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Abstract: The purpose of this study was to define the proteomic and phosphoproteomic landscape of
circulating extracellular vesicles (EVs) in people with normal glucose tolerance (NGT), prediabetes
(PDM), and diabetes (T2DM). Archived serum samples from 30 human subjects (n = 10 per group,
ORIGINS study, NCT02226640) were used. EVs were isolated using EVtrap®. Mass spectrometry-
based methods were used to detect the global EV proteome and phosphoproteome. Differentially
expressed features, correlation, enriched pathways, and enriched tissue-specific protein sets were
identified using custom R scripts. Phosphosite-centric analyses were conducted using directPA and
PhosR software packages. A total of 2372 unique EV proteins and 716 unique EV phosphoproteins
were identified among all samples. Unsupervised clustering of the differentially expressed (fold
change ≥ 2, p < 0.05, FDR < 0.05) proteins and, particularly, phosphoproteins showed excellent
discrimination among the three groups. CDK1 and PKCδ appear to drive key upstream phosphoryla-
tion events that define the phosphoproteomic signatures of PDM and T2DM. Circulating EVs from
people with diabetes carry increased levels of specific phosphorylated kinases (i.e., AKT1, GSK3B,
LYN, MAP2K2, MYLK, and PRKCD) and could potentially distribute activated kinases systemically.
Among characteristic changes in the PDM and T2DM EVs, “integrin switching” appeared to be a
central feature. Proteins involved in oxidative phosphorylation (OXPHOS), known to be reduced in
various tissues in diabetes, were significantly increased in EVs from PDM and T2DM, which suggests
that an abnormally elevated EV-mediated secretion of OXPHOS components may underlie the devel-
opment of diabetes. A highly enriched signature of liver-specific markers among the downregulated
EV proteins and phosphoproteins in both PDM and T2DM groups was also detected. This suggests
that an alteration in liver EV composition and/or secretion may occur early in prediabetes. This
study identified EV proteomic and phosphoproteomic signatures in people with prediabetes and
T2DM and provides novel insight into the pathobiology of diabetes.

Keywords: extracellular vesicle; exosome; multi-omics; proteomics; phosphoproteomics; prediabetes;
type 2 diabetes; human

1. Introduction

Type 2 diabetes mellitus (T2DM) affects 31 million people in the United States and
463 million globally [1], with a high risk for chronic complications of cardiovascular disease,
chronic kidney disease, and heart failure [2]. T2DM can be prevented with lifestyle interven-
tions and pharmacologic therapies targeting those at high risk of progressing [3,4]. These
interventions are not effectively employed, however, suggesting a need to personalize ther-
apies. There is now evidence that classic T2DM is, in fact, genetically and phenotypically
heterogeneous [5]. Thus, although a large number of therapies are available to improve
glucose levels in T2DM, there is a need for better biomarkers to select optimal therapies to
improve outcomes and decrease morbidity, mortality, and costs from diabetes.
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Although suitable progress has been achieved in the development of biomarkers with
proven clinical utility for diseases such as cancer, the development and clinical implemen-
tation of biomarkers to personalize therapy in diabetes is lagging. Accumulating evidence
indicates that extracellular vesicles (EVs) are key players in cell-to-cell communication and
inter-organ crosstalk [6–9]. EVs carry unique signatures (e.g., proteins, lipids, nucleic acids)
that are cell- and condition-specific [10–12]. Once released from cells, EVs can make their
way into blood, urine, and other bodily fluids [11,13]. For these reasons, EVs are particu-
larly attractive as biomarkers. Protein phosphorylation is a major regulatory mechanism in
living cells and might provide important insight into function, but a number of challenges
have limited the exploration of phosphoproteins as biomarkers, including the difficulty
of reliably purifying and quantifying low-abundance phosphoproteins and interference
from proteins and metabolites in the biofluids [14,15]. Recent advances in the development
of EV-based technologies (i.e., using Extracellular Vesicle Total Recovery and Purification
(EVtrap) beads followed by Polymer-based Metal Affinity Capture (PolyMAC), developed
by Tymora Analytical Operations, Inc) for the characterization of the EV phosphoproteome
may circumvent some of these limitations [16–18]. EVtrap is a recently developed, broad
non-antibody-based affinity isolation method that produces quantitative EV yields that
have proven advantageous for MS/MS proteomic and phosphoproteomic studies [16–18].

Recent evidence supports the role of EVs in the pathogenesis of T2DM [19–23] and
underscores their biomarker and therapeutic potential [24,25]. However, little is known
about the evolution of changes in EVs in the early stages of the human disease (i.e., PDM),
and no characterization of the paired EV proteome and phosphoproteome across the dia-
betes spectrum exists. Therefore, the purpose of this study was to define the proteomic and
phosphoproteomic landscape of circulating EVs in people with normal glucose tolerance,
prediabetes, and type 2 diabetes. We additionally aimed to elicit mechanistic insight from
the detected correlates among the circulating EV proteome, EV phosphoproteome, and rel-
evant clinical measures assessing body composition, glucose control, and beta cell function
in a well-phenotyped human cohort.

2. Results
2.1. Study Design and Clinical Characteristics of the Study Cohort

A balanced subset of patients from the ORIGINS study (ClinicalTrials.gov, ID: NCT02226640)
was selected for this proteomics study (Table 1). Details from the parent study cohort have
been previously described [26]. For this study, a total of 30 participants (n = 10 per group)
were specifically selected as a subgroup that was not confounded by differences in sex, age,
and obesity, which are known to affect metabolic function. Table 1 describes the summary
of clinical characteristics of the study cohort.

2.2. EVs from Serum Are Highly Enriched with Exosomal Proteins and Phosphoproteins

A total of 2372 unique EV proteins and 716 unique EV phosphoproteins were reliably
identified (detected in at least any one of the samples with high confidence) from 1 mL of
fasting serum that typically produces approximately 50–100 µg of total EV protein (EVs
isolated using EVtrap technology). Most of these proteins and phosphoproteins have
been reported to be present in EVs (by cross-referencing to the Vesiclepedia database,
Figure 1A) and are specifically enriched in exosomal proteins (Figure 1B, 91% of the top 100
exosomal proteins reported as best markers of exosomes were readily identified). Scanning
electron microscopy (SEM) of these preparations confirmed the presence of particles with
morphology and dimensions consistent with those of exosomes (Figure 1C). Altogether,
these data demonstrated that the EVtrap method significantly enriched the preparations
with exosomes. We further characterized the distribution of particles by nanoparticle
tracking analysis (NTA) and detected no significant differences in the total number of
circulating EV-like nanoparticles among the three study groups (Figure 1D–H).
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Table 1. Clinical characteristics of the study cohort.

