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Abstract: Great progress has been made in specifically identifying the central neural circuits
(CNCs) of the core body temperature (Tcore), sleep-wakefulness states (SWs), and general
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anesthesia states (GAs), mainly utilizing optogenetic or chemogenetic manipulations. We
summarize the neuronal populations and neural pathways of these three CNCs, which gives
evidence for the orchestration within these three CNCs, and the integrative regulation of these
three CNCs by different environmental light signals. We also outline some transient receptor
potential (TRP) channels that function in the CNCs-Tcore and are modulated by some general

Dor: anesthetics, which makes TRP channels possible targets for addressing the general-anesthetics-
induced-hypothermia (GAIH). We suggest this review will provide new orientations for further
consummating these CNCs and elucidating the central mechanisms of GAIH.

10.2174/1570159X19666210225152728

Keywords: Central neural circuits, body temperature regulation, sleep-wakefulness states, general anesthesia, TRP channels,
intrinsically photosensitive retinal ganglion cells, optogenetics, chemogenetics.

1. INTRODUCTION

Keeping the homeostasis of the core body temperature
(Tcore) and sleep-wakefulness states (SWs) is essential for
mammals’ normal metabolic activities [1, 2]. In recent
decades, studies have been made to establish the central
neural circuits (CNCs) of Tcore and SWs, respectively. Part
of the existing findings on the central regulation of Tcore [3-
6] and SWs [7-9] have been summarized in some reviews,
respectively. Although the preoptic area (POA) has been put
forward as an important regulator of both Tcore and SWs for
a long time [10-15], only recently, combining with
optogenetic or chemogenetic manipulations, the relative
neuronal populations, as well as neural pathways, have been
identified in detail. By comparing the CNCs-Tcore with
CNCs-SWs, it turned out to find that they share largely
overlapped neuronal populations as well as neural pathways.
For instance, the preoptic area (POA) [1, 2, 16-19] and
lateral hypothalamus (LH) [1, 20-22] have been reported to
be co-regulators between CNCs-Tcore and CNCs-SWs in
some latest studies. It is imperative to review the CNCs-
Tcore and CNCs-SWs to find out more possible interactions
between them.

Ever since the advent of ether in 1846, general anesthesia
has undergone continuous development in order to bring
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comfort to surgical patients. Mild hypothermia is a common
and serious complication of general anesthesia, which
promotes postoperative wound infections and myocardial
events, increases perioperative blood loss, impairs immune
function, delays postoperative recovery, and prolongs the
effect of almost all anesthetics [23-25]. To address this side
effect, many interventions have been used, such as forced-air
warming [24, 26-28] as well as amino acids [28, 29], which
may attenuate the hypothermia to some extent but are not
suited to all conditions [30] and cannot entirely solve this
problem [31], thus making it essential to identify the central
thermoregulatory mechanisms during general anesthesia.

Recent studies have revealed the largely overlapped
CNCs between SWs and general anesthesia states (GAs),
both anatomically and functionally, which has been reviewed
elsewhere [32, 33]. Together with the orchestration between
the CNCs-Tcore and CNCs-SWs as well as some latest
findings of the central coordinators of Tcore and GAs [17,
34], there emerge the possible central mechanisms of
general-anesthetics-induced-hypothermia (GAIH).

The transient receptor potential (TRP) channels have
long been deemed as important thermo-sensors [35, 36]. We
also outlined the evidence that favors some major TRP
channels to function in the CNCs-Tcore, which may guide
for new interventions to address GAITH.

2. CENTRAL THERMOREGULATORY CIRCUITS

The two mechanisms of thermoregulation: physiological
regulation and behavioral regulation, have been reviewed
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elsewhere [3, 4]. The former is involuntary and autonomic,
including thermogenic responses and heat loss reactions,
while the latter is motivated and goal-oriented. Since the
behavioral regulation is inhibited during general anesthesia
[23], here, we mainly focus on the CNCs-Tcore of
physiological responses. Given that the afferent pathways
involving the lateral parabrachial nucleus (LPB), from the
periphery to the POA have been thoroughly summarized in
some reviews [3-5], here we focus on the downstream
central thermoregulatory pathways from the LPB.

2.1. TRP Channels that Might Function in the Central
Thermoregulatory Circuits

It has been found that TRP channels play an important
role in peripheral body temperature sensation [3, 4, 35, 36].
Among TRP channels, the heat-activated transient receptor
potential vanilloid-1 (TRPV1) to TRPV4 and transient
receptor potential melastatin-2 (TRPM2) as well as the cold-
activated TRPMS have attracted major attention. Their roles
as peripheral temperature sensors are still controversial [4],
which may be due to the possibility that studies on the role
of individual TRP channel have been compensated for by
other subtypes of TRP channels, or the unknown
compensatory mechanism in the growth and development of
TRP channel knockout (KO) mice [37]. It is also possible
that due to the universally low expression of TRP channels
in the brain [38, 39] and the limitations of current detection
techniques, the studies on the central thermoregulatory
mechanisms of the TRP channels remain to be scarce. In this
part, we focus on the TRP channels mentioned above and
make a brief discussion on their possible roles in the CNCs-
Tcore.

2.1.1. TRPVI

Capsaicin (CAP) is a classic agonist for TRPVI.
Subcutaneous administration of CAP [40] or oral gavage of
CAP [41] activates neurons in the POA, demonstrating the
peripheral thermoregulatory role of TRPVI1. Central
administration of CAP can also cause hypothermia [42]. In a
study, by pharmacological binding TRPV1 to detect its
expression in the brain of monkey, it has been found that
TRPV1 has a high density in locations such as the POA and
locus coeruleus (LC) [43]. However, other studies have
shown that TRPV1 is not expressed in the brain of mice [38]
or extremely low among different species while not existing
in the POA [44]. The role that TRPVI1 plays in central
thermoregulation at the level of the POA needs to be further
confirmed.

In addition to the POA, in the review of Szolcsanyi
(2015), it is suggested that TRPV1 may also act on the
CNCs-Tcore at the level of the LC and nucleus of the
solitary tract (NTS) [45]. The noradrenergic LC (LC\F)
neurons can be activated by cutaneous thermal stimuli,
which is reduced in capsaicin-desensitized rats [46]. In vitro
brain slices, CAP can evoke spontaneous excitatory
postsynaptic currents (SEPSCs) of LC neurons, while this
effect can be abolished by selective TRPV1 antagonist [47].
And the central PGE2-induced thermogenesis can be
attenuated in LC-lesioned rats [48]. Combined with the
reported high density of TRPV1 in the LC of monkeysS [43],
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the thermoregulatory role of TRPV1 in LC neurons needs
further demonstrations. In vitro NTS slices, TRPV1 channels
of the glutamatergic nerve terminals of unmyelinated
afferents stay active at normal temperatures, and their
activities increase dramatically when the tissue temperature
is increased between 30°C and 42°C [45]. Oral gavage of
CAP induces Fos expression in the NTS, which is scarcely
observed in TRPV1-KO mice [41]. It has also been found
that activation of TRPV1 channels in the NTS of intact vagal
afferent pathway rats can lower Tcore [49]. These studies
reveal a possible thermoregulatory role of TRPV1 at the
level of NTS. It has been shown that proopiomelanocortin
(POMC) neurons in the arcuate nucleus of the hypothalamus
(ARH) express TRPVI1, and elevated hypothalamic
temperature can activate the TRPV1-like receptors in POMC
ARH neurons [50], which makes the ARH another location
where the thermoregulatory TRPV1 might function.
Furthermore, bilateral electrolytic lesions of the rostral
ventrolateral medulla (RVLM) of rats can greatly alleviate
thermogenesis caused by subcutaneous injection of CAP,
and thermogenesis can be caused by unilateral
microinjection of CAP into the RVLM [51]. Similarly, the
microinjection of CAP into the caudal ventrolateral medulla
(CVLM) increases the body temperature of rats during
endotoxemia [52]. It seems that TRPV1 also plays a role in
thermoregulation at the level of the ventrolateral medulla
(VLM), but apart from the above two studies, no other
studies on the thermoregulatory role of TRPV1 at the VLM
level have been reported.

2.1.2. TRPV2

TRPV2 has been found to play a peripheral role in the
thermogenesis of brown adipose tissue (BAT) [53]. The
expression of TRPV2 in the medial preoptic area
(MPO/MPA), paraventricular nucleus of the hypothalamus
(PVH), NTS, RVLM, and other brain regions related to the
regulation of Tcore has been confirmed [54, 55]. PVH plays
an important role in the febrile response caused by
lipopolysaccharide (LPS) [56] and stress [57]. Bilateral
lesions of PVH by ibotenic acid (IBO) can relieve fever
induced by LPS and bradykinin [58]. It has been shown that
oxytocin stimulates extracellular Ca”" influx through TRPV2
channels of PVH, thereby exerting its anxiolytic effects [59].
Oxytocin has been shown to decrease Tcore [60, 61].
TRPV2 may participate in the CNCs-Tcore; from one
perspective, oxytocin may act on TRPV2 of the PVH to
alleviate the febrile response as well as anxiety.

Besides, it is found that TRPV2 is co-expressed with
prokineticin 2 receptor (PKR2) in the suprachiasmatic
nucleus (SCN) neurons, and TRPV2 enhances the signal of
PKR2 in calcium mobilization or ion current conductance,
and TRPV2 may be involved in the regulation of circadian
rhythms by prokineticin 2 (PK2) [62]. PK2 mRNA is shown
to express in many brain locations apart from the SCN, such
as the median preoptic nucleus (MnPO) and PVH [63], both
of which are related to the CNCs-Tcore and are under
circadian control. The effect of the circadian input signal of
the SCN onto the CNCs-Tcore has been outlined previously
[2]. The SCN neurons expressing TRPV2 may enhance the
signal of PKR2 and subsequently modulating the
downstream thermoregulatory pathways.
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Fig. (1). A model of TRPV4 and other possible TRP channels functioning in the central thermoregulatory pathway under warm
ambient and general anesthesia. (a) Ambient warmth activates the LPBd—MnPO pathway, subsequently activating TRPV4 located in the
synaptic terminals of the MnPO and causing an influx of cations to contribute to the glutamate release from these neurons. Then the
postsynaptic GABAergic MPA neurons are activated (indicated by “plus sign” signal), thus inhibiting the neurons in caudal regions
(indicated by “minus sign” signal) to cause a reduction in heat conservation and production. Alternatively, TRPV4 may present in the
astrocytes and regulate these thermoregulatory responses. (b) Under sedation or general anesthesia, the POA as well as other possible central
thermoregulatory locations is activated by general anesthetics, TRPV4 or other possible TRP channels, such as heat-activated TRPV1 and
cold-activated TRPMS, may be the target for general anesthetics. Similar as the procedures represented above, general anesthetics may
activate the heat-activated TRP channels or inhibit the cold-activated TRP channels (not shown in this model), thereby causing hypothermia.
LPBd, the dorsal part of lateral parabrachial nucleus; Glu, glutamate; Glu-R, glutamate receptor; GABA-R, GABA receptor. (Adapted from
[74]). (4 higher resolution / colour version of this figure is available in the electronic copy of the article).

