADD, and
so on), were identified in the AS group, as shown in heatmap
(Figure 2(a)). In addition, the differentially expressed ARGs
between the control group and AS group are shown in
volcano plot (Figure 2(b)).

3.3. Functional and Pathway of Differentially Expressed ARGs
EnrichmentAnalysis. Based on theGOanalysis, we found that
the biological processes of differentially expressed ARGs were
markedly enriched in autophagy, process utilizing autophagic
mechanism, and macroautophagy. +e cell components of
differentially expressed ARGs were markedly enriched in
autophagosome, vacuolar membrane, and phagophore as-
sembly site membrane.+emolecular function of differentially
expressed ARGs was markedly enriched in protein serine/
threonine kinase activity, MAP kinase activity, and ubiquitin
protein ligase binding (Figure 3(a)). +e results of the KEGG
analysis showed that differentially expressed ARGs were pri-
marily enriched in the autophagy-animal signaling pathway
and longevity regulating signaling pathway (Figure 3(b)).

3.4. PPI Regulatory Network andModule Analysis, Hub Gene
Identification and Analysis. +e PPI regulatory network of
differentially expressed ARGs was constructed (Figure 4(a)).
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Figure 1: Continued.
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+e PPI regulatory networks contain 35 nodes and 135
interacting pairs. +en, the most significant module and hub
genes in the network were screened by Cytoscape
(Figures 4(b) and 4(c)). A total of 10 hub genes with degrees
≥13 were screened: PTEN, FOXO3, RPS6KB1, MAP1LC3A,
ULK1, RB1CC1, MAPK8, MAPK3, MAP1LC3B, and ATG5.
In addition, subnet modules A and Bwere selected in the PPI
regulatory network. Module A contains 6 upregulated nodes
(WDFY3, ATF4, ATG4D, and so on), 10 downregulated
nodes (MAP1LC3A, MAPK3, MAPK8, and so on), and 56
interacting pairs. Module B contains 3 upregulated nodes
(HSPAB, RB1CC1, and ATG5), 1 downregulated nodes
(MAP1LC3A), and 5 interacting pairs. +e genes in the two
modules are given in Table 1.

3.5. miRNAs/Transcription Factor Target Networks Analysis.
11 miRNAs (miR-181 family had the most targets) and 6
transcription factors (CREB, ATF, FREAC2, ATF3,
CREBP1CJUN, and AP1) were predicted, and 92 regulatory
pairs of miRNA and transcription factor networks were
constructed (Figure 5).+ere were 13 upregulated genes and
16 downregulated genes in the miRNAs/transcription factor
networks. In the miRNA networks, 13 regulatory interac-
tions were found between upregulated genes and miRNA,

and 16 regulatory pairs were identified between down-
regulated genes and miRNA. In the transcription factor
networks, FREAC2 was predicted to target 3 upregulatory
genes (CDKN1B, FOXO1, and GRID2) and 5 down-
regulatory genes (FOXO3, KLHL24, MAPK3, ULK1, and
WIPI2). CREB was predicted to target 3 upregulatory genes
(ATG5, EEF2, and ST13) and 2 downregulatory genes
(MAP1LC3A and RAB24).

4. Discussion

Mounting evidence indicates that autophagy participates in
maintaining cardiovascular health. Dysfunction of vascular
autophagy is related to the initiation of CVDs [26]. Addi-
tionally, ARGs affect AS through regulation of VSMCs
phenotypic switching, lipid metabolism, and other biological
processes [27, 28].

