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Abstract: The contribution deals with the synthesis of the poly(methacrylate)-based copolymers,
which contain ferrocene and/or terpyridine moieties in the side chains, and the subsequent analysis
of their self-assembly behavior upon supramolecular/coordination interactions with Eu3+ and Pd2+

ions in dilute solutions. Both metal ions provoke intra and inter molecular complexation that results
in the formation of large supra-macromolecular assembles of different conformation/shapes. By ap-
plying complementary analytical approaches (i.e., sedimentation-diffusion analysis in the analytical
ultracentrifuge, dynamic light scattering, viscosity and density measurements, morphology studies
by electron microscopy), a map of possible conformational states/shapes was drawn and the corre-
sponding fundamental hydrodynamic and macromolecular characteristics of metallo-supramolecular
assemblies at various ligand-to-ion molar concentration ratios (M/L) in extremely dilute polymer
solutions (c[η] ≈ 0.006) were determined. It was shown that intramolecular complexation is already
detected at (L ≈ 0.1), while at M/L > 0.5 solution/suspension precipitates. Extreme aggrega-
tion/agglomeration behavior of such dilute polymer solutions at relatively “high” metal ion content
is explained from the perspective of polymer-solvent and charge interactions that will accompany
the intramolecular complexation due to the coordination interactions.

Keywords: metallo-supramolecular complexes; molecular hydrodynamics; solution properties; ana-
lytical ultracentrifugation; conformation; metal-ligand interactions

1. Introduction

Metallopolymers represent a special class of macromolecules in which the intrinsic
properties of conventional polymers (e.g., their mechanics and processability) are combined
with those due to the presence of the metal centers (e.g., catalytic, magnetic, photophysical
and electrochemical behavior) [1]. Within the last decades, a range of applications has
been established on the basis of metal-containing polymers; these include inter alia opto-
electronic devices for energy storage or interconversion, immobilized catalysts, pharma-
ceuticals, self-healing materials and precursor materials for nanoparticle preparation [1–4].
Research in these fields has mainly been focused on optimizing the preparation, enabling
a reliable characterization and tuning the performance of the materials with respect to
the fields of interest. An understanding of how the distribution of charged metal sites
along a polymer chain affects the conformation and/or aggregation in solution is of central
importance to optimize the structure and, thereby, to improve the property of interest
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(e.g., intra-/interchain energy-transfer processes, accessibility of catalytically or pharma-
ceutically active centers, etc.). However, the molecular properties of polymers containing
metal ligands in the side chains and the knowledge on the corresponding mechanism of
supramolecular assembling in dilute solution are far from being fully understood from
the perspective of polymer physics and molecular hydrodynamics, since such polymer
systems have hardly been looked at in a systematic fashion [5–12]. Consequently, the
presented research deals with the investigation of the complexation behavior of tpy- and
Fc-containing methacrylate-based copolymers in very dilute solution under the addition of
Eu3+ and Pd2+ metal ions (tpy: 2,2′:6′,2”-terpyridine; Fc: ferrocene). The investigation was
performed from the basic perspectives of polymer physics and molecular hydrodynamic
applying mutually reinforcing set of classical and modern analytical techniques such as an-
alytical ultracentrifugation, dynamic light scattering, viscosity and density measurements,
scanning microscopy, etc.

2. Material and Methods
2.1. Materials

All chemicals and reagents were purchased from Sigma Aldrich (Taufkirchen, Germany),
TCI (Eschborn, Germany) or Fisher Scientific (Schwerte, Germany). For monomer syn-
thesis all compounds were employed without further purification. Prior to polymer-
ization, toluene was purified by distillation over calcium hydride. The initiator, 2,2′-
azobisisobutyronitrile (AIBN), was purified by recrystallization from ethanol. The glass-
ware used for the syntheses was oven dried at 110 ◦C. The tpy- and Fc-containing monomers
1 and 2, respectively, were prepared according to procedures published elsewhere [13,14].