Healthy PreT2D T2D p

n 10 10 10
Sex = Male (%) 5 (50.0) 5 (50.0) 5 (50.0) 1.000

Age (years) 45.9 (10.5) 48.0 (7.8) 50.7 (11.0) 0.560
BMI (kg/m2) 33.1 (6.5) 34.1 (5.6) 34.7 (5.2) 0.825

Weight Average (kg) 89.7 (16.7) 101.0 (15.6) 97.8 (21.4) 0.368
Height Average (cm) 165.4 (7.8) 172.8 (11.1) 167.5 (9.6) 0.223

Waist Circumference (cm) 99.6 (16.4) 110.8 (15.8) 109.63 (16.2) 0.252
DEXA Lean Mass (g) 52,541.6 (8827.6) 56,993.2 (12,429.7) 54,111.7 (12,128.5) 0.672
DEXA Fat Mass (g) 34,737.9 (16,103.2) 41,785.8 (15,705.2) 41,624.5 (12,800.2) 0.494

DEXA Fat Percentage (%) 38.3 (14.0) 41.7 (12.2) 43.0 (9.3) 0.672
HDL-c (mg/dL) 55.9 (11.8) 42.2 (8.9) 48.7 (16.6) 0.076
LDL-c (mg/dL) 113.7 (26.5) 113.6 (46.7) 102.3 (37.0) 0.741

Triglycerides (mg/dL) 105.0 (60.4) 159.7 (134.1) 139.5 (53.4) 0.404
TSH (mIU/L) 1.6 (0.7) 2.1 (1.1) 2.4 (1.1) 0.180

Temperature (F) 98.0 (0.3) 97.9 (0.4) 97.8 (0.2) 0.605
Respiration Rate (breaths per

min) 14.7 (2.1) 15.5 (1.8) 15.2 (1.9) 0.646

Systolic Blood Pressure (mmHg) 124.4 (10.1) 125.2 (10.4) 126.0 (11.9) 0.950
Diastolic Blood Pressure

(mmHg) 78.30 (9.1) 77.2 (9.9) 79.80 (8.2) 0.815

Heart Rate (beats per min) 63.4 (8.4) 71.0 (11.5) 67.6 (13.4) 0.340
HbA1C (%) 5.4 [5.3, 5.5] 5.9 [5.8, 6.1] 6.3 [6.1, 7.0] 0.001

Glucose baseline (mg/dL) 90.3 (6.7) 100.6 (8.2) 122.2 (20.3) <0.001
Insulin baseline (µIU/mL) 3.6 (2.2) 8.6 (6.8) 5.8 (5.8) 0.134

Glucose AUC (mg/dL·min) 14,797.3 [13,302.1,
16,433.5]

17,202.3 [16,488.6,
18,909.1]

25,796.2 [23,196.5,
29,180.5] <0.001

Insulin AUC (µIU/mL·min) 3594.0 [2560.8, 7438.8] 6271.0 [2964.6, 11,626.3] 3463.6 [2254.2, 4915.9] 0.237
C-peptide AUC (ng/mL·min) 694.2 [569.6, 820.0] 950.3 [573.5, 1262.8] 816.4 [687.6, 887.7] 0.783

Insulinogenic Index
(∆Ins0–30 min/∆Glu0–30 min) 0.9 (0.6) 0.3 (3.0) 0.2 (0.2) 0.623

HOMA-IR 0.8 (0.5) 2.1 (1.5) 2.0 (2.2) 0.155
HOMA_B 51.5 (36.4) 96.0 (107.6) 30.7 (22.5) 0.102

MATSUDA 12.2 (9.4) 6.3 (5.5) 9.7 (8.9) 0.276
AIRg 468.6 (349.8) 549.32 (530.1) 48.75 (64.6) 0.041

Si 4.6 (4.5) 2.7 (2.9) 4.6 (2.6) 0.434
DI 1150.7 (494.2) 890.3 (569.4) 249.5 (348.3) 0.005

Data presented as mean (standard deviation) or median [interquartile range]. Sex presented as number of
males (%). Abbreviations: BMI: Body Mass Index, DEXA: dual-energy X-ray absorptiometry, HDL-c: high-
density lipoprotein cholesterol, LDL-c: low-density lipoprotein cholesterol, TSH: thyroxin stimulating hormone,
AUC: area under the curve, HbA1c: glycate hemoglobin, HOMA-IR: homeostasis model assessment insulin
resistance, HOMA-B: homeostasis model assessment beta, AIRg: acute insulin response to glucose, Si: sensitivity
index, DI: disposition index.

2.3. Differential Expression Analysis Provides Insight on Potential Tissue-Specific Mechanisms

To gain insight into the biology underlying the development of diabetes and to identify
potential circulating EV biomarkers of the disease, we implemented a multi-omic (pro-
teomics and phosphoproteomics) approach to characterize the EV composition in serum
(raw data tables are provided as Supplementary Data Tables SDT1–SDT3). Multidimen-
sional scaling analysis of all the proteomic and phosphoproteomic data (Figure 1I,J) revealed
that each study group presented relatively homogeneous profiles of EV proteins and phos-
phoproteins that were also distinguishable from the other groups. Consequently, we were
able to identify 196 and 308 differentially expressed proteins, and 53 and 191 differentially
expressed phosphoproteins in PDM and T2DM, respectively, as compared to NGT subjects
(Supplementary Tables S1–S4). Supplementary Tables S5 and S6 report on the T2DM vs.
PDM comparison for EV proteins and phosphoproteins, respectively. Using these circu-
lating EV signatures and unsupervised clustering, we were able to correctly assign study
participants to their respective groups with relatively high accuracy (Figure 2A,B).
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Figure 1. Characterization of EVs isolated from human serum from people with normal glucose
tolerance (NGT), prediabetes (PDM), and type 2 diabetes mellitus (T2DM). (A,B) Euler diagram cross-
referencing all reliably detected EV proteins and EV phosphoproteins to the Vesiclepedia database
and to the list of best exosomal markers, as reported by Exocarta Top 100 database. Diagrams include
the pool of all proteins and phosphoproteins detected in all samples. Total number of EV proteins
and phosphoproteins in the Euler diagrams does not exactly add up to the total number of identified
proteins because some Uniprot IDs (as reported by MS experiments) do not have associated gene
names (as reported by Vesiclepedia and Exocarta). (C) Representative scanning electron microscopy
of circulating EV, (D–F) Representative nanoparticle tracking analysis (NTA) traces of circulating EVs,
depicting size distribution of particles in the 3 study groups. (G,H) Boxplots of total EV concentration
and mean EV size, respectively. (I,J) Multidimensional scaling plots using all reliably detected EV
proteins and phosphoproteins, respectively.
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Figure 2. Differential expression analysis. (A,B) Heatmap of differentially expressed EV proteins (A)
and EV phosphoproteins (B). Differentially expressed features required to have fold change greater
than 2 (log2FC > 1 or log2FC < −1) and FDR < 0.05. Heatmaps were constructed using unsupervised
clustering of the correlation distance between samples. Groups: NGT: normal glucose tolerance,
PDM: prediabetes, T2DM: type 2 diabetes. Module.Pr.1: differentially expressed protein module
1, Module.Pr.2: differentially expressed protein module 2, Module.Ph.1: differentially expressed
phosphoprotein module 1, Module.Ph.2: differentially expressed phosphoprotein module 2. Modules
and clusters are generated by unsupervised clustering. (C) Enrichment of KEGG pathways among
significantly different phosphoprotein/protein ratios. For the 245 features detected by both the pro-
teomic and phosphoproteomic technologies, ratios were calculated, log-transformed, and compared
using linear models that adjusted for sex, age, and BMI.
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Notably, the EV proteome and phosphoproteome displayed a relatively small num-
ber of simultaneously detected features (specifically, 245 proteins were also found as
phosphorylated proteins in the circulating EVs) and a rather low correlation between the
corresponding common features (Figure 3A–C). When normalized phosphoprotein/protein
ratios were calculated for this subset of EV phosphoproteins, a striking pattern of mostly
increased phosphorylation in PDM and mostly inhibition of phosphorylation in T2DM,
as compared to the NGT group, was evident (Supplementary Tables S7–S9). The signifi-
cantly different phosphoprotein/protein ratios, particularly those suggesting inhibition of
phosphorylation (diminishing ratios when compared to the NGT group), were enriched for
extracellular matrix-receptor interactions pathways, immune-related pathways involved
in fighting infection, as well as PI3K-Akt signaling and Rap1 signaling pathways, among
others (Figure 2A). The reduced phosphoprotein/protein ratios in T2DM additionally
suggested impairment of metabolic pathways, as evidenced by the enrichment in pathways
involved in glycolysis and gluconeogenesis and carbon metabolism (Figure 2C).