2.1.3. TRPV3 and TRPV4

The activation of TRPV3 from different species sources
by innocuous warmth [64-66], combined with the presence
of impaired thermo-sensation in TRPV3-KO mice [67],
provides evidence for the role of TRPV3 in peripheral
temperature sensation. The expression of TRPV3 in
peripheral locations (especially the skin keratinocytes) [38,
64] and central locations [38, 66] has been confirmed.
However, studies on the central thermoregulatory role of
TRPV3, if possible, remain scarce. A selective TRPV3
agonist, incensole acetate, is found to have anxiolytic effects
in the elevated plus-maze and antidepressant-like effects in
the forced swim test, effects that are absent in TRPV3-KO
mice [68]. It has been proposed that the serotonergic (5-HT)
neurons in the interfascicular part of the dorsal raphe nucleus
(DRI) can regulate emotional behavior through
thermosensitive TRPV3 and TRPV4 [69]. Given that the
dorsal raphe nucleus (DRN) is important in modulating
Tcore [34] (Table 1), TRPV3 and TRPV4 might act in the
CNCs-Tcore at the level of the DRN.

Previous studies have demonstrated that TRPV4 acts as a
warm sensor in the periphery [70-72], and the presence of
TRPV4 expression in the POA has been confirmed by
immunohistochemistry [73], especially in the MPA and

MnPO [70]. Microinjection of TRPV4 agonist into the POA
can lower Tcore of rats, while microinjection of TRPV4
antagonist into that can increase Tcore [73]. Similarly,
microinjection of the TRPV4 antagonist into the MPA leads
to elevated Tcore in rats in warm environments, and the
possible role of TRPV4+ POA neurons in the CNCs-Tcore is
proposed: under warm conditions, TRPV4, located in the
synaptic terminals of glutamatergic MnPO neurons con-
nected to MPA, is activated, which subsequently activates
the postsynaptic GABAergic MPA neurons to inhibit the
caudal region neurons, thereby reducing the heat con-
servation and production; alternatively, blocking TRPV4 in
the presynaptic glutamatergic MnPO neurons has the
opposite effect, leading to an increase in heat conservation
and production [74] (Fig. 1a).

2.1.4. TRPM2

TRPM2 has been shown to play a role in peripheral
thermo-sensation [75]. Chemogenetic activation or inhibition
of the POA neurons that express TRPM2 can decrease or
increase body temperature, respectively. Moreover, chemo-
genetically activating the Vesicular glutamate transporter 2
positive (Vglut2+) neurons, rather than the Vesicular GABA
transporter positive (Vgat+) neurons in the POA, can
recapitulate the hypothermia induced by activating TRPM2+
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Table 1.  Central locations or pathways regulating core body temperature or(and) sleep-wakefulness states.

Experimental
Thermoregulatory Responses Sleep-wakefulness States
Manipulations
Cell
i Opto-
Locations/ Type /Chp Neural c Tail BAT NREM REM | Wakeful | Food Other Refs.
emo- ivi ore ai
Pathways Marker " Other Activity ) Locomo Total ness Intake | Changes
genetic Temper | Vasodil | Temper Total
Handlings# tion Time Total
Manipula ature ation ature Time (s)
. (s) Time (s)
tions
POA TRPM2 | hM3Dq Inactive T | 1 l N/A N/A N/A N/A [37]
POA TRPM2 hM4Di Inactive l 1 ND ND N/A N/A N/A N/A [37]
POA Vglut2 hM3Dq Inactive 1 1 N/A N/A N/A N/A N/A N/A [37]
POA Vgat hM3Dq Inactive 1 ND N/A N/A N/A N/A N/A N/A [37]
POA Ptgds hM3Dq Inactive 1 1 N/A N/A N/A N/A N/A N/A [99]
POA Ptgds hM3Dq Active T ND N/A N/A N/A N/A N/A N/A [99]
POA Ptgds hM4Di Inactive l 1 N/A N/A N/A N/A N/A N/A [99]
POA Ptgds hM4Di Active l ND N/A N/A N/A N/A N/A N/A [99]
vLPO Vgat ChR No 1 | N/A N/A | N/A N/A N/A [95]
hGtAC
vLPO Vgat RI No ! 1 N/A N/A T N/A N/A N/A [95]
vLPO Vglut2 ChR No il | N/A N/A | N/A N/A N/A [95]
vLPO Vglut2 hM3Dq No il | N/A N/A N/A N/A N/A N/A [95]
Tamb=22°C,
VLPO Gal ChR " il ND N/A N/A N/A 1 ND N/A N/A N/A [16]
active
Tamb=22°C,
VLPO Gal ArCH active and l ND N/A N/A N/A | ND N/A N/A N/A [16]
inactive
Tamb=22°C,
VLPO Gal hM3Dq active and il | N/A N/A N/A 1 l N/A N/A N/A [16]
inactive
Tamb=29°C,
VLPO Gal hM3Dq Givet il | N/A N/A N/A 1 1 N/A N/A N/A [16]
active'
Tamb=36°C,
VLPO Gal hM3Dq fivet il ND N/A N/A N/A 1 l N/A N/A N/A [16]
active'
Tamb=29°C,
VLPO Gal hM3Dq L il | N/A N/A N/A N/A ™" N/A N/A N/A [16]
inactive”
Tamb=22°C,
VLPO Gal hM3Dq inactive, cage T SIH | N/A N/A N/A I ND SIW | N/A N/A [16]
exchange”
LPO Gal hM3Dq active il | N/A N/A N/A 1 ND ! N/A N/A [17]
MPO Vgat ChR no il ND N/A N/A ND N/A N/A N/A [95]
MnPO, postural
LepRb hM3Dq inactive 1 1 N/A N/A | N/A N/A [87]
VMPO extension?
MnPO, . i
VMPO Vglut2 hM3Dq inactive 1 | N/A N/A N/A N/A N/A N/A [87]

(Table 1) contd....
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Experimental
Thermoregulatory Responses Sleep-wakefulness States
Manipulations
Cell
;i Opto-
Locations/ Type /Chp Neural c Tai BAT NREM REM | Wakeful | Food Other Refs.
emo- ivi ore a
Pathways Marker " Other Activity 1 . Locomo Total ness Intake | Changes
genetic Temper | Vasodil | Temper Total
Handlings# tion Time Total
Manipula ature ation ature Time (s)
. (s) Time (s)
tions
MnPO, . .
Vgat hM3Dq inactive 1 ND N/A N/A N/A N/A N/A N/A [87]
VMPO
cold
MnPO, seeking?,
PACAP | SSFO no 1 1 1 1 N/A N/A N/A [85]
VMPO nest
building |
cold
MnPO, seeking,
BDNF SSFO no 1 1 1 1 N/A N/A N/A [85]
VMPO nest
building |
Tamb=21°C, HR{|,
MnPO* Vglut2 ChR active and 1 1 1 N/A N/A ! ND 1 N/A | drinkingin | [86]
inactive subsett
Tamb=31°C,
MnPO Vglut2 ChR active and 1 | 1 N/A N/A N/A N/A HR| [86]
inactive”
MnPO, Tamb=22°C,
Nosl hM3Dq ] 1 1 N/A N/A N/A 1 N/A 1 N/A N/A [18]
MPO active
MnPO, Tamb=22°C,
Vgat hM3Dq 1 ND N/A N/A N/A 1 N/A 1 N/A N/A [18]
MPO active
hibern
ation-
| l i A hibernation-like state with VO,|,
AVPe/MPA QRFP hM3Dq Tamb=22°C 1 N/A like . [93]
(>48h) (>48h) . EEG amplitude| HR|,RR|
immob
ility
AVPe/MPA QRFP hM4Di Tamb=22°C l N/A N/A N/A N/A N/A N/A N/A [93]
W30 (=30 | (=30
AVPe/MPA QRFP SSFO Tamb=22°C T . . . N/A N/A N/A N/A [93]
min) min) min)
POA—D Ve
i VLPOV#! ChR no 1 1 N/A N/A 1 N/A N/A N/A [95]
POA—D | POA™C cold
" ChR no 1 1 ND 1 N/A N/A N/A [85]
MH seeking ND
AVPe/MP AVPe/
SSFO Tamb=22°C T l I ! N/A N/A N/A N/A [93]
A—DMH MPA Q
AVPe/MP AVPe/ 1
SSFO Tamb=22°C T l I N/A N/A N/A N/A [93]
A—RPa MPA Q (subtle)
DMH ChAT ChR no 1 1 N/A 1 N/A N/A N/A N/A [106]
DMH ChAT ArCH no 1 1 N/A 1 N/A N/A N/A N/A [106]
DMH LepRb | hM3Dgq no 1 1 N/A 1 1 N/A N/A N/A [107]

(Table 1) contd....
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Experimental
Thermoregulatory Responses Sleep-wakefulness States
Manipulations
Cell
;i Opto-
Locations/ Type /Chp Neural c Tai BAT NREM REM | Wakeful | Food Other Refs.
emo- ivi ore ai
Pathways Marker ' Other Activity ) Locomo Total ness Intake | Changes
genetic Temper | Vasodil | Temper Total
Handlings# tion Time Total
Manipula ature ation ature Time (s)
. (s) Time (s)
tions
DMH Vglut2 ChR no il 1 N/A T N/A N/A N/A N/A [85]
DMH Vglut2 hM3Dq no il 1 N/A il N/A N/A N/A N/A [85]
DMH Vglut2 hM3Dq no T 1 N/A N/A 1 N/A N/A N/A [95]
hGtAC
DMH Vglut2 RI no l | N/A N/A | N/A N/A N/A [95]
DHA Vglut2 hGlyR no l | N/A N/A ND N/A N/A N/A [101]
cage SIL
DHA Vglut2 hGlyR b ! SIH | N/A N/A N/A N/A N/A [101]
exchange ND
DHA Vglut2 hM3Dq no T 1 1 il 1 N/A N/A N/A [101]
cage SIH SIL
DHA Vglut2 hM3Dq b il | il N/A N/A N/A [101]
exchange ND ND
DMH Vgat ChR no il 1 N/A N/A 1 N/A N/A N/A [95]
DMH Vgat hM3Dq no T 1 N/A N/A 1 N/A N/A N/A [95]
hGtAC
DMH Vgat RI no l | N/A N/A | N/A N/A N/A [95]
DMH Brs3 hM3Dq Tamb=22°C il 1 N/A N/A ND N/A ND TEE?, BGt | [94]
DMH Brs3 hM4Di Tamb=22°C l | N/A N/A ND N/A N/A TEE| [94]
. ) LIL
DMH Brs3 hM4Di LPS® l LIH | N/A N/A ND N/A N/A N/A [94]
. cage SIL
DMH Brs3 hM4Di b l SIH | N/A N/A N/A N/A N/A [94]
exchange ND
DMH Brs3 hM4Di Tamb=34°C* ! ND N/A N/A ND N/A N/A N/A [94]
non-
DMH ChR Tamb=22°C il " N/A T 1 N/A N/A N/A [94]
specific
HRT,
DMH Brs3 ChR Tamb=22°C T 1 N/A T ND N/A N/A [94]
MAP?
non-
DMH Brs3 ChR Tamb=22°C il 1 N/A il 1 N/A N/A N/A [94]
IS
DMH—R | DMH™®
P s ChR Tamb=22°C il 1 N/A N/A ND N/A N/A N/A [94]
a
DMH-r non- o HR1,
ChR inactive T ND N/A 1 N/A N/A N/A [57]
MR specific MAP?T
DMH—P non-
hM3Dq inactive 1 1 1 N/A 1 N/A N/A N/A [102]
AG specific
DHA"¢
DHA—RPa o ArCH no ! l N/A N/A N/A N/A N/A N/A [101]