2.2. General Protocol for the Polymer Synthesis via RAFT

A microwave vial (5 mL) was charged with the respective monomers and a toluene
stock solution, which contained AIBN (the initiator) and CPDB (the chain-transfer agent).
The resulting solution was degassed by purging with a N2 stream for 30 min. Subsequently,
the sealed vial was heated to 70 ◦C for 12 h. The crude polymer was precipitated by
dropping the cooled reaction mixture into MeOH (20 mL). The monomer was removed by
dialysis in THF using a size-exclusion membrane (MWCO 3300 Da).

2.3. Structural Characterization of the Polymers
1H-NMR spectra were recorded on an AVANCE I 300 MHz instrument (Bruker,

Ettlingen, Germany) in CD2Cl2 (euriso top) at T = 25 ◦C. Chemical shifts are reported
in ppm and are referenced using the residual solvent signal. Size-exclusion chromatog-
raphy (SEC) was carried out using a 20er series instrument (Shimadzu, Jena, Germany)
comprising of a DGU-14A degasser, a CBM-20A controller, a LC-20AD pump, a SIL-20AHT
auto sampler and a CTO-10AC vp oven. For the separation, a PSS SDV guard column
(1000 Å to 100,000 Å; 5 µm particle size) was used. The signal detection occurred via a
RID-10A detector. The samples were analyzed in a chloroform/isopropanol/triethylamine
solvent mixture (94:2:4 ratio) at T = 40 ◦C and a flow rate of 1 mL/min. The molar mass
and dispersity were determined using a linear PMMA calibration (400 to 106 gmol−1, PSS
GmbH, Mainz, Germany).

2.4. Analytical Ultracentrifugation (AUC)

Sedimentation velocity experiments were performed with a ProteomeLab XLI AUC
system (Beckman Coulter, Brea, CA, USA), using double-sector Epon or Aluminum center-
pieces with a 12 mm optical solution path length and a four-hole rotor (An-60Ti). The rotor
speed was varied between 1500 to 40, 000 rpm, depending on the sample. The sector-shaped
cell compartments were filled with ∼420 µL of sample solution and ∼440 µL of the solvent
(THF) in the reference sector. Before the run, the rotor was equilibrated for approximately
1 h at T = 20.0 ◦C in the AUC. Sedimentation velocity profiles were recorded by the
absorbance and interference/refractive index (RI).
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2.5. Dynamic- and Static-Light Scattering

Batch dynamic light scattering (DLS) and static light scattering (SLS) experiments were
carried out using a PhotoCor-Complex apparatus (Photocor Instruments Inc., Moscow,
Russia), equipped with a real-time correlator (288 channels, minimal correlation time of
τ = 10 ns). The wavelength of the laser was λ = 405 nm; the intensity fluctuations were
recorded at scattering angles (ϑ) ranging from a 30

◦
to a 140

◦
scattering angle. The exper-

iments were performed at a temperature of T = 20.0 ◦C. The obtained autocorrelation
functions of the scattered light intensities were processed using the DynaLS Software (Pho-
tocor, Moscow, Russia), which provides the respective distributions ρ(τ) of the scattered
light intensities by the respective known relaxation times, τ. The dependence between 1/τ
(where τ is the maximum intensity of the ρ(τ) distribution) and the squared scattering vec-
tor q2 = (4πn/λ sin(ϑ/2))2 for all the studied macromolecule populations was observed
being a straight line passing through the plot origin, i.e., representing the translational
diffusional processes recorded. The translational diffusion coefficients at the particularly
measured macromolecule concentrations in solutions, D, was calculated from the slope of
this recorded line according to the following relationship: 1/τ = Dq2 [15].

2.6. Densitometry

The density measurements for partial specific volume determination were carried
out in a density meter (DMA 5000M, Anton Paar, Graz, Austria) according to the classical
procedure of Kratky et al. [16] that is commonly applied in diverse recent experimental
studies [17–21].

3. Results and Discussion

The polymers containing tpy and/or Fc moieties in the side chains, were prepared
via a reversible addition-fragmentation chain-transfer (RAFT) polymerization. This par-
ticular polymerization method has proven its versatility for the synthesis of defined poly-
mers, including metal-containing ones [1,22]. For example, tpy-equipped homopolymers
and copolymers were prepared via RAFT processes [23,24]. The same holds true for Fc-
containing polymers, which can inter-alia be prepared in a highly controlled fashion by
RAFT [25]. Due to the high compatibility of the RAFT polymerization with tpy and Fc moi-
eties, we opted for this approach and the polymers TerPol and TerFerCop were prepared
by standard RAFT conditions using AIBN and CPDB, as the initiator and chain-transfer
agent, respectively (CPDB: 2-cyano-2-propylbenzodithioate; Scheme 1).
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Scheme 1. Schematic representation of the synthesis of TerPol and TerFerCop via RAFT. Scheme 1. Schematic representation of the synthesis of TerPol and TerFerCop via RAFT.