Of note, AKT1 was the phosphoprotein with the largest increase in phosphopro-
tein/protein ratio in T2DM (Supplementary Table S8). Intriguingly, the change in phos-
phorylated AKT1 in circulating EVs negatively correlated with the change in acute insulin
response to glucose (AIRg), disposition index (DI), insulin secretion (HOMA-B), and glu-
cose effectiveness (Sg) (r ≤ −0.39, p ≤ 0.05, Supplementary Table S10), while positively
correlated with fasting plasma glucose (FPG), glucose AUC, and HbA1c (r ≥ 0.37, p ≤ 0.05,
Supplementary Table S10). On the other hand, the change in total AKT1 protein signifi-
cantly and expectedly negatively correlated with FPG, glucose AUC, and HbA1c (r ≤ −0.45,
p < 0.013, Supplementary Table S11).

In addition, signaling kinases including AKT1, GSK3B, LYN, MAP2K2, MYLK, and
PRKCD were all among the significantly upregulated EV phosphoproteins (Figure 3F–K)
that were central to a network enriched for immune-related pathways including chemokine
signaling, Fc gamma R-mediated phagocytosis, and B cell receptor signaling, among oth-
ers (Figure 4E). Similar to phosphorylated AKT1, the change in phosphorylated LYN
and PRKCD kinases also significantly correlated with the change in FPG, glucose AUC,
HbA1c, and the acute insulin response to glucose (AIRg) (absolute |r| ≥ 0.5, p < 0.12,
Supplementary Table S10). On the other hand, the enrichment analysis of the differen-
tially expressed EV proteins highlighted respective networks in both PDM and T2DM
with significant enrichment in oxidative phosphorylation (OXPHOS) signaling among the
upregulated proteins (Figure 4D,F). An enrichment in upregulated proteins involved in
immune cell-mediating cytotoxicity was also detected in the PDM group (Figure 4D).

2.4. Phosphosite-Centric Analyses Identify Upstream Kinases Driving Phosphoproteomic
Signatures in PDM and T2DM

To identify upstream active kinases responsible for the observed phosphoproteomic
profiles in the circulating EVs, a kinase perturbation analysis [27] was conducted. This
analysis predicts upstream-activated kinases based on the coordinated changes detected
on their known substrates. As shown in the kinase perturbation plot in Figure 3D, we
demonstrated that the activities of kinases CDK1 and PRKCD (PKCδ) were highly elevated
in prediabetes (PDM vs. NGT comparison axis) and elevated, albeit not as dramatically,
in T2DM (T2DM vs. NGT comparison axis). On the other hand, PRKCA and CSNK2A1
appear to be slightly inactivated in T2DM only.
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Figure 3. Global comparison of changes in the EV proteome and the EV phosphoproteome.
(A) Correlation of changes in PDM, as compared to NGT. (B) Correlation of changes in T2DM,
as compared to NGT. (C) Correlation of changes in T2DM, as compared to PDM. (D) Perturbation
kinase analysis using the directPA package. (E–K) Interquartile range boxplots for differentially
expressed total EV AKT1 protein and phosphorylated EV AKT1, GSK3B, LYN, MAP2K2, PRKCD,
and MYLK kinases. Linear models adjusting for age, sex, and BMI were used to assess differential
expression (fold change greater than 2, p < 0.05, and FDR < 0.05) using the limma R package.
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Figure 4. Pathway enrichment networks. (A,B) Network of enriched KEGG pathways in EV phos-
phoproteins that are downregulated in PDM compared to NGT (A) and in T2DM compared to
NGT (B). (C) Network of enriched KEGG pathways in EV proteins that are upregulated in T2DM
compared to NGT. (D) Network of enriched KEGG pathways in EV proteins that are upregulated in
PDM compared to NGT. (E) Network of enriched KEGG pathways in EV phosphoproteins that are
downregulated in T2DM compared to NGT. (F) Network of enriched KEGG pathways in EV proteins
that are upregulated in T2DM compared to NGT.



Int. J. Mol. Sci. 2022, 23, 5779 9 of 25

To identify additional upstream kinases responsible for the phosphorylation of specific
substrate sites and uncover potential novel kinase-substrate pairs (Figure 5, row dendro-
gram) and global relationships between kinases (Figure 5, column dendrogram), we used a
multistep framework implemented in PhosR, a Bioconductor software package, to assesses
both the likelihood of a kinase to recognize a specific motif and the dynamic phosphoryla-
tion profiles of the sites [28,29]. Several major kinase groups are associated with specific
phosphorylation events in the prediabetic and diabetic backgrounds. Of note, a group of
CMGC kinases (i.e., CDK1, GSK3B, MAPK1, MAPK14, CDK2, CDK5, and CDK14), as well
as a mixed group of CAMK and AGC kinases (including two PKC isoforms, CHECK1,
PRKACA, CAMK2A, and CSNK2A1), appear to have key non-redundant activities on
specific substrates (Figure 5). Interestingly, upstream activation of STK4 (a major signaling
kinase of the Hippo pathway [30]) appears to be the single kinase responsible for the in-
creased phosphorylation of MYLK, one of the kinases that were central to the upregulated
phosphoprotein network in T2DM (Figure 4E), as compared to the NGT group. Additional
information on the differentially expressed phosphosites and pathways enrichment analysis
results on those sets are provided in Supplementary Tables S12–S17.

2.5. Altered Expression of Platelet and Immune Activation and Coagulation Markers in Circulating
EVs Is Common in PDM and T2DM

Proteins and phosphoproteins that play a role in chemokine signaling pathways
in PDM and in platelet activation and coagulation in PDM and T2DM (Figure 4) were
enriched among the differentially expressed EV proteins and phosphoproteins. Of note,
significantly increased levels of the platelet surface markers GP1BA and integrin ITGB3
and the activation marker PCAM1 were common in EV preparations from both PDM and
T2DM groups (Figure 6A–D). In addition, significant upregulation of tissue factor (TF) was
also common in the circulating EVs from both groups (Figure 6E). TF in complex with
coagulation factor F7a is the primary initiator of blood coagulation and has been reported
to be released in EVs from platelets, monocytes, and pancreatic tumor cells, contributing to
thrombus formation [31].