Gene microarray technology is a newmethod to explore
new biomarkers of diseases. Huang et al. screened 98
differentially expressed genes from AS macrophages
through DNA microarray analysis and then identified
KDELR3, CD55, and DYNC2H1 as key genes through a
series of analysis [29]. Another study predicted that miR-
126 may be a biomarker of AS through gene microarray
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Figure 1: Intragroup data repeatability of the GSE57691 dataset verified by Pearson’s correlation and PCA analysis. (a) Pearson’s correlation
analysis of intragroup data from the GSE57691 dataset. +e color represents the degree of correlation. 0< correlation <1 indicates a positive
correlation, and −1< correlation <0 indicates a negative correlation. When the absolute value of a number is large, there exists a strong
correlation. (b) PCA analysis of intragroup data from the GSE57691 dataset. In the scatter diagram, PC1 and PC2 represent X-axis and Y-
axis, respectively, where each point is a sample. +e distance between the two samples represent the difference in gene expression patterns.
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technology, and its overexpression may prevent the oc-
currence and development of AS. In addition, lncRNA
microarray was also used to study AS. LncRNA-FA2H-2
may improve AS by affecting autophagy and inflammation
[28].

In the current study, in order to determine the rela-
tionship between ARGs and AS, microarray analysis was
used to identify differentially expressed ARGs from the AS
group and the control group. First, we screened 41 differ-
entially expressed ARGs between the AS group and control
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Figure 2: Differential expressions of ARGs between the control group and AS group. (a) +e 41 differentially expressed ARGs from the
GSE57691 dataset. C indicates the control group and T indicates the AS group. (b) Volcano plot of differentially expressed ARGs. Red
indicates high expression genes, green indicates low expression genes, and black indicates that there is no difference in these genes between
the AS group and control group.
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group. Based on GO and KEGG analysis, we found that
differentially expressed ARGs involve multiple biological
processes and signaling pathways, including autophagy,
autophagosome, and autophagy-animal signaling pathway.
+en, a total of 10 hub genes (PTEN, FOXO3, RPS6KB1,
MAP1LC3A, ULK1, RB1CC1, MAPK8, MAPK3,
MAP1LC3B, and ATG5) were identified through the PPI
regulatory network. Finally, the miRNAs/transcription
factor networks were constructed, including 11 miRNAs and
6 transcription factors.

In the BP analysis, most genes were enriched in auto-
phagy. Osonoi et al. found that the degree of autophagy
increased in the atherosclerotic smooth muscle cells of
human and rabbit by transmission electronmicroscopy [30].
In the CC analysis, most genes were enriched in autopha-
gosome. +e main role of autophagosomes is to transfer
organelles and proteins to lysosomes for degradation. Zhang
et al. reported that CAV-1 controls autophagic flux and the
formation of autophagosomes by affecting the cellular lo-
calization of autophagosomes in lipid rafts, thus influencing
the development of AS [31]. In the MF analysis, protein
serine/threonine kinase activity enriched the most genes.
AKT, the downstream target of PI3K, is serine/threonine
protein kinase. PI3K/AKT is one of the main pathways of
autophagy regulation. Previous studies have reported that

Shen-Yuan-Dan capsule treatment reduces foam cell for-
mation by activating autophagy via affecting the PI3K/AKT/
mTORC1 signaling pathway [32]. +e KEGG analysis
showed that the autophagy-animal signaling pathway might
play a role in AS-related autophagy. +e AMPK signaling
pathway and mTOR signaling pathway are two major
pathways in the autophagy-animal pathway. Wu et al. re-
ported that paeonol inhibits the excessive proliferation of
VSMCs by inducing AMPK phosphorylation, reducing
mTOR phosphorylation, and upregulating autophagy [33].