The structural characterization of TerPol and TerFerCop was performed by 1H-NMR
spectroscopy and size-exclusion chromatography (SEC). The latter revealed relatively
narrow dispersities (Ð of ca. 1.4) as well as molar masses (Mn) which were in fair agreement
with the applied monomer-to-initiator (M/I) ratios. The SEC curves, as recorded with
a refractive-index (RI) detector, are depicted in Figure 1. According to a linear PMMA
calibration, the Mn values of the polymers were 39, 000 gmol−1 and 29, 000 g/mol−1 for
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TerPol and TerFerCop, respectively. The 1H-NMR spectra (Figure 2, Figure S1) clearly
revealed the incorporation of the tpy and the Fc moieties into the polymer. In the case
of TerFerCop, the tpy-to-Fc ratio of 1 : 1.24 was calculated from the integrals of the
characteristic tpy and Fc signals in the range of 7 to 9 ppm and 4.75 ppm, respectively (see
the Supporting Information).
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Figure 1. SEC curves of polymers TerPol and TerFerCop (solvent: chloro-
form/isopropanol/triethylamine in a 94 : 2 : 4 ratio, flow rate of 1 mL/min).
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Figure 2. 1H-NMR spectra of TerPol (left) and TerFerCop (right). For both spectra: 300 MHz,
T = 25 ◦C, CD2Cl2.

From the perspective of classical polymer physics/molecular hydrodynamics, in order
to understand fundamental structure-property correlations that determine the formation
and behavior of the polymer-based metallo-supramolecular assemblies at different metal to
ligand ratio (M/L) in solution, systematic investigations/determinations of certain solution
characteristics that are related to the basic macromolecular parameters (molar mass (M),
size (R), shape) will be required. Such fundamental solution characteristics Equation (1)
will basically include the sedimentation coefficient–s, S, the translation diffusion coefficient
D,
[
cm2s−1] and the intrinsic viscosity [η],

[
cm3g−1] [26,27]:

s =
M(1− υρ0)

NA6πη0R
D =

kBT
6πη0R

[η] = Φ
R3

η

M
(1)
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where M—the molar mass, R—the hydrodynamic radius, υ—the partial specific volume,
ρ0—solvent density, η0—dynamic viscosity of the solvent, NA—Avogadro’s number, kB—
Boltzmann constant, Φ—Flory hydrodynamic parameter, Rη—viscosity hydrodynamic size.

Due to the basic inability to experimentally determine intrinsic viscosities in case of
very dilute solutions/suspensions in the present study, we will mainly focus the attention
on the sedimentation-diffusion analysis and associated with it measurements (i.e., par-
tial specific volume), while the intrinsic viscosity measurements were determined only
for the tpy-based homopolymer and its copolymer with additional Fc units in order to
estimate the degree of dilution (the Debay parameter c[η]). At first, we will briefly look
on the characteristics of the initial polymers (TerPol and TerFerCop), their molecular pa-
rameters/distributions will serve as reference points for later comparison/discussions.
Furthermore, in the first part we will as well introduce main approaches used for the
analysis of the sedimentation velocity data obtained by the analytical ultracentrifugation.
After that we move on to the results and discussion of the complexation studies of the tpy-
containing polymers with Eu3+ and Pd2+ salts ((Eu(CF3SO3)3 and PdCl2 (CH3CN)2).

3.1. Initial Polymers and Sedimentation Data Analysis

In Figure 3 distributions (A,B) of the sedimentation coefficients for the TerPol and
TerFerCop are accompanied by the sets of the recorded sedimentation profiles (concen-
tration signal over radial distance) (C,D) that correspond to the lowest analyzed solute
concentration (c ≈ 0.03%).
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Figure 3. (A,B) Differential distributions of the sedimentation coefficients at different solute concen-
trations for TerPol and TerFerCop in THF, T = 20 ◦C, (C,D) corresponding sedimentation profiles for
the lowest studied polymer concentration recorded at n = 40, 000 rpm by the interference (dn/dc)
detection system.