(Table 1) contd....
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Experimental
Thermoregulatory Responses Sleep-wakefulness States
Manipulations
Cell
;i Opto-
Locations/ Type /Chp Neural c Tai BAT NREM REM | Wakeful | Food Other Refs.
emo- Vi ore ai
Pathways Marker ' Other Activity ) Locomo Total ness Intake | Changes
genetic Temper | Vasodil | Temper Total
Handlings# tion Time Total
Manipula ature ation ature Time (s)
. (s) Time (s)
tions
DHAY¢ cage
DHA—RPa " ArCH b l SIH | N/A N/A N/A N/A N/A N/A [101]
e exchange
TEE ND,
PVH Brs3 hM3Dq no T ND N/A N/A ND N/A l [94]
BG ND
PVH Brs3 hM4Di inactive l ND N/A N/A ND N/A il N/A [94]
LH Vglut2 hM3Dq no il N/A N/A T N/A N/A N/A N/A [120]
active and
LH MCH hM3Dq . il ND N/A N/A ND ND il * N/A N/A [22]
inactive
ND
N ND . .
. (inacti L alteration of the diurnal
active and . (inactiv o .
LH MCH DTR . . ablation ve), T N/A N/A )1 distributions of REM and l weight| [22]
1nactive €),
(active X wakefulness (inactive)
(active)
)
LH MCH hM3Dq inactive T ND N/A N/A ND ND T ND N/A N/A [20]
Vglut2-
LH KO hM3Dq inactive T ND N/A N/A ND ND T ND N/A N/A [20]
MCH
. . NREM-wake but not REM-
LH Nts ChR inactive 1 1 N/A N/A ND . N/A EMG? [21]
wake transitions
a
a Wakef
. REM
. . potential ulness
LH Nts hM3Dq inactive 1 1 N/A N/A 1 sleep N/A N/A [21]
NREM for 4-
rebou
rebound 6h
nd
LH Nts hM3Dq active T " N/A N/A " ND ND ND N/A N/A [21]
. active and
LH Nts hM4Di . l ND N/A N/A ND ND ND ND N/A N/A [21]
inactive
. inactive, cage
LH Nts hM4Di R ! SIH | N/A N/A SIL | 1 T SIW | N/A N/A [21]
change
. active, acute
LH Nts hM4Di 4 ! FIH | N/A N/A FIL t | ND FIW 1 N/A N/A [21]
fasting
LH QRFP hM3Dq Tamb=22°C il N/A N/A N/A N/A N/A N/A N/A [93]
VO 1,
subcutaneo
ARH Rip-Cre hM3Dq no 1 1 N/A 1 N/A N/A ND us flank [111]
temperature
ND
Vgat
ARH KO hM3Dq no il 1 N/A ND N/A N/A ND VO, ND | [I11]

(Table 1) contd....
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Experimental
Thermoregulatory Responses Sleep-wakefulness States
Manipulations
Cell
: Opto-
Locations/ Type /Chp Neural c Tai BAT NREM REM | Wakeful | Food Other Refs.
emo- ivi ore ai
Pathways Marker ' Other Activity ) Locomo Total ness Intake | Changes
genetic Temper | Vasodil | Temper Total
Handlings# tion Time Total
Manipula ature ation ature Time (s)
. (s) Time (s)
tions
Rip-Cre
ARH + Vgat hM3Dq no T I N/A ND N/A N/A ND VO, ND | [I11]
KO
ARH Kissl hM3Dq active, female 1 1 1 N/A | N/A N/A N/A [115]
ARH Kissl hM3Dq active, male 1 | 1 N/A N/A N/A N/A N/A [115]
ARH Kissl ChR active, female 1 N/A 1 N/A N/A N/A N/A N/A [115]
ARH Kissl ChR active, male 1 N/A 1 N/A N/A N/A N/A N/A [115]
1
. active, female, (more
ARH Kissl hM3Dq . T N/A B N/A N/A N/A N/A N/A [115]
ovariectomy sensitl
ve)
active, female,
. NKzR
ARH Kissl hM3Dq o T N/A l N/A N/A N/A N/A N/A [115]
antagonist into
the POA
ARH—PO | ARHM® .
. ChR active, female 1 1 1 N/A | N/A N/A N/A [115]
A
ARH—PV | ARHM™ L
c ChR no (in vitro) 1 N/A N/A N/A IPSCs [111]
H re
ARH—PV | ARH"t L
. ChR no (in vitro) 1 N/A N/A N/A No IPSCs | [111]
H
NTS—RP Ve L
NTSVE" ChR no (in vitro) 1 N/A N/A N/A IPSCs [111]
a
DRN Vgat hM3Dq inactive 1 | ND l | N/A N/A TEE] [34]
Inactive+ ISO
DRN Vgat hM3Dq T l ND ! - N/A N/A N/A [34]
(1-1.25%)
DRN Vgat hM4Di inactive l I ND ND I N/A N/A TEE? [34]
DRN—RP | DRN'# o
. ChR inactive 1 1 N/A l N/A N/A ND N/A [34]
a
DRN—BN | DRN'# o
ST . ChR inactive 1 1 N/A l N/A N/A 1 N/A [34]
DRN—D | DRN'® L
MH . ChR inactive 1 1 N/A l N/A N/A 1 N/A [34]
DRN—M | DRN"# o
PO . ChR inactive 1 1 N/A l N/A N/A ND N/A [34]
DRN—BN | DRN'# ) o (transi
. hM4Di inactive l N/A N/A N/A N/A N/A N/A [34]
ST ently)
DRN—D | DRN'# ) o (transi
. hM4Di inactive l N/A N/A N/A N/A N/A N/A [34]
MH ently)

(Table 1) contd...
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Experimental
Thermoregulatory Responses Sleep-wakefulness States
Manipulations
Cell
;i Opto-
Locations/ Type /Chp Neural c Tai BAT NREM REM | Wakeful | Food Other Refs.
emo- ivi ore ai
Pathways Marker ' Other Activity ) Locomo Total ness Intake | Changes
genetic Temper | Vasodil | Temper Total
Handlings# tion Time Total
Manipula ature ation ature Time (s)
. (s) Time (s)
tions
active and X .
DRN SERT hM3Dq . . 1 ND N/A N/A * 1 1 1 N/A anxiolysis | [127]
inactive
IRt/PCRt Gad2 hM3Dq no il | N/A l N/A N/A N/A HR| [132]
Glutam footshock SIH
BLA . NpHR l N/A N/A N/A ND T N/A N/A N/A [152]
atergic stress ND
ipRGCs Brn3b hM3Dq active 1 1 N/A N/A N/A N/A N/A N/A [161]

Abbreviations: POA, the preoptic area; vLPO, the ventral part of the lateral preoptic nucleus; VLPO, the ventrolateral preoptic nucleus; LPO, the lateral preoptic area; MPO/MPA,
the medial preoptic area; MnPO, the median preoptic nucleus; VMPO, the ventromedial preoptic nucleus; AVPe, the anteroventral periventricular nucleus; DMH, the dorsomedial
hypothalamus; dDMH, the dorsal part of the dorsomedial hypothalamus; DHA, the dorsal hypothalamic area; RPa, the raphe pallidus; rRPa, the rostral raphe pallidus; rMR, the rostral
medullary raphe area; PAG, the periaqueductal gray; PVH, the paraventricular nucleus of the hypothalamus; LH, the lateral hypothalamus;, ARH, the arcuate nucleus of the
hypothalamus; NTS, the nucleus of the solitary tract; DRN, the dorsal raphe nucleus; BNST, the bed nucleus of the stria terminalis; IRt/PCRt, the intermediate and parvicellular
reticular nuclei; BLA, the basolateral nucleus of the amygdala; ipRGCs, the intrinsically photosensitive retinal ganglion cells; Ptgds, the gene that encodes lipocalin-type
prostaglandin-D synthase; Gal, galanin; LepRb, leptin receptors; PACAP, pituitary adenylate cyclase-activating polypeptide; BDNF, brain-derived neurotrophic factor; Nosl, nitric
oxide synthase 1; QRFP, pyroglutamylated RFamide peptide; Q, QRFP neurons; Brs3, Bombesin-like receptor 3; MCH, melanin-concentrating hormone; Nts, neurotensin; Rip-Cre,
the rat insulin-2 promoter-Cre recombinase; Kiss1, kisspeptin/ neurokinin B; NKgR, neurokinin B receptor; ISO, isoflurane; SERT, the serotonin transporter; Brn3b, a transcription
factor expressed in the M1 subtype of ipRGCs;

N/A, not assessed; ND, no difference; BAT, brown adipose tissue; NREM, non-rapid eye movement sleep; REM, rapid eye movement sleep; Tamb, ambient temperature;
active/inactive, during the animals’ active/inactive cycles; HR, heart rate; VO,, oxygen consumption; RR, respiratory rate; TEE, total energy expenditure; BG, blood glucose; MAP,
mean arterial pressure; EMG, electromyography; IPSCs, inhibitory postsynaptic currents.

Remarks:

#: for this column, “no” means under normal ambient temperature (about 22°C) with the experimental time (during whether the animals’ active or inactive cycles) unspecified; the
normal ambient temperature is not specified unless the study involves different ambient temperature;

A: | for 4h, then 1 for the next 12h| until fully recovered;

*: slightly, no statistical difference;

*: these groups are compared to the control group (under the same ambient temperature but without optogenetic or chemogenetic manipulations), respectively;

®: these groups were compared to the control group (cage exchange but without optogenetic or chemogenetic manipulations), respectively, and the outcome was defined as whether
the stress-induced hyperthermia (SIH), stress-induced locomotion (SIL) or stress-induced wakefulness (SIW) was changed;

“: this group was compared to the control group (LPS administration but without chemogenetic manipulation), and the outcome was defined as whether LPS-induced hyperthermia
(LIH) or LPS-induced locomotion (LIL) was changed;

4: this group was compared to the control group (fasting but without chemogenetic manipulation), and the outcome was defined as whether fasting-induced hyperthermia (FIH),
fasting-induced locomotion (FIL) or fasting-induced wakefulness (FIW) was changed;

¢ for this study, there was a weak correlation between the hypothermic mice and the drinking-increasing mice, while the wakefulness-promoting mice showed no correlation to the
hypothermic mice; the increase of drinking was more during active cycles.

POA neurons, and activate the Corticotropin-releasing
hormone positive (Crh+) PVH neurons, but not Thyrotropin-
releasing hormone positive (Trh+) or magnocellular arginine
vasopressin positive (AVP+) and oxytocint PVH neurons
[37] (Table 1). Crh+ PVH neurons have been demonstrated
to be part of the hypothalamic-pituitary-adrenal (HPA) stress
response system [56]. Conclusively, TRPM2 may play a role
in the CNCs-Tcore: excessive febrile response activates
TRPM2+/Vglut2+ neurons in the POA and promotes the
release of glutamate to the Crh+ PVH neurons, thus leading
to increased heat loss and hypothermia.

2.1.5. TRPMS

TRPMS is a major peripheral cold sensor, and its
important role in thermoregulation has been summarized in
some reviews [3, 4]. Intravenous administration of TRPMS8
antagonist is more effective in decreasing body temperature
in rats than intrathecal or intracerebroventricular admin-
istration, which tends to indicate the peripheral thermo-
regulatory effects of TRPMS [76]. Given that the expression
level of TRPMS8 in the brain is extremely low [38], it is
proposed that the central thermoregulation effects of TRPMS
might be dissembled. Recently, the immunohistochemistry

of transgenic TRPMS mice and rats shows that in the
hypothalamus of the rodents, almost all TRPM&+ neurons
are concentrated in the POA, with their projections widely
distributed in other brain regions, such as the MnPO, LH,
PVH, the dorsomedial hypothalamus (DMH), lateral
habenula (LHb), DRN and caudal lateral and ventrolateral
periaqueductal gray (cIPAG and vIPAG) [77], which suggests
a potential role for central TRPM8+ neurons in thermo-
regulation, as well as in other non-thermal homeostatic
functions, of rodents.