2.6. An “Integrin Switching” Signature in Circulating EVs Is Characteristic of PDM and T2DM

The networks of KEGG pathway-enriched downregulated EV phosphoproteins addi-
tionally highlighted a central role for integrins ITGB1 and ITGA2B in both the PDM and
T2DM networks, as compared to the NGT group (Figures 4A,B and 6F,G). Consequently,
the modulation of interactions between the extracellular matrix (ECM) and cell receptors,
the regulation of the actin cytoskeleton, and the regulation of phagosome functions were
also among the key pathways enriched among the downregulated EV phosphoproteins
(Figure 4A,B). On the other hand, phosphorylated ITGA2 and total ITGA6 protein were
highly upregulated in the T2DM group (Figure 4E,F and Figure 6H,I), which suggests that
T2DM might be associated with a switch of integrin surface molecules in EVs and, possibly,
in the originating cells. Supporting our reasoning, HLA proteins, which are reported to
modulate the expression of integrins [32], were also among the differentially expressed
EV proteins highlighted by the functional enrichment networks (i.e., HLA-DRA and HLA-
DQB1, Figure 4C,D and Figure 6J,K). Remarkably, phosphorylated integrins (i.e., ITGA2,
ITGA2B, and ITGB1) correlated with important clinical measures of body composition (i.e.,
fat mass and waist circumference), glycemic control (i.e., FPG, glucose AUC, and HbA1c),
glucose disposition (i.e., DI), insulin action (i.e., HOMA-IR), and beta cell function (i.e.,
fasting plasma insulin—FPI) (absolute |r| ≥ 0.4, p < 0.05, Supplementary Table S10).
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Figure 5. Global kinase-substrate relationships in the prediabetes and diabetes background. Only sig-
nificantly upregulated phosphosites were included in the analysis. The heatmap shows the combined
kinase-substrate scores for the top 3 phosphosites of all evaluated kinases. The higher the score, the
better the fit of the phosphosite to a kinase motif and kinase-substrate phosphorylation profile.
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Figure 6. Expression profiles of select EV proteins and phosphoproteins. (A–D) Interquartile range
(IQR) boxplots of differentially expressed EV proteins that are surface markers (A,B) and activation
markers (C,D) of platelets. (E) IQR boxplot of differentially expressed tissue factor (TF), primary
initiator of coagulation. (F–I) IQR boxplots of differentially expressed “switching” integrins. (J,K) IQR
boxplots of differentially expressed major histocompatibility complex proteins in EVs. Linear models
adjusting for age, sex, and BMI were used to assess differential expression (fold change greater than 2,
p < 0.05, and FDR < 0.05) using the limma R package.
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2.7. Signatures of Liver Proteins and Phosphoproteins Are Downregulated in EVs as Early as the
Prediabetes Stage

To gain insight into which organs or cell types might be significantly contributing to
the differences in EV protein and phosphoprotein cargo in PDM and T2DM, we conducted
enrichment analyses for cell type-specific signatures extracted from the Human Protein
Atlas (HPA). As shown in Figure 7, we detected a highly enriched (FDR <<< 0.05) signature
of liver-specific markers among the downregulated EV proteins and EV phosphoproteins
in both the PDM and T2DM groups, as compared to NGT. Moreover, by conducting
downstream effects analysis (DEA) using Ingenuity Pathway Analysis (IPA) software,
we observed that the differentially expressed EV proteome in PDM appears to code for
suppression of liver cell death and hyperproliferation functions with concomitant activation
of liver inflammatory processes (Figure 8). On the other hand, the same EV proteome seems
to code for the downstream activation of renal damage and necrotic cell death processes in
connection with renal nephritis and kidney failure pathways (Figure 8).
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Figure 7. Enrichment for differentially expressed (DE) tissue-specific proteins (A) and phospho-
proteins (B) in circulating EVs in people with prediabetes (PDM) and type 2 diabetes (T2DM), as
compared to people with normal glucose tolerance (NGT). Pr: proteome; Ph: phosphoproteome;
light blue color: downregulated features in PDM, dark blue color: downregulated features in T2DM;
light red color: upregulated features in PDM, dark red color: upregulated features in T2DM. Darker
discontinued lines at FDR = 0.05; lighter discontinued lines at FDR = 0.1.
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Figure 8. Downstream effects analysis (DEA) for differentially expressed proteins in the PDM group,
as compared to the NGT group, using the Ingenuity Pathway Analysis (IPA) software. The analysis
aims to identify biological functions that are expected to change in response to the protein expression
patterns observed in the data. The algorithm is based on the calculation of an enrichment score and
an activation Z-score [33].

3. Discussion

As a complex disease, diabetes development and progression involve many alterations
in a variety of signaling pathways and biological processes that are often difficult to
summarize in a single-theme narrative, for example, those describing multiomic studies
such as this one. However, the multiomic approach can provide a large body of mechanistic
insight that confirms previous and contribute new knowledge to the field and warrant the
development of important validation studies.



Int. J. Mol. Sci. 2022, 23, 5779 14 of 25

Understanding of the role of exosomes and EVs in type 2 diabetes has evolved in the
last decade. However, most EV profiling studies to date have focused on the miRNA cargo.
To our knowledge, no study has addressed the simultaneous quantification of circulating
EV proteins and phosphoproteins. EV phosphoproteomics has been conducted in the
cancer field using cultured cells, with a small number of studies characterizing the phos-
phoproteome of EVs from urine or plasma/serum samples from healthy people or people
with other conditions [16,18,34–37]. Thus, our work makes an important contribution by
defining the proteomic and phosphoproteomic landscape of circulating EVs in prediabetes
and diabetes.

In addition to identifying EV proteomic and phosphoproteomic signatures across the
spectrum of diabetes, our data suggest potential EV-mediated mechanisms that might
underlie the development of prediabetes and diabetes and its complications. These associa-
tions are, of course, limited by the cross-sectional nature of this study. As shown in Figure 1,
unsupervised clustering of select EV protein and phosphoprotein signatures could separate
the study participant samples based on their disease stage with relatively large accuracy.
The features detected by both our proteomic and phosphoproteomic experiments and
with significantly different phosphoprotein/protein ratios, particularly those suggesting
inhibition of phosphorylation, were enriched for extracellular matrix-receptor interactions
pathways, immune-related pathways involved in inflammation and fighting infection, and
in PI3K-Akt and Rap1 signaling as well as relevant metabolic processes, among others.
Inactivation of both the PI3K-Akt and the Epac2/Rap1 signaling pathways appears highly
relevant to the development of diabetes because the pathways have been reported to be
essential for mediating survival, proliferation, glucose homeostasis, and lipid metabolism,
among others (PI3K-Akt) [38] and for regulation of insulin granule dynamics by cAMP
and insulin secretion (Epac2-Rap1) [39–41]. Moderately inducing the PI3K-Akt signaling
pathway in pancreatic β cells has, in fact, been suggested as a therapeutic strategy to
preserve β cell mass during the development of type 1 and type 2 diabetes [42].