The sedimentation data was analyzed using the Sedfit Software [28]. The core problem
in the analysis of the sedimentation velocity data, sine the AUC and the corresponding
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physical/theoretical background was established [29–31] lies within the solutions of the
fundamental Lamm equation Equation (2):

∂c
∂t

=
1
r

∂

∂r

[(
D

∂c
∂r
−ω2rsc

)
r
]

(2)

where c is the solute concentration, t is the time, r is the radial distance, ω2 = (2πn/60)2 is the
angular velocity, D is the translation diffusion coefficient, s is the sedimentation coefficient.

This equation describes the evolution of the sedimenting species in time (their re-
spective concentration profiles) during the centrifugation process, and it contains two
very important physical characteristics–the sedimentation coefficient, s, and the transla-
tion diffusion coefficient D that describe corresponding physical processes in the solute.
Since the Lamm equation is a partial differential equation it can be numerically solved,
providing thereby information on both the sedimentation and the diffusion [32–34]. The
initial information that is analyzed is the set of the sedimentation profiles, representing the
radial position of the sedimenting particles/molecules in time. In Figure 3, the latter ones
are shown in graphs (C,D), while graphs (A,B) display the corresponding distributions
obtained by different analytical approaches implemented into Sedfit—the c(s) [35], the
c(s, f / f0) [36] and ls − g∗(s) [37] analysis. The c(s) and c(s, f / f0) models numerically
solve the Lamm equation, while the ls− g∗(s) analysis does not, considering species that
experience no diffusion, and the data set (sedimentation profiles) is analyzed basically using
the least square boundary approach [38]. Furthermore, it should also be noted that the
c(s) model is intrinsically confined within the spherical approach ( s ∼ M2/3), providing
also only average diffusion coefficient (or f / f0) over all spices presented in solution, while
the c(s, f / f0) is known to be a model free approach having no any presumptions on the
particle shapes that as well provides corresponding distribution of the diffusion coefficients
(or f / f0).

Coming back to Figure 3, it can be seen that in case of c(s) and c(s, f / f0) models, the
TerPol and TerFerCop are characterized by multimodal distributions. Such discretization
of the sedimentation distributions is a result of the performed Lamm equation analysis.
The presence of discreet number of individual peaks in the distributions of such synthetic
polymers does not necessarily assume the physical presence of such distinct molecular
fractions in the solution, since the statistical nature of the polymerization process does not
favor the synthesis of such individual fractions, but rather a continuous distribution of
molecular species is expected. The multimodality and overall broadness of the distributions
should be considered in the first place as a representation of relatively high molecular
dispersity of the studied polymer solutions. The actual distribution may be represented
as a single broad peak that covers entire range of the sedimentation coefficients. Such
distributions can be obtained by the ls− g∗(s) analysis. Its application is favorable for
systems with relatively low diffusion spreading of the sedimentation boundary, i.e., high
sedimentation rate, however in spite of the more natural distribution obtained by the
ls − g∗(s) we will still stick to the higher resolution distributions obtained by c(s) and
c(s, f / f0) models in the further analysis, since this analysis as well provide information
about the diffusion coefficients/frictional ratios. The average sedimentation coefficients
obtained by the ls− g∗(s), c(s) or c(s, f / f0) will be the same within the experimental error.

The diffusion coefficients, in case of c(s) and c(s, f / f0), are initially “represented” in
the form of the frictional ratios ( f / f0)—very popular construct in the molecular biophysics,
where f = 6πηoR—is the translation friction coefficient of the particle/molecule under
the study and f0 = 6πηoRsph is that of the spherical particle having the same mass and
the density as the studied one. Such a construct initially is used to estimate the overall
asymmetry of studied objects based on some model systems, for example prolate or oblate
ellipsoid of revolution or rod/cylinder [39–41]. The diffusion coefficient D can then be
reestablished as:

D0 =
kBT(1− υρ)1/2

η3/2
0 9π

√
2( f / f0)

3/2(s0υ)1/2 (3)
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The estimated sedimentation and diffusion coefficients together with the determined
partial specific volumes are then can be used to calculated the molar masses via the
Svedberg equation Equation (4) (Table 1). The partial specific volume υ of the initial
polymers was determined by the classical density measurements of differently concentrated
polymer solutions [16,27] and constitutes 0.75 cm3g−1 and 0.65 cm3g−1 for the TerPol and
TerFerCop, respectively.