The TRPMS8-KO mice have lower Tcore, an increase in
tail heat loss, delayed obesity and metabolic disorders upon
mild cooling, which reveals that TRPMS plays an important
role not only in thermoregulation, but also in the regulation
of ingestive behavior and metabolic fuel selection during
mild cooling [78]. This finding can hardly be explained by
the peripheral effects of TRPMS; rather, it is more
convincing that it is caused by the dysfunction of TRPMS in
some central locations, such as the LH, a potential
orchestrator of Tcore regulation [79-81] and energy
metabolism [1, 82-84]. Given that the LH may receive
projections from TRPMS8+ POA neurons [77], it seems
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reasonable to make an infer: TRPM8+ POA neurons receive
signals from changes in Tcore and energy metabolism and
then transmit them to the LH to regulate Tcore and energy
metabolism.

It is precise because of the complexity of the TRP
channels’ functions in the thermoregulatory mechanisms that
uncovering their roles in the CNCs-Tcore becomes more
than imperative. With their possible expression in some
thermoregulatory locations been depicted (Fig. 2), it may
offer new ideas for further study.

2.2. Thermoregulatory Neuronal Populations in the POA

The key role of the POA as the primary integrative site in
the CNCs-Tcore has been elucidated in several reviews [3,
4], here we do not give unnecessary details about it but focus
on recent progress in the identification of different cell types
in the POA, which are specifically involved in thermo-
regulation.

2.2.1. Glutamatergic and GABAergic Neurons in the POA

A warm-sensitive neuronal subpopulation in the anterior
ventromedial preoptic area (VMPO) and MnPO co-
expressed the neuropeptides pituitary adenylate cyclase-
activating  polypeptide (PACAP) and brain-derived
neurotrophic factor (BDNF) (MnPOPACAP/BDI\IF neurons) is
shown to induce hypothermia when optogenetic activated
[85] (Table 1). Approximately two-thirds of MnPQFPACAF/BDNE
neurons express GAD2, and they are consequently supposed
to be GABAergic [85]. However, there are studies revealing
that optogenetic ~or chemogenetic stimulation of
glutamatergic (Vglut2+) POA neurons [86], rather than
GABAergic (Vgatt) POA neurons, induces hypothermia
[18, 19, 37, 87] (Tables 1 and 2). Consistently, MnPO
neurons that express the EP3 prostaglandin receptor (EP3R)
and mediate LPS-induced fever responses are Vglut2+, not
Vgat+ [88]. It is also reported that many neurons co-express
GAD2 with Vglut2, rather than Vgat, in the POA [89, 90], as
well as other regions of the brain [90-92]. Based on the
results above, it has been proposed that the MnPQPACAPBPNF
neurons that express GAD?2 in the research of Tan et al. [85]
are probably part of the Vglut2+ MnPO neurons that
participate in fever responses [88]. Recently, neurons that
express pyroglutamylated RFamide peptide (QRFP) in the
anteroventral periventricular nucleus (AVPe), MPA and
periventricular nucleus (AVPe/MPA Q neurons) are reported
to induce a hibernation-like state in rodents [93]. Many
AVPe/MPA QNneurons constitute a unique subpopulation of
MnPOPACAPBINE heurons, and AVPe/MPA Q neurons
express both Vglut2 and Vgat [93], suggesting that
MnPOPACAPBPNE heyrons express both Vglut2 and Vgat.

Specific ablation of either Vglut2+ or Vgat+ AVPe/MPA
Q neurons attenuated the hibernation-like hypothermia,
suggesting that the hibernation-like state is a synergistic
effect of both Vglut2+ and Vgat+ AVPe/MPA Q neurons
[93]. Vgat+ AVPe/MPA Q neurons may promote tail
vasodilation by inhibiting the circuit between Vglut2+
neurons in the dorsal part of the DMH (dDMH) and the
raphe pallidus (RPa), while Vglut2+ AVPe/MPA Q neurons
may inhibit thermogenesis by activating another neuronal
subpopulation in the DMH [93]. Consistently, genetic

Wu et al.

ablation of either Vglut2+ or Vgat+ MnPO neurons has an
effect on thermoregulation during behavioral, warm or cold
stress [88]. Likewise, it is also proposed that both Vglut2+
and Vgat+ POA neurons send thermoregulatory projections
to a specific neuronal subpopulation in the dDMH/the dorsal
hypothalamic area (DHA) that connects to the RPa [94].
Based on the results above, it is time to discard our
“glutamatergic or GABAergic” single-action model.

Additionally, in the ventral part of the lateral preoptic
nucleus (VLPO), optogenetic activation of either Vglut2+ or
Vgat+ neurons causes hypothermia, with the Vgat+ vLPO
neurons supposed to receive afferent signals from other parts
of the POA and project to the dDMH/DHA [95] (Table 1).
Only by lesions of both the MnPO and dorsolateral preoptic
(DLPO) neurons, but not either alone, can cause
hyperthermia [96], the DLPO appears to be in the location of
the vLPO. Taken together, it is shown that the POA cannot
be regarded as a whole part since there are different neuronal
populations in the intra-POA circuitry, which has also been
outlined elsewhere [3].

Another concerning is that optogenetic and chemogenetic
manipulations per se may affect the results. Firstly, it’s hard
to control the injection sites and the diffusion of the viral
vectors in optogenetic and chemogenetic experiments, which
could have an effect on the degree of thermoregulatory
responses. As has been shown, the injection sites that caused
the greatest fall in temperature were confined to the core and
dorsal extended of the ventrolateral preoptic nucleus
(VLPO), specifically the location that contains vLPO, with
little or no involvement of the medial, median, or
periventricular preoptic areas [16]. Moreover, it is reported
that optogenetic and chemogenetic manipulations cause
different thermoregulatory responses, possibly due to the
differences in the firing rate/pattern [16] or in the sensitivity
[93] of neurons under different kinds of manipulations
(Table 1). It seems particularly important to identify these
confounding factors brought by optogenetic and
chemogenetic manipulations per se in further studies.

2.2.2. Other Thermoregulatory Neuronal Populations in
the POA

Apart from glutamatergic and GABAergic POA neurons,
many studies have identified other neuronal subpopulations
that regulate thermogenesis using optogenetic and(or)
chemogenetic manipulations.

It has been found that the Vglut2+ neurons in the MnPO
and VLPO highly colocalize with PACAP and project
directly to the RPa [88], which makes a hint that, apart from
the MnPO"“APBPF heurons, the Vglut2+ VLPOPACAP
neurons might synergic contribute to the warmth-induced
hypothermia. Chemogenetic stimulation of MnPO neurons
that express Leptin receptors (LepRb) is sufficient to induce
hypothermia, and it is possible that MnPO™**" neurons are
glutamatergic [87] (Table 1). The neuronal nitric oxide
synthase (NOS1)-positive glutamatergic neurons in the MnPO-
MPO are activated by ambient warmth, and chemogenetic
activation of them can reduce the Tcore [18] (Table 1).
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Fig. (2). A schematic of the specific central thermoregulatory neuronal populations and neural pathways. The signals of ambient
temperature changes, energy homeostasis changes and stress are input from the LPB, ARH and DMH/DHA, respectively. The POA is heat-
activated and the dDMH/DHA is cold-activated. The glutamatergic MnPO neurons reported to co-express some specific cell type markers
(presented in the yellow box) send projections to some downstream locations, including the LPO, dDMH/DHA, rRPa/PaPy and PVH, while
the GABAergic MnPO neurons locally inhibit the MPO and LPO. The Brs3+ dDMH/DHA neurons, which receive inputs from the POA
(uncharted), vDMH, ARH, BNST, PVT, NAc and RIP/RMg, are glutamatergic and project to the rRPa/PaPy, together with the
dDMH/DHA™?®*_, ;R Pa/PaPy—sympathetic preganglionic neurons (SPN), dDMH/DHA"®—rRPa/PaPy’ " —spinal intermediolateral
nucleus (IML) and dDMH/DHA—PAG pathways. The rRPa/PaPy may also receive projections from LPOYE"™? neurons (uncharted) and the
LHb%B* innervating VTA neurons which are proposed to be dopaminergic or serotonergic. The metabolism-related ARH send inhibitory
projections to the LPB, POA and PVH, thus modulating the canonical thermoregulatory circuits and regulating the neuroendocrine outputs
from Crh+ PVHmpv neurons to the orexin neurons or NTS“BA neurons. PVH™ neurons project to downstream NTS, LC and VLM.
PVHmpd®™F neurons, receiving projections from ARH*$** and ARH"*™ neurons, directly project to the SPN. The PVH is also regulated by
the stress signals input from the vVDMH. The IRt/PCRt%*®* neurons in the downstream hypothalamic neuropeptide Y (NPY)-related pathways
inhibit the rRPa/PaPy and subsequently the BAT thermogenesis. In the LH, receiving projections from TRPM8&+ POA neurons, the orexin
neurons project to the rRPa/PaPy and the Bdnf-el glutamatergic neurons directly innervate the SPN. The DRN is another important
thermoregulatory location with GABAergic projections to the MPO, dDMH/DHA, rRPa/PaPy and BNST. The DRN"'T neurons proposed to
co-express TRPV3/TRPV4 may also be involved in thermoregulation. All these pathways cooperatively regulate the physiological thermo-
responses which especially characterized by the brown adipose tissue (BAT) thermogenesis and tail vasomotor responses. Tcore, core body
temperature; the question mark in the yellow box means that cell type marker is uncertain. (4 higher resolution / colour version of this figure
is available in the electronic copy of the article).
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Chemogenetic activation of galanin VLPO (VLPO%)
neurons markedly reduces Tcore during both the light and
dark periods [16] (Table 1). Similarly, chemogenetic
activation of galanin neurons in the lateral preoptic (LPO)
also reduces Tcore, and chronic ablation of LPO®" neurons
largely elevates Tcore [17] (Table 1). But here comes the
question again, although it has been found that VLPO
neurons mainly co-express GAD [97], is there any
possibility that VLPO® neurons are glutamatergic? And
taking the injection sites into consideration, where is the
specific POA division that the thermoregulatory galanin
neurons lie in, more specifically, the NREM sleep-promoting
VLPO [16, 17, 97] (Table 1) or the thermoregulatory vLPO?

Ptgds, which encodes lipocalin-type prostaglandin-D
synthase (L-PTGDS) that generates prostaglandin D2
(PGD;) [98], is a genetic marker for thermosensitive POA
neurons [99]. Chemogenetic manipulations on the PTGDS-
Cre transgenic mice in the daytime, but not the nighttime,
cause changes in body temperature [99] (Table 1). The result
reveals that POA neurons that express Ptgds are involved in
thermoregulation, and it is possible that POA™®* neurons
also receive circadian inputs from the SCN, which functions
as the central circadian clock in the anterior hypothalamus
[100]. A caveat here is that the circadian regulation of body
temperature is unavoidable that may interfere with the results
during optogenetic or chemogenetic manipulations on
CNCs-Tcore. The possible correlation of the SCN and
CNCs-Tcore will be reviewed later.

2.3. Central Thermoregulatory Locations Other Than the
POA

Although the POA—dDMH/DHA—1RPa pathway has
been recognized as the most canonical part of the CNCs-
Tcore [3, 4], there still exist other locations that play an
important role. In this part, we focus on some newly
identified neuronal populations and locations in the CNCs-

Tcore, mostly demonstrated by optogenetic and(or)
chemogenetic manipulations.
2.3.1. DMH/DHA and RPa

The dDMH/DHA plays an important role in
thermore(gulation by receiving afferent signals from

MnPOPACAPEDNE heurons [85], vVLPOY#" neurons [95] and
AVPe/MPA Q neurons [93] and making efferent projections
to the RPa [94, 101], rostral medullary raphe area (rMR) [57]
and PAG [102]. Using optogenetic and chemogenetic
manipulations, it is demonstrated that both dDMH/DHA "€"?
neurons and dDMH/DHA"®" neurons function in CNCs-
Tcore [85, 95, 101] (Table 1).