Intriguingly, we detected a dramatic change in phosphorylated AKT1 (which signif-
icantly increases in circulating T2DM EVs while the total protein level diminishes), and
these changes are associated with the change in relevant clinical measures of glycemic con-
trol, insulin secretion, and insulin action. We reason that AKT1 phosphorylation increases
in T2DM are likely to compensate for the dramatic reduction in total AKT1 protein and
activity. However, a thorough analysis of phosphorylation sites and their effect on kinase
activity is warranted, as not all phosphorylation sites are associated with a similar protein
activation. This finding is significant because phospho-AKT is a key signaling molecule
downstream of the insulin receptor, and “the substrates of AKT are intimately linked to
the various physiological functions of insulin and are often specific to a particular cell
type” [43]. Interestingly, impaired translocation and activation of mitochondrial AKT1
reduced the activity of mitochondrial OXPHOS Complex V in diabetic myocardium [44,45],
and oxidative phosphorylation was found to be overrepresented among the differentially
expressed EV proteins and phosphoproteins in our study (Figure 4D,F). Notably, oxidative
stress has been demonstrated to be a causal factor in the impairment of adipose tissue
metabolism and insulin resistance [46,47]. Proteins involved in oxidative phosphorylation
are known to be reduced in various tissues in diabetes [48–51], but, surprisingly, we de-
tected them upregulated in the circulating EVs. We reason, then, that an abnormal removal
of OXPHOS-related proteins and phosphoproteins via EV secretion (e.g., in adipocytes
from people with obesity) might underlie the development of diabetes. It is tempting to
speculate that abnormal EV-mediated disposal function may be diverting phospho-AKT1
from translocating to the mitochondria.

Other significantly upregulated phosphorylated kinases in the circulating EVs in
the same pathway-enriched network as AKT1 included GSK3B, LYN, MAP2K2, MYLK,
and PRKCD. Two of these kinases (namely, PRKCD and GSK3B) were also identified by
our phosphosite-centric analyses as diabetes-related upstream kinases contributing to the
observed global patterns of substrate-kinase relationships (see kinase perturbation plot in
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Figure 3 and kinase heatmap on Figure 5). These kinases coordinate signaling of multiple
pathways involved in immune cell activation, among others, which were overrepresented
among differentially expressed EV proteins and phosphoprotein networks. Supporting our
findings, these pathways have been shown to play important roles in obesity-associated
insulin resistance, among other diabetes-associated phenomena [52–54].

The kinase perturbation analysis based on composite scores of kinase-substrate pro-
files provided important evidence to predict which kinases appear to produce the EV
phosphoproteomic signatures observed in PDM and T2DM. These results contribute to our
understanding of pathophysiological processes taking place during diabetes development
in humans. For example, we speculate that the highly elevated upstream activities of
CDK1 and PKCδ (represented by its catalytic subunit PRKCD) in the prediabetes stage may
contribute to the development of diabetes. Supporting our reasoning, it was recently discov-
ered that, independent of its cell cycle functions, CDK1 acts as a regulator of mitochondrial
complex I and enhances β cell glucose sensing in the pancreas [55]. However, persistent
activation of CDK1 during obesity causes both beneficial and pathological consequences for
the pancreatic beta cell in mice, including reduction in their insulin secretory capacity that is
recovered by pharmacologic inhibition with RO-3306 [55]. Similarly, family member CKD2
also contributes to switching off the β cell secretory capacity [56]. On the other hand, PKCδ

has been reported to promote insulin secretion from the pancreatic β cell by increasing the
number of insulin granules in the ready-releasable pool [57] and to be elevated in the liver
of mice and humans with obesity, where it plays an important role in the development of
hepatic insulin resistance and hepatosteatosis [58,59]. Now, our phosphoproteomic study
profiling human circulating EVs confirms the activation of CDK1 and PKCδ in humans with
prediabetes and diabetes and suggests clinical utility for phosphoproteomics of circulating
EVs. Future prospective studies addressing the diagnostic and prognostic capacity of these
two kinases are warranted.

The kinase-substrate heatmap also uncovered that STK4 (a major signaling kinase of
the Hippo pathway [30]) appears to be the kinase responsible for the increased phosphoryla-
tion of MYLK, a myosin light chain kinase that is involved in Ca2+ signaling, myofibroblast
contraction, microvascular endothelial barrier dysfunction, gastric motility, and insulin
secretion [57,60–62]. Supporting our finding, altered contractility of the gastric smooth
muscles has been found impaired in people with obesity and diabetes [60]. Remarkably,
three of the kinases identified by our study (i.e., PKA, PKC, and MYLK) interact in a
synergistic way to promote insulin secretion from the pancreatic β cell by increasing the
number of insulin granules in the ready-releasable pool [57].