M =
RTs0

(1− υρ0)D0
= 9π

√
2NA([s] f / f0)

3/2√υ (4)

where [s] = s0η0
(1−υρ0)

—intrinsic sedimentation coefficient, f / f0—frictional ratio, υ—partial
specific volume, ρ0—density of a solvent, η0—dynamic viscosity of the solvent, NA—
Avogadro’s number.

Table 1. Hydrodynamic and Molecular Characteristics of the Initial Polymers in THF, 20 ◦C.

Sample [η]
cm3g−1

s
S f /f 0

DSed × 107

cm2s−1
DDLS × 107

cm2s−1
Mw (SEC)
gmol−1

MSD
gmol−1

υ
cm3g−1

TerPol 10.8 6.0 1.60 9.9 9.6 55,000 38,000 0.75
TerFerCop 13.3 10.4 1.76 8.1 7.1 41,000 70,000 0.65

The found molar masses of 38,000 ± 3000 gmol−1 and 70,000 ± 10,000 gmol−1 for
the TerPol and TerFerCop systems by the sedimentation-diffusion analysis on the first
site are markedly different from the ones obtained by the conventional SEC analysis. But
taking into account rather high dispersity of the polymers and the use of linear PMMA
samples as standards for the SEC analysis we may conclude on the reasonable agree-
ment between the values. For the further analysis we will use the values obtained by the
sedimentation-diffusion analysis (MsD), since it is considered to be an “absolute” character-
ization technique.

3.2. Complexation Studies in Solution

The complexes were prepared by mixing equal volumes of corresponding polymer and
salt solutions ((Eu(CF3SO3)3 and PdCl2 (CH3CN)2) at appropriate concentrations that cover
the following range of metal to ligand molar ratios: 0.01 ≤ M/L ≤ 0.5. In order to promote
formation of individual intra-molecular complexes rather than intermolecular network
like structures and to reduce possible non-ideal effects at high polymer concentrations,
the complexation was studied in a very dilute polymer solutions were the corresponding
Debay parameter—c[η] [27], that characterizes the volume fraction occupied by the macro-
molecules in solution, was∼ 0.006, meaning that only∼0.6% of the total solution volume is
occupied by the macromolecules. In our further discussion we will first look on the upper
half of the M/L range (0.1 ≤ M/L ≤ 0.5) that correspond to the molar salt concentrations
of ∼ 1× 10−4 M to ∼ 5× 10−4 M. It should be noted that for all studied polymer-metal
systems, no stable solutions/suspensions were obtained at M/L > 0.5. After that we will
focus on the extra small salt contents (0.01 < M/L < 0.1) and subsequently summarize the
data for further analysis and discussion.

Figure 4 shows evolution of the distributions of the sedimentation coefficients for the
TerPol and TerFerCop systems coordinated with Eu3+ and Pd2+ ions at the M/L ratios
of approx. 0.1, 0.3 and 0.5. It can be seen that in general all studied systems follow the
same trend revealing a shift towards higher sedimentation coefficients with increasing
salt content. At the M/L ratios ∼ 0.1, the distributions are still close to the range of the
sedimentation coefficients found for the initial macromolecules (1 ≤ s, S ≤ 40), with
yet clear changes in the composition and position of the main sedimenting species. At
this stage we believe, we still have a molecular like solutions were the metallo-polymer
complexes are still can be considered to be in dissolved state, while once we increase the
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salt content approximately twice, the substantial increase of the average sedimentation
coefficients 100 ≤ sav, S ≤ 1000 shifts us towards suspension like systems. However, the
distributions, in all cases, clearly show the presence of relatively low molar mass fractions,
at the same time the overall dispersity of the solution/suspensions is much increased.
Further increase of the salt content close to M/L ≈ 0.4− 0.5 results in the formation of
large supramolecular assembles/complexes having extremely broad distributions with the
average sedimentation coefficients s >> 1000 S.
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Figure 4. Distributions of the sedimentation coefficients for the terpyridine homopolymer (A,C) and
terpyridine-ferrocene copolymer (B,D) solutions at different concentrations of Eu3+ (A,B) and Pd2+

(C,D) salts in THF, cpol = 0.05%, T = 20 ◦C, obtained with Sedfit, c(s, f /f 0) model.