It has been found that chemogenetic activation of the
DHAY#"? neurons can replicate a hyperthermic response
with the amplitude and duration of stress-induced
hyperthermia (SIH), accompanying with increased BAT
thermogenesis and reflex tail vasodilation. However,
chemogenetic inhibition of the DHAY®"? neurons or
optogenetic inhibition of the DHA#">—RPa terminals is
only able to reduce SIH by about one-third [101] (Table 1).
It is known that activation of BAT and cutaneous
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vasoconstriction (CVC) is ordinarily coordinated during
stressful conditions [103], and vasoconstriction is thought to
be mediated by RPa"®"" neurons [104, 105]. Conclusively,
there are supposed to be two groups of RPa"#"" neurons: the
BAT-thermogenesis-activating one is innervated by the
DHAY#"? neurons, while another tail-vasoconstriction-
promoting one receives no DHAY¥"? input [101].

Optogenetic stimulation of cholinergic DMH (DMHACh)

neurons, which are excited by warm ambient temperature (36
C), decreases BAT activity with reduced Tcore, possibly
through activation of M2 muscarinic ACh receptors
(mAChRs) on serotonergic RPa (RPa™™T) neurons [106]
(Table 1), giving evidence of the DMH*“—>Rpa™™’
pathway mediating heat-defense responses during warm
ambient temperature.

Chemogenetic activation of dDMH/DHA"" neurons
increases Tcore, BAT thermogenesis, and locomotor activity
[107] (Table 1). Supposed to be overlapped with dDMH/
DHA™® neurons, the dDMH/DHA neurons that express
Bombesin-like receptor 3 (dDMH/DHAP™ neurons) have
been identified to play a necessary role in the regulation of
Tcore and energy expenditure [94] (Table 1). Optogenetic
activation of the dDMH/DHAP™— RPa pathway is sufficient
to increase Tcore, most likely through glutamatergic
projections [94] (Table 1). However, it is also clarified that
the dDMH/DHA"P® neurons contain both glutamatergic
and GABAergic subpopulations, with the majority bein
glutamatergic [95]. It seems that the dDMH/DHA"“®
neurons are more than just the dDMH/DHAP™ neurons,
which needs further demonstration.

It is found that the LPB can directly input to the
dDMH/DHA®™  neurons projecting to the RPa
(dDMH/DHAP™ —RPa neurons) [94], independent of the
LPB—POA pathway [3, 4]. It’s reported that both
dDMH/DHA ¥ neurons and dDMH/DHA"®" neurons are
cold-activated, possibly resulting from periphery sensory
input [95]. The LPB—dDMH/DHA pathway possibly exists
to work parallelly with the LPB—POA pathway as well as
receiving input from the latter simultaneously. It is also
found that the raphe interpositus nucleus and the ra]z)he
magnus (RIP/RMg) neurons project to dDMH/DHAP™ —
RPa neurons [94], while the RIP/RMg—dDMH/DHA
pathway has not been previously reported [108]. The RMg
has also been identified to innervate BAT [109], and spinally
projecting neurons of the RMg are considered to be part of
the BAT sympathetic premotor neurons (SPN) [3]. The
RIP/RMg have been demonstrated to be part of the CNCs-
Tcore whether by the direct RMg—SPN pathway or by the
indirect RIP/RMg—dDMH/DHA®™—RPa pathway, while
the specific neuronal population(s) and the afferent
pathway(s) of the RIP/RMg remain to be further established.

In addition, it is reported that substantial numbers of
neurons in the ventral part of the DMH (vDMH) and
posterior DMH send inputs to the dDMH/DHAP™—RPa
neurons, which suggests an intra-DMH/DHA circuitry
[94]. As has been proposed, the inhibitory interneurons
in the DMH might innervate the glutamatergic hyperther-
mic neurons in the DHA [88], which gives a direction
for  identifying  the intra-DMH/DHA circuitry.
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2.3.2. PVH and ARH

There are now three divisions of the PVH that form
polysynaptic connections to interscapular BAT in rats: dorsal
medial parvicellular part (PVHmpd), ventral medial
parvicellular part (PVHmpv), and posterior part [109, 110].
It is reported that the RIP-Cre GABAergic neurons in the
arcuate nucleus of the hypothalamus (ARH)—PVHmpv
neurons—GABAergic NTS neurons—RPa neurons———
BAT circuit is required for BAT thermogenesis in response
to high-fat diet ingestion [111] (Table 1), while the BDNF
neurons in the PVMmpd and posterior PVH—spinal
intermediolateral nucleus (IML)—sympathetic ganglion—
BAT circuit drives adaptive thermogenesis in response to
cold exposure [112] (Table 1). It is recently shown that
actin% through the agouti-related peptide (AgRP) expressing
ARH"™® neurons and POMC ARH"" neurons—BDNF
PVH neurons—IML—sympathetic ganglion—>BAT circuit,
chronic leptin treatment of ob/ob mice that have mutations in
the leptin gene, can restore reductions of sympathetic
innervation of BAT and defects in thermogenesis [113].
Taken together, there are now two main circuits linking the
ARH and PVH to BAT thermogenesis: (1) RIP-Cre
GABAergic ARH neurons—PVHmpv neurons—
GABAergic NTS neurons—RPa neurons———BAT circuit;
(2) AgRP ARH""® neurons and POMC ARH"® neurons
—BDNF neurons in the PVMmpd and posterior PVH—IML
—sympathetic ganglion—>BAT circuit.

In the ARH, it has been concluded that the AgRP neurons
have opposite functions against the RIP-Cre neurons, with
the former inhibit energy expenditure and stimulate food
intake, but the latter stimulate energy expenditure and have
no effect on food intake [111] (Table 1). The neuropeptide Y
(NPY) ARH neurons are suggested to stimulate energy
expenditure and reduce the tyrosine hydroxylase (TH)
expression in the PVH with subsequent reduction of TH
expression in the LC, NTS, and VLM [114]. Taken together,
the NPY ARH neurons may overlap with the RIP-Cre
GABAergic ARH neurons [111] and share common
thermoregulatory pathways with the latter, leading to energy
expenditure, BAT thermogenesis and Tcore increase, which
needs to be further demonstrated.

Chemogenetic and optogenetic activation of the ARH
neurons expressing kisspeptin (also known as neurokinin B)
(ARH*™! neurons) causes a reduction of Tcore and evokes a
heat-dissipation response as tail vasodilation in both female
and male mice. And optogenetic stimulation of ARH™'
terminals in the rostral POA, mostly overlapped with the
MnPO, reduces Tcore and promotes tail vasodilation in
female mice, through the neurokinin B receptor (NKgR) in
the POA [115] (Table 1). The result is consistent with the
hypothermia induced by microinjection of NKgR agonist
into the MnPO [116]. The ARH*'->MnPO-NKgR pathway
is possible to be part of the CNCs-Tcore, but the interactions
between this pathway and the reproductive axis remain to be
further established.

The leptin signaling is also proposed to act on the ARH
[2]. Leptin is an important hormone in the co-regulation of
body temperature and energy homeostasis [117, 118], which
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plays an integrative role in the CNCs-Tcore that contains the
ARH, PVH, POA and dDMH/DHA [117] (Fig. 2).

The upstream location(s) of these two PVH circuits,
except the ARH, hasn’t been identified so far. It has been
found that chemogenetic stimulation of the TRPM2+/
Vglut2+ POA neurons can decrease Tcore, partly by
activating Crh+ PVH neurons [37]. Given that administration
of glutamate into the PVH would increase thermogenesis
through BDNF neurons in the PVMmpd and posterior PVH,
but decrease thermogenesis through PVHmpv neurons [112],
the Crh+ PVH neurons activated by TRPM2+/Vglut2+ POA
neurons may be overlapped with PVHmpv neurons.
Moreover, given that PGE2, via actions of presynaptic
EP3R, can depress GABA release onto parvocellular
neuroendocrine cells (PNCs) in the PVH to disinhibit the
LPS-induced responses [119], it seems reasonable to propose
that the upstream GABAergic neurons that express
inhibitory EP3R could send input to disinhibit the PVH and
promote LPS-induced hyperthermia. Further studies are
needed to test our hypothesis and explore the possible
afferent locations of the PVH.

Chemogenetic manipulations of the PVH™ neurons can

regulate food intake without affecting Tcore or locomotor
activity [94] (Table 1). Given that the BDNF neurons in the
anterior PVH regulate not BAT thermogenesis but food
intake and locomotor activity [112], it seems probable that
the PVH®™ neurons mostly overlap with them. However,
these two studies seem to be contradictory considering the
different results of locomotor activity. It’s worth noticing
that the BDNF neurons in the anterior PVH do affect the
locomotor activity during the dark cycle but not during the
light cycle [112], which indeed is consistent with the result
of Pifiol et al. since the chemogenetic manipulations of the
PVH®™ neurons were done during the light cycle [94]
(Table 1). Taking the circadian rhythms into consideration, it
hasn’t been addressed whether the PVH™™ neurons would
affect Tcore during the dark cycle.

2.33.LH

Genetic inhibiting the expression of Bdnf promoter I
(Bdnf-e17"), but not that of the promoter IV (Bdnf-e4™) or VI
(Bdnf-e6™") results in severe deficits in thermogenesis. And
only in the LH, but not the VMPO, DMH, the ventromedial
hypothalamus (VMH), RPa, or PVH, the BAT-connected
neurons co-labeled with Bdnf-el-derived BDNF [120]. The
BAT-connected Bdnf-el-expressing LH neurons are
Vglut2+, but not Vgat+, orexint, or few melanin-
concentrating hormone-positive (MCH+). And chemogenetic
activation of the Vglut2+ LH neurons increases the BAT
thermogenesis [120] (Table 1). This study revealed a specific
population of LH neurons important for regulating BAT
thermogenesis. But there still stand other possibilities: (1)
promoters other than el, e4, and e6 may also participate in
thermoregulation of the PVH; (2) promoters other than el
may act on that of the VMPO, DMH/VMH, and RPa; (3)
some other brain regions may also participate in
thermoregulation through Bdnf-e1-derived BDNF expression
[120].
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It is reported that mice lacking MCH; receptor (MCH-
R1) exhibit higher Tcore during baseline than wildtype
littermates [121]. Selective deletion of MCH neurons can
increase body temperature and locomotor activity while
decrease food intake during the dark cycle [22] (Table 1).
Contrarily, the blockade of hypothalamic MCH expression
by injecting antisense MCH oligonucleotide into the lateral
ventricle (LV) increases the BAT mass and uncoupling
protein 1 (UCP-1) expression in BAT, while do not increase
the body temperature of cold-exposed rats [13122]. More
recently, chemogenetic activation of neither LH" neurons
[20, 22] (Table 1) nor Vglut2-KO LH™ neurons [20]
(Table 1) has an effect on the body temperature or locomotor
activity. It seems that chronic deletion of MCH, rather than
acute manipulations of MCH, can induce some unknown
complementary mechanism(s) that causes the increase of
Tcore. With the paradox remains, here we make two
inferences: (1) given that the orexin system and the MCH
system have potentially opposing effects [1], acute activation
of either one may be concealed by another; (2) given that the
appearance is different between the light and dark cycles
after chronic ablation of the MCH neurons [22] (Table 1),
the CNCs-SWs or circadian rhcythms may affect the Tcore-
regulating mechanisms of LHY" neurons.