The differentially expressed proteins and phosphoproteins were also significantly
enriched in platelet activation and coagulation effectors. This is consistent with the known
crosstalk between coagulation and inflammation in diabetes, which is a key determinant in
the development of complications such as cardiovascular disease, diabetic nephropathy,
and retinopathy, among others [63–65]. Moreover, we also detected a significant reduction
in phosphorylated integrins ITGB1 and ITGA2B in the circulating EVs, while phospho-
rylated ITGA2 and total ITGA6 protein were significantly upregulated. Of note, HLA
proteins have been reported to modulate the expression of integrins [32], and we found
HLA-DRA and HLA-DQB1 coordinately and significantly changing and highlighted in the
functional enrichment networks. We speculate that these changes may indicate a switch of
integrin surface markers in cells and their released EVs, which may consequently change
their interaction patterns with the surrounding ECM and tropism for the circulating EVs,
respectively [66,67]. The fact that these EV proteins and phosphoproteins were identified
as central hubs in their respective pathway enrichment networks and that their changes
significantly correlated with changes in relevant clinical variables, including measures of
body composition, glycemic control, insulin action, and beta cell function, suggests that
their presence and changes in abundance in the circulating EVs is important in the develop-
ment of T2DM. For example, the positive correlation between upregulated phosphorylated
integrin ITGA2 and glucose AUC, FPG, and HbA1c may suggest that the progressively in-
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creased phosphorylation of ITGA2 plays a role in (or is a consequence of) the deterioration
of glycemic control as subjects progress from NGT to PDM to T2DM. On the other hand, the
negative correlations between downregulated integrins ITGB1 and ITGA2B and the same
glycemic control variables and others related to body composition and insulin resistance
suggest a similar role in the inhibition of phosphorylation in these kinases. We speculate
that the apparent integrin switch is potentially triggered by the phosphorylation events
occurring on those three integrins. In support of our reasoning, the crosstalk between
integrins conducing to the activation or inactivation of its function is mediated, at least
in part, by phosphorylation of the β-chains, and phosphorylation switches may induce
the crosstalk between integrins and other receptors [68]. However, our evidence is only
correlative; therefore, we cannot determine causality. Remarkably, ECM-integrin signaling
(e.g., due to increased density of the collagen-binding integrin α2β1 dimer, a key collagen-
binding receptor in the plasma membrane of platelets and muscle cells, among others) has
been associated with muscle insulin resistance [69,70], inflammation [71], angiogenesis [72],
and cardiovascular risk [73], among others. Our study did not aim to quantify the levels of
integrin heterodimers, but the fact that the phosphorylated α2 (ITGA2) subunit was ele-
vated in the circulating EVs of both PDM and T2DM subjects may indicate elevated density
and/or activity of its heterodimers in specific tissues and secreted EVs. Consistent with its
role in platelet function, platelet activation was among the pathways most commonly and
significantly enriched among the differentially expressed proteins and phosphoproteins
detected in this study in both PDM and T2DM subjects. On the other hand, altered density
or activity of integrin molecules such as integrin β1 (ITGB1) have been implicated in a
variety of diabetic complications, particularly diabetic nephropathy [74–76]. ITGB1 has
been found to be particularly important in podocytes, where it mediates signaling in the
axis IGFBP1/ITGB1/FAK and contributes to essential podocyte functions by promoting
cell adhesion, motility, and survival [77]. The activity of this axis was found to be controlled
by FOXO1, which was in turn inhibited by activated insulin-PI3K-AKT signaling [77]. Inter-
estingly, we found phosphorylated AKT upregulated in the circulating EVs from the T2DM
group. Moreover, the activity of the axis was demonstrated to be reduced in glomeruli
from humans with early type 2 diabetic kidney disease. Supporting the key role of ITGB1
in the kidneys, the β1-integrin-knockout mice develop severe proteinuric kidney disease
from birth [78], and patients with Abatacept-stabilized β1-integrin activation are protected
from B7-1-positive proteinuric kidney disease [79]. Remarkably, Ingenuity DEA analysis
suggested that the differentially expressed EV proteome identified in people with PDM
in our study is associated with the activation of pathways involved in renal damage and
necrotic cell death, as well as in renal nephritis and kidney failure. Altogether, our data
now suggest that profiling the integrin composition of circulating EVs could aid in the early
detection of diabetic complications.

Another novel and important finding from our study is the highly significant down-
regulation of circulating EV proteins and phosphoproteins from the liver in both the PDM
and T2DM groups. This defect may be caused by (1) decreased expression of proteins
and phosphoproteins in liver cells, hence reduced levels in the liver-derived EVs, (2) by
decreased packaging of proteins and phosphoproteins into EVs, (3) by reduced secretion of
EVs with neither a defect in EV packaging nor in cytoplasmic levels of the specific proteins
and phosphoproteins, or (4) by some combination of the previous three defects. With the
data at hand, we are unable to dissect the specific cause for the alterations in EV cargo
composition in the liver or any other tissue. However, the fact that additional analyses (i.e.,
DEA) suggested that the differentially expressed EV proteins are involved in the suppres-
sion of liver cell death and hyperproliferation functions with concomitant activation of liver
inflammatory processes in PDM supports an important early role for the liver (potentially
mediated by alterations in EV cargo and inter-organ cross-communication) during diabetes
development. Indeed, the important role of the liver in diabetes is well established and
elegantly incorporated in the twin cycle hypothesis [80,81]. Our study now suggests that
alterations in the cargo and/or in the number of liver-derived circulating EVs represent
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early pathophysiological changes that could serve as biomarkers of disease development.
These EV protein dynamics, identifiable as early as in prediabetes, appear to represent early
events contributing to the known increased risk of developing steatosis and renal fibrosis
in subjects with type 2 diabetes [82–84]. Notably, important links between liver, kidney,
and heart pathologies have been reported, and the pathogenic crosstalk between the liver
and the inflamed adipose tissue is widely accepted [85,86]. Our data add support for the
role of circulating EVs in this pathogenic crosstalk, pointing at the liver and kidneys as
early partners in crime.

Contrasting with our finding that no significant changes occur in the total concen-
tration of circulating EVs in diabetes, other authors have reported increased numbers of
circulating particles [21]. However, their EV isolation methods (i.e., polymer precipita-
tion and ultracentrifugation) are less specific than the EVTRAP method employed in this
study. Polymer precipitation and ultracentrifugation are known to isolate other types
of contaminating particles that could mistakenly be counted as EVs. On the other hand,
using flow cytometry quantification of blood cell-specific markers, a significant increase
in erythrocyte-derived EVs was associated with diabetes [21]. This latter finding is in
agreement with the significant enrichment that we observe in bone marrow cell-specific
markers among the upregulated EV proteins and phosphoproteins in people with T2DM
(Figure 6).

Our study has limitations, including the small sample size, the cross-sectional nature,
the lack of functional measures or imaging of the liver and kidneys, and the fact that
we cannot experimentally separate out tissue-specific EVs. Despite these limitations, the
study has several strengths, including the use of a well-phenotyped human cohort, careful
control for confounding factors, balanced sex, and the use of state-of-the-art methods
for broad non-antibody-based specific EV isolation, proteomics, phosphoproteomics, and
EV bioinformatics. As a complex disease, diabetes is likely the consequence of many
alterations in a variety of signaling pathways and biological processes. This study demon-
strated that an impressive number of proteome and phosphoproteome alterations are
detectable as early as the prediabetes state, with consistent patterns of systemic kinase
activity. Importantly, we uncovered sets of potentially activated kinases that appear to
drive specific protein phosphorylation signatures during diabetes development and/or
progression. These kinases represent potential novel therapeutic targets against diabetes.
Furthermore, phosphorylated kinases including PKCδ, AKT1, GSK3B, LYN, MAP2K2, and
MYLK are found circulating in EVs, hence with potential for long reach systemic action via
inter-organ communication. The role of the liver, with an apparently impaired EV protein
and phosphoprotein output in both prediabetes and diabetes, is also evidenced by our
study. Some of the markers identified by this work could be studied as early predictors of
diabetes development and/or progression and potentially indicate the need for aggressive
preventive strategies.

4. Materials and Methods
4.1. Samples

All procedures were approved by the AdventHealth Translational Research Institute
Institutional Review Board. Informed consent was obtained from all volunteers before the
initiation of the study. Archived serum samples from 30 human subjects (n = 10 per group,
ORIGINS study, ClinicalTrials.gov NCT02226640). The groups were selected, according to
ADA guidelines [87], to have either normal glucose tolerance (NGT), prediabetes (PDM),
or T2DM. Subjects with type 1 diabetes or other types of diabetes were not included in
the ORIGINS study. The inclusion and exclusion criteria of the subjects were described
previously (ClinicalTrials.gov, ID: NCT02226640). Participants were specifically selected
as a subgroup that was relatively well balanced for sex, age, and obesity. This selection
was partially automated using a custom script based on the MatchIt package [88] in the R
programing environment through a series of recursive pairwise propensity score matching
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cycles (between two of the study groups at a time) until all pairwise comparisons were
exhausted and the desired sample size was achieved).