A total of 10 hub targets were identified in the PPI
regulatory network, including ATG5, MAP1LC3B, MAPK3,
MAPK8, and RB1CC1. Previous study reported that ATG5
is involved in autophagosomes formation [34]. In addition,
ursolic acid exerted antiatherosclerosis effects and protected
human umbilical vein endothelial cells (HUVECs) from ox-
LDL induced cytotoxicity. +e underlying mechanism is
associated with increased SIRT1 expression, reduced acet-
ylation of lysine residue on Atg5, and enhanced autophagy
[35]. +ese suggest that ATG5may play an important role in
autophagy associated with AS. MAP1LC3B is indirectly
related to plaque instability, which may prevent athero-
sclerotic plaque instability by promoting basic autophagy
activity. Meanwhile, Bhairavi Swaminathan et al. found that
low expression of MAP1LC3B in carotid atherosclerotic
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Figure 3: GO and KEGG enrichment analysis of 41 differentially expressed ARGs. (a) Histogram of GO enrichment. (b) Histogram of
KEGG enrichment.
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plaques did not induce related autophagy. +is may cause
dead cells to accumulate at the site of the lesion and sub-
sequently lead to cerebrovascular events [36]. MAPK3
(ERK1) and MAPK8 (JNK1) are members of the mitogen-
activated protein kinase family (MAPK). MAPK signaling
pathway plays a vital role in the pathogenesis of CVDs [37].
Babaev et al. found that the reduction of JNK1 in macro-
phages protects them from apoptosis and increases cell
survival rate, thus accelerating early AS [38]. In addition,
Zheng et al. reported that protocatechuic acid improved
vulnerable lesions in mice, which may be caused by the
upregulation of MERTK to normalize arterial inflammation
and inhibit MAPK3/1 in lesional macrophages [39].
RB1CC1 is involved in the composition of ULK1-ATG13-
RB1CC1/RB1CC1-ATG101 complex, which is crucial for the
formation of autophagosome [40, 41]. RB1CC1 is also

involved in protein synthesis, cell proliferation and migra-
tion, differentiation, and cell cycle processes [42]. However,
RB1CC1 is rarely reported on CVDs.

Based on the analysis of miRNAs/transcription factor
target networks, we found that miR-506 had 7 targeted
ARGs, which exerted the most obvious target interaction
among the 10 analyzed miRNAs. In particular, miR-506
regulates the hub gene RB1CC1, and the highly expressed
RB1CCI in the network is downregulated by miR-506.
RB1CC1 is essential for the formation of autophagosomes.
In addition, the low expression of CAPN1 in the network
was upregulated by miR-506. Calpain is involved in in-
flammation and AS [43]. Yin et al. reported that the
downregulation of Calpain-1 and inactivation of Calpain
might be closely related to the anti-inflammatory and
antiatherosclerosis effects of simvastatin [44]. +erefore, the

Table 1: Submodule ARGs and degree of PPI regulatory networks.

Module A Module B
Node Description Degree Node Description Degree
WDFY3 Up 8 HSPA8 Up 9
ATG4D Up 8 RB1CC1 Up 15
CDKN1B Up 8 MAP1LC3B Down 19
ATG4A Down 9 ATG5 Up 22
ATF4 Up 9
FOXO1 Up 10
WIPI2 Down 11
LAMP2 Up 11
ATG14 Down 12
PTEN Down 13
FOXO3 Down 13
RPS6KB1 Down 14
MAP1LC3A Down 14
ULK1 Down 14
MAPK8 Down 16
MAPK3 Down 18

MIR-506

MIR-524

MIR-216

MIR-486

MIR-198

ATG14

DAPK2

PRKAB1

CDKN1B

RB1CC1

TBK1

RAB24

AP1ITGA3 BIRC6
PTEN

CAPN1

KLHL24 MAP1LC3A
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LAMP2
CREBP1CJUN

GNAI3

EEF2

CREBGRID2 ATG5

FOXO1

ATF3ST13

MIR-527

MIR-181D

MIR-181A

MIR-190

MIR-181B

MIR-181C

MIR-135B

MIR-193B
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Figure 5: miRNAs/transcription factor target networks. +e red circles indicate the upregulated ARGs, and the green circles indicate the
downregulated ARGs. +e violet triangle indicates miRNAs, and the yellow quadrilateral indicates transcription factors.

Journal of Healthcare Engineering 9



axes of miR-506-CAPN1 and miR-506-RB1CC1 may be
closely related to AS and autophagy [45, 46].

5. Conclusion

In summary, our current study has evaluated the expression
of ARGs in AS based on the GEO database and HADb. We
found that ARGs were involved in the occurrence and
development of AS through multiple biological processes
and signaling pathways, such as autophagy, process utilizing
autophagic mechanism, macroautophagy, and autophagy-
animal signaling pathway. In addition, we also found that the
axes of miR-506-CAPN1 and miR-506-RB1CC1 may be
closely related to AS and autophagy. Taken all of these, ARGs
may play a vital role in AS.
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