As for LH*™™" neurons, it is reasonable that they send
orexinergic projections to the RPa to regulate thermogenesis
[5, 80, 123]. It is also suggested that the Crh+ PVH neurons,
activated by the hypothermia-promoting TRPM2+/Vglut2+
POA neurons [37], may activate the orexin neurons by inputs
to them [124]. Recently, orexin neurons are reported to be
involved in the thermoregulation under stress related to
exercise conditions, which is independent of the locomotor
activity [125]. It is also proposed that factors other than
orexin in the orexin-expressing neurons may contribute to
adaptive thermogenesis regulation [120], one possible
scenario is that orexin neurons may interact with the Bdnf-
el-expressing Vglut2+ LH neurons to modulate
thermogenesis indirectly [120].

There are some LH neurons apart from MCH and orexin
neurons that also participate in the CNCs-Tcore.
Microinjection of the GABA » agonist muscimol into the LH
to inhibit the LH neurons can promote vasoconstriction
[126]. Likely to be neither orexin nor MCH, the specific
neuronal population(s) involved in this vasoconstrictor
response needs to be further unraveled. In addition,
optogenetic and chemogenetic activation of the cold-
sensitive neurotensin (Nts)-expressing LH (LH"") neurons
which are distinct from both orexin and MCH, can increase
the Tcore [21] (Table 1).

2.3.4. DRN

It has been found that heat-activated GABAergic neurons
in the DRN, more specifically, in the DRN and bordering
ventral portion of VvIPAG, regulate energy expenditure
through changes in thermogenesis and locomotor activity, by
directly projecting to the RPa to regulate BAT thermogenesis
and indirectly innervating the MPA, DMH, and bed nucleus
of the stria terminalis (BNST) [34] (Table 1). The
identification of the DRN as an upstream thermoregulator of
the POA highlights the truth that it is time to confront the
canonical model that deems the POA as the central core of
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the CNCs-Tcore [6]. Given that the TRPMS8-expressing POA
neurons project to the DRN [77], the interactions between
the POA and DRN may be another focus for further
research.

It has been proposed that the DRI™M" neurons might

interactively regulate Tcore and emotional behavior through
TRPV3 or TRPV4 [69]. However, chemogenetic activation
of the DRN>MT neurons facilitates sleep through anxiolysis,
but doesn’t significantly reduce the stress-induced thermo-
genesis or locomotion [127] (Table 1). It has been clarified
that the two highly complementary parallel DRN>"" neuro-
nal pathways: the DRN>""—the orbitofrontal cortex (OFC)
pathway and the DRN ""—the central nucleus of the
amygdala (CeA) pathway, are each activated by reward but
show opposite responses to aversive stimuli, with the former
one having anxiolytic effects and the latter one promoting
anxiety [128]. Further studies are needed to identify the
interrelation of the thermoregulatory DRN"*" neurons and
the emotional-related DRNT neurons, and to demonstrate
whether thermosensitive TRPV3 or TRPV4 participates in
the functions of these two DRN subpopulations.

2.3.5. VTA

The thermoregulatory vasomotor role of the ventral
tegmental area (VTA) has been proposed [129]. Heat
exposure induces heat loss and promotes 5-HT releasing
from the VTA, and consistently, increasing extracellular 5-
HT in the VTA promotes heat loss by Tcore decrease and
tail temperature increase [130]. Using anesthetized rats, it is
found that the LHb promotes BAT thermogenesis by sending
inhibitory GABAergic projections to the VTA, possibly to
the dopaminergic VTA neurons that are responsible for
regulating BAT thermogenesis [131]. Since anesthesia may
be another factor that affects thermoregulation [23], the role
that the VTA plays in CNCs-Tcore needs further studies.

2.3.6. Other Possible Locations

There still exists many other thermoregulatory neuronal
populations, such as the TRPV1 expressing LC neurons [45],
the hypothalamic NPY-activated GABAergic neurons in the
intermediate and parvicellular reticular nuclei (IRt/PCRt) of
the medulla oblongata [132], the thermoregulatory
vasomotor neurons in the rostral ventrolateral periaqueductal
gray (rvIPAG) [129], the oxytocin receptor-expressing NTS
neurons involved in high-fat diet-induced thermogenesis
[133] and the NTS neurons participating in Galanin-Like
Peptide (GALP)-induced hyperthermia [134]. The specific
neuronal populations and neural pathways of the CNCs-
Tcore are summarized in Fig. (2).

3. CENTRAL CO-REGULATION OF CORE BODY

TEMPERATURE AND SLEEP-WAKEFULNESS
STATES
3.1. Central Coordinators Between Core Body

Temperature and Sleep-Wakefulness States

It has long been hypothesized about the interactions
between sleep and thermoregulation, mostly depending on
the sleep-regulating and thermosensitive properties of POA
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— osmo-sodium-related thermoregulatory pathway
— LHb—VTA—RPa/VLM thermoregulatory pathway

Fig. (3). A model of the central thermoregulatory circuits controlled by environmental light signals. The light signal as well as the
circadian photoentrainment is transmitted to the SCN and POA through the retinohypothalamic tract and then the downstream
subparaventricular zone (SPZ), DMH and PVH. The POA—-DMH—RPa/VLM pathway is canonical, functioning together with other
thermoregulatory circuits, including the ARH-, DMH-, DRN-, osmo-sodium-related and other possible pathways. (4 higher resolution /
colour version of this figure is available in the electronic copy of the article).

light signals

LEGEND
— wakefulness-promoting pathways

— LH wakefulness-promoting projections
— NREM sleep-promoting pathways
— REM sleep-regulating pathways
— light-related pathways

spinal motor neurons

Fig. (4). A model of the central neural circuits of sleep-wakefulness states controlled by environmental light signals. The light-related
pathway also regulates the LH and LC, both of which are wakefulness-promoting. The LH sends innervations to extensive locations,
including the basal forebrain (BF), TRN, PVT, TMN, VTA, DRN, laterodorsal tegmental area (LDT)/ pedunculopontine tegmental area
(PPT), PBN and LC. The arousal-promoting system, includes the LC, PBN, LDT/PPT, DRN, VTA, TMN, BF, PVT, NAc and BNST, while
the NREM sleep-promoting pathways involves the inhibition of the wakefulness-promoting pathways by the POA, the inhibition of the cortex
by the basal forebrain (BF), and the inhibition of the LH by VTA. The LHb is also NREM sleep-promoting, while the related pathway(s) is
not clear (indicated by dotted line). The DRN can be wakefulness-promoting when hungry while sleep-permissive during satiety.
Additionally, the latest finding suggests that the VLPOY&"? neurons are wakefulness-promoting whilst the MnPO"®" neurons are NREM
sleep-promoting. The DRN, PAG and LC participate in the REM sleep-regulating pathways to mutually regulate the muscle paralysis of REM
sleep by directly inhibiting the excitatory sublaterodorsal nucleus (SLD)— VMM pathway or indirectly inhibit the excitatory LDT/PPT—SLD
pathway, and the PAG receives inhibitory projections from the SLD. The LDT/PPT—BF pathway may help drive the typical fast EEG
activity of REM sleep. And the BLA/CeA—medial prefrontal cortex (mPFC) pathway may also regulate REM sleep. (Adapted from [8]).
(A4 higher resolution / colour version of this figure is available in the electronic copy of the article).

need to be clarified. On the other hand, given that both
CNCs-Tcore and CNCs-SWs haven't been completely

neurons [11-13]. In more recent reviews, neurons in the
MnPO [1, 2, 14, 15], VLPO [15], DMH [15], PBN, LH, and

PAG [1] are also considered to be reasonable candidates for
the interactions between the regulation of Tcore and SWs,
but left with several concerns. Firstly, the specific neuronal
populations in the above-mentioned brain regions and their
innervations involved in the coordination of Tcore and SWs

elucidated so far, it cannot be ruled out the possibility that
other brain regions may also be involved in the orchestration
of Tcore and SWs. In this part, we will briefly discuss the
possible coordinators in the CNCs of both Tcore (Fig. 3) and
SWs (Fig. 4).
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Fig. (5). A possible model of leptin signals co-regulating core body temperature and sleep-wakefulness states. The leptin signals activate the
LepRb of both the LH*PA neurons and LH™® neurons, with the former inhibit the orexin neurons that innervate the PVH to subsequently induce
inhibition of the hypothalamic-pituitary-adrenal (HPA), increase of NREM sleep and decrease of Tcore, while the latter contrarily activate the
orexin neurons and downstream location(s), possibly the PVH (indicated by dotted arrow), to reduce NREM sleep and elevate Tcore.

3.1.1. POA

It has been found that the NOS1+ glutamatergic neurons
in the MnPO-MPO region induced both body cooling and
non-rapid eye movement (NREM) sleep, whereas
GABAergic neurons in the MPO induce only NREM sleep
but not hypothermia [18] (Table 1). It is proposed that
NOS1+ glutamatergic MnPO-MPO neurons may overlap
with LepRb+ POA neurons [2]. Given that the leptin
signaling appears to have a direct role in regulating SWs [2],
it is reasonable to infer that the thermoregulatory leptin
pathways may also play an important role in sleep homeostasis.

The VLPO® neurons are important for NREM-
promoting by providing inhibitory inputs to the tuberomam-
millary nucleus (TMN) and other components of the ascending
monoaminergic arousal system [97]. Recently, chronic
ablation of LPO® neurons largely elevates Tcore and abolishes
the homeostatic sleep rebound following sleep deprrvatlon
[17], which reveals the potential role of VLPO/LPO Gal
neurons in the integrative regulation of Tcore and SWs.

As has been discussed in 2.2.2, chemogenetic activation
of the POAP®® neurons can promote hypothermia, by
activating the DP1 receptor in the VMPO neurons [99]
(Table 1). PGD, has been identified as one of the most
potent endogenous sleep-promoting molecules by stimu-
lating the DP1 receptors on the ventral surface from the basal
forebrain to the hypothalamus [135]. Recently, neuro-
endocrine cells in the supraoptic nucleus (SON) and
paraSON (including the VLPO and POA) have been proved
to strongly promote slow-wave sleep (SWS) of NREM
[136], with the VLPO temperature-dependently producing
PGD; [97] and the SON highly expressing PTGDS [137] and
activated by endogenous PGD, [138]. It seems reasonable
that the PTGDS-expressing neurons in the SON/POA co-
potentiate NREM sleep and hypothermia. Interestingly, in
support of this, systemic administration of nicotinic acid, a
common regulator for TRPV1-4 [139], can elicit robust
NREM sleep increase, Tcore decrease and hot flush, which
can be completely abolished by the cyclooxygenase inhibitor
indomethacin, indicating the involvement of the endogenous
prostaglandins, mostly PGD, [140].

3.1.2. LH

Apart from the POA, the LH is another integrative location
under hot discussion. It has been proposed that orexin-
expressing neurons may modulate the effects of the ambient
temperature on SWs, while genetic ablation of orexin-

expressing neurons doesn’t prevent the occurrence of these
effects [141], indicating that orexin-expressing neurons may
not be essential for the coordination of Tcore and SWs.
Furthermore, given that factors other than orexin in the
orexin-expressing neurons may also contribute to the regulation
of adaptive thermogenesis [120] and SWs [142, 143], it
deserves further studies on identifying the specific neuronal
subpopulation(s) of orexin-expressing neurons involved in
the coordination of Tcore and SWs.