4.2. Clinical and Metabolic Measurements

Anthropometric measures were performed according to standardized protocols. Body
composition was measured using a GE Lunar iDEXA whole-body scanner (GE, Madison,
WI, USA). Fasting blood samples were obtained, and subjects underwent a 2 h 75 g oral
glucose tolerance test (OGTT). On a different visit, an insulin-modified frequently sam-
pled intravenous glucose tolerance test (FSIVGTT) [89] was performed. Plasma glucose
concentrations were measured using the glucose oxidase method with a YSI 2300 STAT
Plus Analyzer (YSI Life Sciences, Yellow Springs, OH, USA). Plasma insulin and C-peptide
concentrations were determined using the MSD human insulin assay kit and C-peptide
kit, respectively (MSD, Rockville, MD, USA). HbA1c levels were measured using a Cobas
Integra 800 Analyzer (Roche, Basel, Switzerland). The β cell function was assessed by
calculating HOMA-B, the insulinogenic index [∆Ins0–30′/∆Gluc0–30′ ], and the insulin and
C-peptide areas under the curve (AUC) in response to OGTT. Insulin activity was assessed
by calculating HOMA-IR as described elsewhere. Data from the FSIVGTT were used to
calculate insulin sensitivity (Si) and acute insulin response to glucose (AIRg) using the
Minimal Model method of Bergman [90].

4.3. EV Isolation

EV purification was conducted using EVtrap (Tymora Analytical, Lafayette, IN, USA),
a non-antibody-based affinity technology developed by Tymora to specifically and quan-
titatively isolate EVs. In short, frozen serum samples were thawed, and any large debris
was removed by centrifugation at 2500× g for 10 min. The pre-cleared plasma samples
were then diluted 20-fold in PBS and incubated with EVtrap beads for 30 min [17]. Af-
ter supernatant removal using a magnetic separator rack, the beads were washed with
PBS, and the EVs were eluted by a 10 min incubation with 200 mM triethylamine (TEA,
Millipore-Sigma), and the resulting EV samples were fully dried in a vacuum centrifuge.

4.4. Mass Spectrometry (LC-MS/MS)-Based Methods Developed by Tymora Were Used to Detect
the Global EV Proteome and Phosphoproteome

The isolated and dried EV samples were processed as described previously [16].
Briefly, EV samples were lysed to extract proteins using the phase-transfer surfactant
(PTS) aided procedure [91], and the proteins were digested with Lys-C (Wako) at 1:100
(wt/wt) enzyme-to-protein ratio for 3 h at 37 ◦C. Trypsin was added to a final 1:50 (wt/wt)
enzyme-to-protein ratio for overnight digestion at 37 ◦C. After surfactant removal, the
resulting peptides were desalted using Top-Tip C18 tips (Glygen, Columbia, MD, USA)
according to the manufacturer’s instructions. Each sample was split into 99% and 1%
aliquots for phosphoproteomic and proteomic experiments, respectively. The samples were
dried completely in a vacuum centrifuge and stored at −80 ◦C. For phosphoproteome
analysis, the 99% portion of each sample was subjected to phosphopeptide enrichment
using PolyMAC Phosphopeptide Enrichment kit (Tymora Analytical, West Lafayette, IN,
USA) according to the manufacturer’s instructions, and the eluted phosphopeptides dried
completely in a vacuum centrifuge. For phosphoproteomics analysis, the whole enriched
sample was used, while for proteomics, only 50% of the sample was loaded onto the LC-MS.

Each dried peptide or phosphopeptide sample was dissolved at 0.1 µg/µL in 0.05%
trifluoroacetic acid with 3% (vol/vol) acetonitrile. A total of 10 µL of each sample was
injected into an Ultimate 3000 nano UHPLC system (Thermo Fisher Scientific, Waltham,
MA, USA). Peptides were captured on a 2 cm Acclaim PepMap trap column and separated
on a heated 50 cm column packed with ReproSil Saphir 1.9 µm C18 beads (Dr. Maisch
GmbH, Ammerbuch, Germany). The mobile phase buffer consisted of 0.1% formic acid
in ultrapure water (buffer A) with an eluting buffer of 0.1% formic acid in 80% (vol/vol)
acetonitrile (buffer B) run with a linear 60 min gradient of 6–30% buffer B at a flow rate of
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300 nL/min. The UHPLC was coupled online with a Q-Exactive HF-X mass spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA). The mass spectrometer was operated in the
data-dependent mode, in which a full-scan MS (from m/z 375 to 1500 with a resolution of
60,000) was followed by MS/MS of the 15 most intense ions (30,000 resolution; normalized
collision energy—28%; automatic gain control target (AGC)—2E4, maximum injection
time—200 ms; 60 sec exclusion).

4.5. Bioinformatic Analysis of MS/MS Data

The raw files were searched directly against the human Uniprot database with no
redundant entries, using Byonic (Protein Metrics, Cupertino, CA, USA) and Sequest search
engines loaded into Proteome Discoverer 2.3 software (Thermo Fisher Scientific, Waltham,
MA, USA). MS1 precursor mass tolerance was set at 10 ppm, and MS2 tolerance was set at
20 ppm. Search criteria included a static carbamidomethylation of cysteines (+57.0214 Da),
variable modifications of oxidation (+15.9949 Da) on methionine residues, acetylation
(+42.011 Da) at the N terminus of proteins, and phosphorylation of S, T, and Y residues
(+79.996 Da) for the phosphoproteomics data. The search was performed with full trypsin/P
digestion and allowed a maximum of two missed cleavages on the peptides analyzed from
the sequence database. The false discovery rates of proteins and peptides were set at 0.01.
All protein and peptide identifications were grouped, and any redundant entries were
removed. Only unique peptides and unique master proteins were reported.

All data were quantified using the label-free quantitation node of Precursor Ions
Quantifier through the Proteome Discoverer v2.3 (Thermo Fisher Scientific, Waltham, MA,
USA). For the quantification of proteomic or phosphoproteomic data, the intensities of pep-
tides/phosphopeptides were extracted with initial precursor mass tolerance set at 10 ppm,
minimum number of isotope peaks as 2, maximum ∆RT of isotope pattern multiplets—
0.2 min, PSM confidence FDR of 0.01, with hypothesis test of ANOVA, maximum RT shift of
5 min, pairwise ratio-based ratio calculation, and 100 as the maximum allowed fold change.
The abundance levels of all peptides and proteins were normalized using the total peptide
amount normalization node in the Proteome Discoverer. For calculations of fold change
between the groups of proteins, total protein abundance values were added together, and
the ratios of these sums were used to compare proteins within different samples.

4.6. Nanoparticle Tracking Analysis (NTA)

The size distribution and concentration of particles in EV preparations were analyzed
using dynamic light-scattering technology with a NanoSight NS300 instrument and NTA-
3.4 software (Malvern Panalytical, Malvern, UK). The instrument was equipped with a
488 nm blue laser module, flow-cell top plate, integrated temperature control, and a single-
syringe pump module. Samples were diluted using cell culture-grade water (Corning cat#
25-005-CI, Mediatech Inc., Manassas, VA, USA) to produce an optimal particle concentration
for final measurement in the range of 107 to 109 particles/mL. Final quantification included
5 standard measurements of 1 min of duration each, taken at a controlled temperature
of 25 ◦C and under constant recommended automatic flow. The camera level for video
capture was set to 12 and the detection threshold to 5 for all sample measurements.