At high salt concentrations we observe full “transformation” from the molecular like
solutions were the macromolecules are considered to be dissolved towards colloidal like sys-
tem that characterizes by one or another type of phase segregation in solution/suspension,
such as for example polymer-based nano/macro particles [42]. Also, we do not see any
specific changes in the overall picture considering different polymer systems/metal ions. It
is only notable that in general the TerFerCop in comparison to TerPol systems revealing
generally higher values of the sedimentation coefficients. It is also notable that in compari-
son to Eu3+, the Pd2+ systems show as well generally higher values of the sedimentation
coefficients and overall dispersity of the distribution. This is quite interesting, since while
the Eu3+ ions are capable to coordinate several tpy groups, the Pd2+ ions are known to
form complexes with tpy of square-planar geometry and in the first approximation, since
the coordination number of Pd2+ is only 4 and it should not be able to coordinate several
tpy ligands. Further discussion regarding the complexation mechanism will be given
later (vide infra). At almost an order of magnitude lower the salt content more gradual
changes/evolution of the initial distributions which are shown in the Figure 5 and SI
Figure S1 were observed.
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Figure 5. Distributions of the sedimentation coefficients for the TerPol (top) and TerFerCop (bottom)
polymer systems at different concentration of the Eu3+ salt, THF, cpol = 0.05%, T = 20 ◦C, obtained
with Sedfit, c(s, f /f 0) model.

It can be seen that at the lowest salt content (M/L ≈ 0.02), the corresponding dis-
tributions has either clearly shifted keeping the composition the same, like in the case
of terpyridine homopolymer system with Eu3+ ions, or became notably broader with a
shoulder towards higher molar mass range (higher sedimentation coefficients) like in the
case of TerFerCop Eu3+ complexes. The majority of the material (∼ 90%) in the distributions
(Figure 5) can surely be attributed as dissolved/solvated individual supra-molecular coils.
At the same time, we yet observe some fractions of extra higher molar mass aggregates
(< 10%), that likely represent already formed/aggregated supramolecular complexes of
high molar mass. Further analysis, in particular determination of the average molar masses
and/or hydrodynamic sizes/shapes of the supramolecular complexes will require the
knowledge of their partial specific volume or density of the sedimenting objects.

3.3. Partial Specific Volume

Fundamentally, the partial specific volume (υ, p.s.v.) describes a volume change of
a system upon an addition of a mass unity, at constant temperature (T), pressure (P) and
mass of other constituents j:

υi =

(
∂V
∂gi

)
T,P,j

(i 6= j) (5)

In the first approximation it is often considered as the value reciprocal to the density
(υ = 1

ρ ), with the corresponding units of
[
cm3g−1]. For the homologous series of polymers,

one should expect an independency of the p.s.v. from the molar mass, but the value may
be influenced by the solvent and charge interactions, solvation rate etc. [27].

The initial polymers, as was as mentioned above have the values of υ = 0.75 cm3g−1

for TerPol and υ = 0.65 cm3g−1 for TerFerCop, that were determined by the classical
density measurements. We see that the presence of the ferrocene group in the polymer
chain results in the notable decrease of the υ in comparison to terpyridine homopolymer,
which is basically due to the presence of “heavy” metal ion.