The mice lacking the MCH-R1 have a higher Tcore as
well as an increase of wakefulness and a decrease of NREM
sleep [121]. Ablation of MCH neurons alters the circadian
pattern of the locomotor activity and Tcore as well as that of
wakefulness and rapid eye movement (REM) sleep, with the
bouts number of REM sleep increased and the bout duration
of wakefulness decreased during the light period [22] (Table
1). However, chemogenetic activation of MCH neurons [20,
22] or that of Vglut2-KO MCH neurons [20] increases REM
sleep without affecting Tcore (Table 1). The differences
among the deletion of MCH-R1, chronic ablation of MCH
neurons, and acute activation of MCH neurons, again lead us
to our hypothesis raised in 2.3.3 that warrants further studies.

In addition to the orexin and MCH population, there exist
other neuronal population(s) in the LH involved in the
modulation of SWs [126]. Recently, the LH® neuron, a
newly-identified neuronal population, which has no overlap
with either orexin or MCH population, is proved to be
critical for promoting NREM-to-wakefulness transitions,
hyperactivity, and hyperthermia and to be important for
orchestrating SWs and thermoregulatory responses to acute
stress exposure with the PVH participating in this process
[21] (Table 1). The effects of the specific cold-sensitive and
arousal-promoting LH"® neurons are consistent with the
results of Cerri et al. [126]. Tt is suggested that the LH""—
VTAP* being a possible regulatory pathway for locomotor
activity [21]. Furthermore, LH™® neurons receive inputs
from the PVH, BNST, and amygdala, and project to the
VTA, vIPAG, PBN, LC, RPa, VLM, and LPO [21], all of
which participate either singly or simultaneously in the
CNCs of Tcore and SWs. For the first time, the specific
neuronal population in the LH that coordinates both
thermogenesis and SWs has been identified and proposed as
a "master orchestrator" to modulate the activity of orexin and
MCH neurons through intra-LH circuits [21].

The LH may be another target regulated by the metabolic
leptin signals to coordinate Tcore and SWs. Orexin neurons
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receive GABAergic innervation by LepRb+ LH neurons, and
the leptin signals can inhibit the orexin—PVH pathway to
decrease corticosterone release in response to stress [144].
Furthermore, optogenetic activation of the GABAergic LH
neurons expressing LepRb can promote NREM sleep [145].
It is reasonable to infer that the LH%*®*—orexin—>PVH
pathway may promote NREM sleep through inhibition of the
HPA, accom%anying with a decrease of Tcore. Given that a
subset of LH"® neurons expresses LepRb and LH™® neurons
are activated by leptin in brain slices [146, 147], it is
possible that the leptin signaling may also regulate the LH"®
neurons to promote hyperthermia and NREM-to-
wakefulness transitions, which is opposite to the effects of
the LH*P*—orexin—PVH pathway (Fig. 5). Further studies
are needed to verify our model, esgecially the intra-LH
circuits among LHY® neurons, LHOAB neurons, and orexin
neurons.

3.1.3. DMH

Indeed, the glutamatergic DMH neurons strongly
innervate wake-promoting brain regions including the LH,
TMN, LC, VTA, and DRN, whereas GABAergic DMH
neurons innervate sleep-promoting regions including the
VLPO and MnPO [8]. Together with the thermoregulatory
DMH"#"? and DMH "#" neurons discussed in 2.3.1, it seems
possible that these two neuronal populations may co-regulate
Tcore and SWs. Besides, the thermoregulatory
dDMH/DHA®™ neurons may also participate in the
coordination of Tcore and SWs. The dDMH/DHAP™
neurons receive afferent projections from and send efferent
projections to extensive locations in the brain, such as the
PVH, POA, vIPAG, nucleus accumbens (NAc), LC, BNST,
paraventricular thalamus (PVT), ARH and so on [94], most
of which are involved in the CNCs-SWs.

3.1.4. PVH and ARH

As has been discussed in 2.3.2, the PVH is involved in
the CNCs-Tcore by direct neural connections [21, 109-112,
114] and indirect secretory responses [37, 119, 133, 144].
Furthermore, it is known that the PVH, which locates in the
pathway that regulates the secretion of melatonin, might
coordinate with the SCN to regulate sleep onset by
entraining circadian rhythms [8]. The specific role that the
PVH plays in the orchestration of thermogenesis and sleep-
wake homeostasis remains to be further established.

It has been proposed by Harding ef al. that different
neuronal populations in the ARH, more slpeciﬁcally,
ARHPOMC neurons, ARHAERP neurons, and ARHMY neurons,
interact with each other to regulate sleep onset, thermo-
genesis, and energy homeostasis, possibly controlled by the
leptin signaling [2].

3.1.5. DRN, PAG, BNST and Amygdala

It has been reported that the DRN°™T neurons [148], as
well as the vVPAG"* neurons just located lateral to the DRN
[149], can promote wakefulness. Contrarily, as has been
mentioned in 2.3.4, chemogenetic activation of the DRN> "
neurons facilitates sleep through anxiolytic effects, without
effects on Tcore or locomotor activity [127] (Table 1). The
DRN"#" neurons (including the bordering ventral portion of
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vIPAG) have been identified to regulate thermogenesis and
locomotion by indirectly projecting to the MPA, DMH, and
BNST [34] (Table 1). Taken together, the DRN appears to be
critical in regulating both Tcore and SWs, with the
interactions among wake-promoting DRN>HT neurons,
anxio\lfytic DRN’MT neurons and hypothermia-promoting
DRN " neurons remains to be settled. As the PAG has also
been proposed to involve in thermoregulation [129],
considering the anatomical contiguity of the DRN and PAG,
it would be better to study these two locations discretely.
Furthermore, it is intriguing that the BNST is wake-
promoting [150, 151], which makes the BNST another
coordinator of Tcore and SWs.

It is also reported that optogenetic inhibition of the
neurons in the basolateral nucleus of the amygdala (BLA)
that specifically overlay with glutamatergic neurons, can
facilitate REM sleep under fearful and unfearful conditions
while not affecting SIH [152] (Table 1). It has been shown
that the DRN"MT—CeA pathway increases anxiety [127],
while the possible BLA®"—GABAergic neurons in the
medial prefrontal cortex (mPFC)—DRN pathway underlies
the increases in REM sleep after footshock stress [152]. The
BLA“"—GABAergic neurons in the intercalated cell masses
(ICM) or lateral CeA neurons—CeA intra-amygdala pathway
underlies the opposite roles between the BLA and CeA
[153]. Moreover, given that the thermoregulatory ARH""
neurons [2] project to the CeA [154], it cannot be ruled out
the possibility that these amygdala-related pathways may be
involved in thermoregulation, especially under specific
emotional states.

3.1.6. VTA

It is known that the VTA dopaminergic neurons play an
important role in promoting wakefulness [155, 156]. As has
been discussed in 2.3.5, the VTA is part of the CNCs-Tcore.
Moreover, the hyperthermia-promoting and arousal-
promoting LH"® neurons densely project to the VTA and the
LH"Y*—VTAP* pathway possibly mediate locomotor activity
[21]. To conclude, the VTA should be regarded as another
coordinator of Tcore and SWs.

3.1.7. Other Possible Locations

There also exist other potential coordinators, among
which the LC, NTS, LHb, PVT, and NAc are most possible.
All these locations play important roles in the reﬁEulation of
SWs [7-9, 157, 158] (Table 2), with the LC™™ neurons
activated by cutaneous thermal stimuli [46], the NTS
regulating thermogenesis through oxytocin [133] or GALP
[147], the GABAergic LHb neurons innervating VTA to
promote BAT thermogenesis [131], the PVT and NAc
projecting to the thermoregulatory dDMH/DHA®™ neurons
[94]. The major CNCs-Tcore and CNCs-SWs are summarized
in Figs. (3 and 4), respectively.

3.2. Different Environmental Light Signals Coordinating
Core Body Temperature and the Sleep-Wakefulness
States

As has been discussed in 2.1.2, the SCN neurons that co-
express TRPV2 with PKR2 may be involved in the circadian
oscillation of Tcore and SWs. It is also been reported that the
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DRN expresses PKR2, and the DRN is likely to have mutual
connections with the SCN [63]. Given that the DRN plays an
important role in the regulation of both Tcore [6, 34, 69] and
SWs [7-9, 127, 148, 149], the circadian signals may be input
from the SCN to the DRN to co-regulate Tcore and SWs.

In addition, it is suggested that the PGD, signaling is
situated in the POAP®® upstream, possibly located in the
SCN [99]. 1t is also revealed that the SCN—POA pathway
involves in sleep modulation [159]. Ablation of the SCN
abolishes the circadian rhythms in both Tcore and SWs
[160]. It is reasonable to infer that the SCN—POA pathway
co-regulate the circadian oscillation of both Tcore and SWs,
possibly partly by the PGD, signaling.

Recently, the intrinsically photosensitive retinal ganglion
cells (ipRGCs) have been presented as an important neuronal
population in mediating both Tcore and SWs towards
different light conditions. Genetic ablation of the Brn3b+
ipRGCs, which have widespread projections that largely avoid
the SCN, does not affect normal circadian photoentrainment
of Tcore and SWs, but attenuates light's acute effects on
decreasing Tcore as well as on increasing time spent asleep
[161]. Moreover, chemogenetic activation of Brn3b+ ipRGCs
significantly decreases Tcore, demonstrating that Brn3b+
ipRGCs mediate light’s acute effects on Tcore though extra-
SCN projection(s), while Brn3b- ipRGCs mediate circadian
photoentrainment of Tcore possibly by projecting to SCN-
involving pathway(s) [161] (Table 1). And it is also
proposed that the POA may be involved in the “acute”
Brn3b+ ipRGCs—extra-SCN pathway, since the MPO and
VLPO have been demonstrated to receive projections from
ipRGCs and these projections are lost in animals with
genetic ablation of Brn3b [161]. This work highlights the
possibility that acute light exposure is another condition
regulated independently by the pathway(s) aside from the
SCN, and that both Tcore and SWs can be modulated by not
only circadian photoentrainment but also acute light signals.

4. CENTRAL MECHANISMS
GENERAL ANESTHESIA

REGULATING

4.1. Relations Between Central Regulation of the Sleep-
Wakefulness States and that of General Anesthesia States

General anesthesia is an artificially-induced unconscious
state, which does share many similarities with natural sleep,
not only in the electroencephalogram (EEG) manifestations
[162] but also in the functionally and anatomically shared
CNCs [32] (Table 2).

As has been reviewed elsewhere [32, 33, 163], many
different kinds of anesthetics act on the CNCs-SWs to
subsequently induce sleep-like cortical neural EEG
dynamics, mainly characterized by enhancement of slow-
delta (0.5-4 Hz) oscillations [162, 164]. In recent decades,
optogenetic and chemogenetic manipulations enable us to
specifically identify the neuronal populations and neural
pathways related to states induced by general anesthesia
(Table 2). The most noteworthy is some non-classical
locations that are found to co-regulate SWs and GAs, such as
the thalamic reticular nucleus (TRN) [164], PVT [157], LHb
[158], VTA [155, 156, 165, 166] and PBN [167] as well as
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the neuroendocrine general-anesthesia-activated neurons
(AANS) in the SON [136].

However, there still stand many questions. Firstly, the
different EEG signatures produced by different kinds of
anesthetics [33, 162] as well as the different extents the
AANs in the SON re-activated by different kinds of
anesthetics [136] suggest that different anesthetics may act
on different neuronal populations or neural pathways [163].