4.7. Scanning Electron Microscopy (SEM)

Representative SEM images of EV samples were obtained at the Interdisciplinary
Center for Biotechnology Research Electron Microscopy Core Laboratory at the University
of Florida. In short, EV preps were fixed in Trump’s fixative for 30 min at room temperature,
then spread onto Isopore 0.2 µm GTTP filters (Merck Millipore, Tullagreen, Ireland) that had
been pre-treated with 0.01% poly-L-lysine solution. The filters were washed 3 times with
1x PBS and 3 times with filter-sterilized deionized water. The fixed EVs were microwave-
stabilized in a Pelco Biowave (Ted Pella, Redding, CA, USA), then dehydrated through an
ethanol series at 10, 25, 50, 75, 90, and 100%, followed by critical-point drying (CPD) using
a Tousimis CPD system (Tousimis, Rockville, MD, USA). Samples were sputter-coated with
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gold-palladium and imaged with a Hitachi SU5000 Schottky Field-Emission SEM (Hitachi
High-Technologies, Schaumburg, IL, USA).

4.8. Phosphosite-Centric Analyses

Phosphosite level analysis was conducted using PhosR, a Bioconductor package [29]
in the R 4.1.2 environment. Code for processing and downstream analyses of the phospho-
proteomic data was adapted from reference [28] and the PhosR package vignette. PhosR
uses a multistep framework to assess both the likelihood of a kinase recognizing a specific
motif and the dynamic phosphorylation profiles of sites [28]. Upstream kinases responsible
for the phosphorylation of specific detected phosphosites are identified, and potential
novel kinase-substrate pairs and global relationships between kinases are uncovered. In
summary, phosphosite filtering (forced to be present in at least 50% of the samples from one
study group) and imputation (site and condition-specific imputation with scImpute using
50% as quantification rate threshold per condition and tail-base imputation with tImpute
functions) was performed. We then implemented quantile normalization of the imputed
data using the limma Bioconductor package and conducted differential phosphosite expres-
sion analysis using linear models and moderated empirical Bayes statistics implemented in
limma [92,93]. Kinase perturbation analysis was then conducted using the perturbPlot2d
function from the directPA R package [27]. DirectPA tests the combined effects of different
treatments (conditions in our case) by rotating polar coordinates in two-dimensional space
when the experiment contains two perturbations (PDM and T2DM groups) and correspond-
ing controls (NGT group). For kinase-substrate prediction analysis conducted using the
PhosR package, the normalized expression data were standardized, filtered for upregulated
phosphosites, and used for the calculation of combined kinase-substrate scores based on
knowledge of kinase recognition motifs, phosphoproteomics dynamics, and prediction of
novel kinase-substrate relationships using an adaptive sampling-based positive-unlabeled
learning method [28]. The PhosphoSitePlus annotation database was used as the source of
kinase-substrate annotations [94].

4.9. Detection of Tissue-Specific Signatures and KEGG Pathway Enrichment Analysis

The lists (signatures) of tissue-specific proteins were downloaded from the Human
Protein Atlas [95] (https://www.proteinatlas.org/humanproteome/tissue/tissue+specific,
accessed on 12 June 2021). Enrichment for the tissue-specific signatures among the lists of
differentially expressed EV proteins and phosphoproteins was assessed via the implemen-
tation of the hypergeometric test using the phyper function from the stats R package. The
complete list of proteins reported by Vesiclepedia [96] plus the additional novel EV proteins
detected by our proteomics experiments were used as background for the hypergeometric
tests. Enrichment of KEGG pathway annotations among the sets of differentially expressed
proteins and phosphoproteins was assessed using clusterProfiler [97] with a p < 0.05 and
adjusted p < 0.1 as thresholds for statistical significance.

4.10. Downstream Effect Analysis (DEA)

Using the Ingenuity® Pathway Analysis (IPA) software (QIAGEN, Redwood City,
CA, USA), we conducted DEA [33]. In summary, this analysis aims to identify biological
functions that are expected to change in response to the gene or protein expression patterns
observed in the data. The analysis is based on the calculation of “two scores that address
two independent aspects of the inference problem: an ‘enrichment’ score (Fisher’s exact test
(FET) p-value) that measures overlap of observed and predicted regulated gene sets, and a
Z-score assessing the match of observed and predicted up/down regulation patterns.” [33].
The activation Z-score is based on the user’s profiling data and prior knowledge of expected
causal effects between genes and biological functions stored in the Ingenuity® Knowledge
Base (QIAGEN, Redwood City, CA, USA).
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4.11. Statistical Analysis

Data normality was tested using the Shapiro–Wilk test, and nonnormal data were log-
transformed to approximate normality. Differences in baseline clinical characteristics were
assessed using the Welch two-sample t-test (for continuous variables) or the Fisher exact test
(for categorical variables). For assessment of differential expression in EV-shuttled proteins
and phosphoproteins, linear models using the limma package [92] were implemented. Our
models included age, sex, and BMI as established covariates. Partial correlations were
also calculated in the R environment, adjusting for the same covariates. Post-hoc analysis
was performed using the phia package. Calculated effects with fold change greater than 2
(log2FC > 1 or log2FC < −1 and adjusted p-value < 0.05) and correlations with two-tailed
p < 0.05 were considered significant. False discovery rates (FDR) correcting for multiple
testing were calculated using the Benjamini–Hochberg correction as implemented for the
p.adjust function in the stats package.

5. Conclusions

This work makes an important contribution toward defining the proteomic and phos-
phoproteomic landscape of circulating EVs across the diabetes disease spectrum. Among
key findings, our data indicate that reduced levels of AKT1 protein but with increased
phosphorylation status in circulating EVs, likely preceded by activation of CDK1 and
PKCδ kinases (among others) since the prediabetes stage, may underlie the development
of pathogenic events conducing to diabetes. Among other characteristic common changes
in the prediabetic and diabetic EVs, “integrin switching” appear to be a central feature
of functional enrichment networks with a potential impact on disease development and
the known increased risk for complications. In addition, a highly significant signature of
downregulated liver-specific EV proteins is demonstrated in both the EV proteome and
phosphoproteome as early as prediabetes. This suggests a reduced EV output from the
liver, among other possible causes, due to an impaired endocytic secretory pathway in
the early stages of disease development. Suppressed liver cell death functions contrasted
by activated cell death functions in kidneys in prediabetes may represent early events
contributing to the known increased risk for steatosis/NASH and renal fibrosis/diabetic
nephropathy comorbidities in people with type 2 diabetes. We further demonstrated that
upregulated EV proteins and phosphoproteins involved in platelet activation, coagulation,
chemokine signaling, and oxidative phosphorylation pathways are evident early during
the development of diabetes.
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