Partial specific volume of the supramolecular assembles at different M/L ratios were
determined by the density variation/contrast approach [43], since the classical density
approach can hardly be applied for such systems. The density variation approach comes
down to the sedimentation velocity experiments in isotopically different solvents (THF
and THFd8 in the current case). The partial specific volume can then be calculated). Assum-
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ing the same polymer-solvent interactions, the recorded difference in the sedimentation
coefficients, due to the higher viscosity and density of the deuterated solvents, the p.s.v.
can be calculated as Equation (6):

υ =
s2η2 − s1η1

s2η2ρ1 − s1η1ρ2
(6)

where s1 and s2 are the sedimentation coefficients in THF and THFd8 and η1 = 0.499 cP, ρ1 =
0.8876 gcm−3 and η2 = 0.519 cP (50% THFd8), 0.528 cP(75% THFd8), ρ2 = 0.93898 gcm−3

(50% THFd8), 0.96554 gcm−3(75% THFd8) are the dynamic viscosities and densities of the
used THF and THF-d8, respectively. The estimated values are shown in Figure 6 as a
function of metal salt concentration.
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Figure 6. Partial specific volume dependence on the concentration of Eu3+ salt for the TerPol and
TerFerCop respectively in THF, T = 20 ◦C.

It is notable that already at the very low metal-salt concentrations the υ has slightly
decreased, which is reasonable, due to the appearance of the heavy-metal ions on the
polymeric chain. However, at the highest salt concentration (M/L = 0.4− 0.5) we obsreve
a notable increase of υ to values of 0.87 cm3g−1 for TerPol and to 0.76 cm3g−1 for TerFerCop,
signifying that the overall density of the supramolecular assembles, in spite of the presence
of the metal ions has decreased. Having at hand experimentally determined values of υ
allow us to determine the corresponding hydrodynamic sizes, diffusion coefficients, molar
masses and overall asymmetry of the supramolecular complexes (vide infra). But at first,
we will summarize the results of the sedimentation velocity experiments in terms of the
dependences of the average sedimentation coefficients and estimated average frictional
ratios f / fsph as a function of M/L ratio (Figure 7).

Both graphs are plotted in the double-logarithmic manner. It is seen that the sedimen-
tation dependence generally resembles the overall picture shown by the corresponding
distributions discussed above—gradual increase of the average sedimentation coefficients
upon increase of the metal content, which can be well fitted by the second order poly-
nomial function. A substantial increase of the average sedimentation coefficients begins
at M/L > 0.1. The frictional ratio dependence, in its way, generally resemble/supports
the characteristic behavior of the sedimentation coefficients, showing small, yet notable
decrease of the average f / f0 values at M/L > 0.1, that could be a reflection of an active
intermolecular complexation/agglomeration of the initially formed individual supramolec-
ular assembles. Furthermore, it is also seen that in comparison to the initial polymers,
the average f / f0 in the first half of the M/L range (from ∼0.02 to ∼0.1) showing as well
notable decrease. This may reflect an initial compactization of the polymer coils due to
the intramolecular compactization caused by coordination of one metal ion with multiple
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ligand groups which tends macromolecule to reduce its volume [5]. However, despite the
overall decrease of the f / f0 ratio, the average values tend to stay at the end at 1.5± 0.1,
which may presume the presence of rather asymmetrical structures. It can then be for
example transformed into the axial ratio (p = a/b) of the corresponding prolate ellipsoid
of revolution. which in our case (assuming no solvation) will be a/b (prolate) ≈ 9, which
in general fits well with corresponding structures observed by the electron microscopy
(Figures 8 and S2–S5) showing the presence of variously assembled complexes/structures.
Specifically, in Figure 8, the SEM images visualize the TerFerCop-Eu3+ complexes at M/L
ratios of ∼0.1, ∼0.3 and ∼0.5. The SEM images are accompanied by the corresponding
high-resolution distributions of the f / f0 over the sedimentation coefficients obtained by
the c(s, f / f0) analysis. It is seen that at (M/L = 0.1), we have predominantly individual
particles with an average diameter of 15± 10 nm. At M/L = 0.3, a large number of assem-
bled/aggregated supramolecular particles with the sizes around 50 nm and predominantly
worm/rod-like shapes. Separate structures consist of ∼2 to ∼10 individual particles.
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Figure 7. Top—double logarithmic dependence of the average sedimentation coefficients (s) on the
metal to ligand molar ratio (M/L), Bottom—double logarithmic dependence of the estimated fric-
tional ratios ( f / f0) on the (M/L) For both graphs, data points on the Y-axis show the corresponding
values at M/L = 0 (initial polymers).