Besides, albeit the VLPO has long been deemed as an
important location that co-promote sleep and anesthetic-
induced unconsciousness [136, 168, 169], it's recently been
reported that chemogenetic stimulation of neither GABAergic
nor glutamatergic neurons in the VLPO affects the anesthetic
state transitions, more strikingly, chemogenetic activation of
the glutamatergic VLPO neurons promotes wakefulness [19]
(Table 2). A caveat is that, since the range of hM3Dq
expression has extended beyond the VLPO [19], the pathways
in intra-POA may be involved to interfere with the results.
Given that a few transient wake-like episodes are observed
under 1.2% isoflurane (ISO) but not under 1.5% ISO during
chemogenetic activation of MnPO"#" neurons or MnPO"#"
neurons [19] (Table 2), neural circuits promoting emergence
may be activated to a different extent under the different depth
of general anesthesia. What's more, the time to give the
stimulation may also affect the outcomes: optogenetic
activating GABAergic LH—TRN projections promotes
emergence during burst-suppression mode while has no effect
during iso-electric activity [145] (Table 2). What is certain is
that the CNCs-SWs and CNCs-GAs may not exclusively
overlap with each other [19, 162].

Furthermore, there still exist many inconsistencies among
different studies or conditions: the heterogeneous
manifestations between the emergence-promoting
noradrenergic LC neurons [170] and the emergence-delaying
noradrenergic LC—TRN projections [171], the inhibition of
the emergence-promoting glutamatergic PBN neurons
inducing no decrease of the induction time [167], the non-
differential manifestations of the induction time when
optogenetic manipulates the SON AANSs [136] as well as the
non-differential manifestations of the emergence time when
optogenetic manipulates the GABAergic VTA—LH
projections [165]. The widespread GAs-regulating neurons
may interact with each other, thus inducing these inconsistent
results.

Moreover, different light signals may also cause side
effects. As has been reported, acute blue light exposure can
promote wakefulness, while acute green light exposure
promotes sleep in mice [172]. Consistently, we find that
acute blue light exposure can promote arousal from
sevoflurane anesthesia by activation of the SCN [173].
Seeming to be contradictory, genetic ablation of the Brn3b+
ipRGCs, with projections largely avoiding the SCN, can
attenuate the increase of time spent asleep induced by acute
light exposure [161]. However, it is noteworthy that the
white light source, 6500K CFL bulb, used in this study [161]
is more comparable with the sleep-promoting green light
[172]. Tt is also revealed that non-M1 ipRGCs, which have
been suggested to promote sleep by projections to the VLPO
[172], express Brn3b. Taken together, acute green or white
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Fig. (6). A model of central neural circuits regulated by the acute light exposure/circadian photoentrainment. The acute green/white
light stimuli may be transmitted by the Brn3b+ ipRGCs—POA pathway to promote sleep and decrease Tcore, while the blue light may
stimulate the Brn3b- ipRGCs—SCN pathway to promote wakefulness as well as emergence from general anesthesia. The circadian rhythm
of Tcore and SWs may also be regulated by the Brn3b- ipRGCs—SCN pathway. The SCN neurons that co-express TRPV2 and PKR2 are
mutually innervated with the PKR2+ DRN neurons to regulate the circadian rhythm. The Ptgds+ SCN neurons may release thermoregulatory
PGD2 to the POA to regulate the circadian oscillation of Tcore. The DRN#* neurons inhibit the MPO neurons to modulate Tcore. Together
with other regulatory circuits, different light signals are able to regulate Tcore, SWs and general anesthetic states (GAs). Full lines represent
light-related/circadian projections and dotted line represents simplex thermoregulatory projection.

light exposure potentiates sleep through the Brn3b+ ipRGCs
—VLPO pathway, while acute blue light exposure,
promoting wakefulness and anesthesia emergence, is
regulated through Brn3b- ipRGCs—SCN pathway. Together
with the discussion in 3.2, we hypothesize a model of the
CNCs regulated by environmental light signals (Fig. 6). It is
also suggested that the optogenetic stimulation per se may
activate the ipRGCs and promote arousal [136, 161]. Apart
from acute light exposure, the circadian rhythms [16, 17, 99,
112, 157, 158] and body temperature [16] may also make
differences among different studies (Tables 1 and 2), which
underscore the necessity to maintain the consistency of
circadian and thermo factors during experiments.

4.2. Central Coordinators Between Core
Temperature and the General Anesthesia States

Body

All general anesthetics can dose-dependently decrease
Tcore [23]. It is suggested that the hypothermia induced by
general anesthesia results from the redistribution of body
heat [24, 174, 175], caused by anesthetic inhibition of
vasoconstriction [23, 24] and shivering thermogenesis [23].
It has also been suggested that these two major cold
defenses, vasoconstriction, and shivering, may share an
identical central regulator [23], which suggests that Tcore
under general anesthesia may be regulated by central neural
circuits. Based on two sound facts: (1) the orchestration
between central regulation of Tcore and SWs [1, 2] (Table 1)
and (2) the largely shared CNCs, anatomically and

functionally, between SWs and GAs [32, 33] (Table 2), here
we reasonably infer that GAIH is caused by general
anesthetics acting on the common central regulatory
neuronal coordinators for both GAs and Tcore (Fig. 7).

Favoring for our inference, recently, it has been
identified that the LPO® neurons are required for the
sedation and hypothermia induced by dexmedetomidine (Dex),
an a2A adrenergic agonist. And it is suggested that the Dex-
induced sedation, which characteristically accompanies a
delta NREM sleep rebound, is not restorative like normal
sleep and is possibly the consequence of deep hypothermia
[17]. However, it is proposed that both the NREM sleep
increase and hypothermia are parallel consequences of
activation of the VLPO® neurons, the range of which more
specifically overlaps with the LPO®" neurons [16]. Taken
together, these results give a hint that Dex may act on other
central coordinator(s), apart from LPO%' neurons, to
synergistically potentiate Dex-induced sedation and Dex-
induced hypothermia.

Chemogenetic activation of DRN'®" neurons reduces

Tcore, BAT thermogenesis, and locomotor activity [34]. To
verify whether the suppressed locomotion accounts for the
hypothermia, ~1%-1.25% ISO is used to suppress the
locomotor activity, after which the decrease of BAT
thermogenesis and body temperature still exists [34]. This
experiment largely mimics the clinical sedation or general
anesthesia condition, under which patients lack of
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Fig. (7). Evidence for central orchestration among core body temperature, sleep-wakefulness states and general anesthesia states. A
sagittal view of the rodent brain shows the approximate locations of the nuclei known to play a role in regulating Tcore and(or) SWs, which may
also be associated with regulation of GAs. (4 higher resolution / colour version of this figure is available in the electronic copy of the article).

locomotion and bear hypothermia. Therefore, we may
conclude that the suppressed locomotion is not decisive for
GAIH. In addition, it cannot be ruled out the possibility that
ISO can directly act on the CNCs-Tcore, including the DRN,
to induce GAIH.

4.3. Thermo-TRP Channels Involving in General

Anesthesia-Induced Hypothermia

It is reported that TRPV1 antagonists can dose-
dependently prevent the hypothermia induced by either ISO
or ketamine in wild-type but not TRPV1-KO rodents,
possibly through activation of BAT thermogenesis and
changes in vasomotor responses [176].

Volatile anesthetics, under clinical concentrations,
produce a two-phase modulation on TRPMS in vitro. Firstly,
volatile anesthetics transiently potentiate TRPMS, giving
explanations for the shivering and cooling sensation during
the beginning of general anesthesia. Secondly, it follows by
a sustained inhibition of TRPMS&, possibly leading to the
GAIH. And consistently, the hypothermia induced by
volatile anesthetics are partially abolished in TRPMS8-KO
mice [177].

Given that TRPV1 and TRPMS putatively function in the
CNCs-Tcore, which has been discussed in 2.1.1 and 2.1.5,
respectively, these results again evidence that general
anesthetics may act on the CNCs-Tcore to induce GAIH,
possibly through TRP channels. Based on the model raised
by Scarpellini ef al. [74], the possible central mechanism of

GAIH through TRP channels is depicted (Fig. 1b), which
may in turn provide promising targets for treating GAIH.

CONCLUSION AND PERSPECTIVES

Recently, it’s reported that GAD-expressing neurons in
the organum vasculosum lamina terminalis (OVLT) relay
osmo-sodium signals to vasopressin-expressing neurons in
the SCN, resulting in the activating of the latter. And
optogenetic activation of the OVLT*P—SCN*"" pathway
not only decreases BAT thermogenesis and Tcore, but also
significantly phase-advances the circadian locomotion onset
[178] (Fig. 3). These findings demonstrate that one non-
photic physiological factor can act through the circadian
pathway to modulate another physiological response, which
further support the orchestration among CNCs of different
physiological responses, aiming to keep the overall
homeostasis in response to various environmental signals.

The orchestrations among the CNCs-Tcore, CNCs-SWs,
and CNCs-GAs has been established by sufficient evidence.
And we hope this review will prompt the beginning for
further studies to find more solid proofs that favoring
orchestrations among different CNCs, which in turn may
provide new directions for further consummating these
CNCs. For example, the DRN, which is an important
regulator of both CNCs-Tcore [6, 34] and CNCs-SWs [127,
148], whereas its role in CNCs-GAs, if possible, hasn’t been
identified. Also, it’s reported that the DRN'® neurons
project to the BNST to regulate thermogenesis [34], while
the efferent pathway(s) from the BNST is pendent. By
comparison with the possible BNST9PASLHO™" or
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BNSTPASLCNE pathway in CNCs-SWs [150], we may
find the downstream target(s) of the thermoregulatory BNST
neurons.

Apart from the classic neurotransmitters like glutamate
and GABA, some neuroendocrine cells such as the SON
AANSs [136] and the Crh+ PVH neurons [37] as well as the
longer-acting neuromodulators like orexin and MCH may
also play important roles in the orchestration and act as
coordinators during a longer period.

Furthermore, based on the model we put forward (Fig. 6),
the environmental light signals, both the circadian rhythms and
acute light exposure, may also co-regulate Tcore and SWs as
well as affecting GAs, with different wavelength light
activating different neural pathways. But there still remain
questions to be addressed. For instance, to what extent is the
DRN function in these pathways? Besides, additional
regulatory pathways that may participate are yet clear.

Moreover, the energy homeostasis has also been shown
to strongly link to thermoregulation as well as SWs [1, 2],
during which leptin signaling may play an important role. It
needs to be further identified whether the central regulation
of energy homeostasis, especially that of the leptin signaling,
may affect GAs.

In addition, this review gives a possible reason why it
presents contradictory conclusions [19] on the canonical
NREM-promoting and general anesthesia-promoting VLPO
neurons, which may be brought by (1) different injection
sites that may activate different intra-POA pathways, (2)
different time to give the stimulation or (3) different
experimental light signals or circadian periods and different
experimental controlling of Tcore.

A caveat is that, the complex coordination among these
CNCs as well as the multiple projections brought by
heterogeneous neuronal populations reminds us never to
regard a sole neuronal population, central location, or neural
pathway to be the only central core that functions to regulate
these mysterious and dynamic physiological responses.

As for GAIH, the orchestration reveals a possibility that
general anesthetics may act on the CNCs-Tcore, thus
resulting in it. For the moment, given that TRPV1 [176] and
TRPMS [177] can regulate GAIH, it’s reasonable to deem
the superfamily of TRP channels to be promising therapeutic
targets for GAIH based on their roles in CNCs-Tcore. Speak
of clinical transformation, given that BAT thermogenesis
works as a primary thermoregulatory response in rodents
while it is not particularly important in unanesthetized adults
and relatively insignificant in perioperative patients [23], it
needs to be addressed to what extent the CNCs-Tcore in
rodents can be conserved in humans.
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