The corresponding frictional ratio distribution does show, that while the majority of the
material has f / f0 ≤ 1.3, there are some distinct fractions having higher than average f / f0
values (up to ∼1.8), that can be associated with the presence of worm/rod like structures
that we observe on the surface in the solution/suspension as well. At the M/L = 0.5 further
aggregation and formation of long wormlike and other type of aggregated/assembled
structures/surfaces consisting of individual particles with the sizes ∼150 nm was observed
(SI Figures S1–S4). Sedimentation velocity experiments of the metal-polymer suspensions
at different periods of time, shows that the system is very dynamic. Figure 9 demonstrates
the comparison of the sedimentation and f / f0 distributions at the M/L ∼ 0.5 for the
TerFerCop-Eu3+ system. We observe that substantial increase of the average sedimentation
coefficients is accompanied by the corresponding increase of the frictional ratios, signifying
formation of larger, but at the same time more asymmetrical structures/complexes.
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analysis, resolution for s 200 points, resolution for f /f 0 10 points, THF, 20 ◦C.
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Figure 9. Sedimentation-diffusion analysis (c(s, f /f 0) model), of the TerFerCop system with Eu3+

metal ions at M/L = 0.5 at different periods of time. Top—differential distributions of the sedimenta-
tion coefficients, bottom corresponding sedimentation and frictional ratio distributions ((A) initial,
(B) 72 h), resolution for s 200 points, resolution for f /f 0 10 points, THF, 20 ◦C.

Further discussions regarding complexation behavior will be given referring to Figure 10
which shows number of macromolecules forming one supramolecular complex/aggregate
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and the average hydrodynamic diameter as a function of M/L ratio, in a double logarith-
mic manner.
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Figure 10. Double logarithmic dependence of number of macromolecules (left y-axis, empty symbols)
and average hydrodynamic diameter (right y-axis, filled symbols) on the ligand to metal ion molar
ratio (M/L). A–F represents approximate conformational zones that are discussed in the text.

The number of macromolecules was calculated based on the molar mass estimations
of the complexes via the Svedberg equation Equation (4) using the average sedimentation
and diffusion coefficients (or f / f0) found for the complexes and comparing it to the molar
masses of the initial polymers. The hydrodynamic sizes, on the one side were calculated
from the sedimentation velocity data as Equation (7):

d = 3
√

2
√
[s]υ( f / f0)

3/2 (7)

where [s] = sη0
(1−υρ0)

is the intrinsic sedimentation coefficient, η0, ρ0 are the dynamic viscosity
and density of the solvent, υ is the partial specific volume.

The presence of the term f / f0 in Equation (7) does allow one, to a certain extent, to ac-
count for the asymmetry of the complexes, collapsing to spherical limit at f / f0 = 1. For the
simplicity Figure 10 shows the average hydrodynamic diameters calculated by Equation (7),
however the sizes of certain individual fractions can as well be obtained. On the other
side the hydrodynamic sizes were monitored/determined by the batch DLS measurements,
the results are summarized in Figure S6 and generally agrees well with the sedimentation
data showing presence of two main fractions—the large one and the small one, that can
generally be attributed to the “individual” or molecular supramolecular assembles and
their large macromolecular aggregates. Moreover, due to the higher sensitivity for larger
sizes, the DLS analysis shows that the large supramolecular aggregates (∼200 nm) are
already present at M/L ≈ 0.02.

The dependence (Figure 10) was divided into the several zones—A, B, C, D and F. The
first “green” zone A describes the area of extremely low salt content (0.02 ≤ M/L < 0.1).
The average molar mass of the complexes in this zone generally does not exceed the
double amount of the initial polymer’s molar masses. Thus, we may assume that at
this range of M/L ratios, predominantly, intramolecular type of complexation occurs
that favors formation of unimolecular supramolecular assembles within one polymer
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chain or more precisely within one polymer coil. At the same time, due to the relatively
high dispersity of the initial polymers, one cannot exclude formation of intramolecular
complexes. The hydrodynamic sizes of the metal complexes are generally below 10 nm
in this M/L range. The intermediate zone B in the Figure 10, covers the M/L range from
approx. 0.1 to 0.2. At such a metal-to-ligand ratio, we observe polymeric species that have
in average at least double or higher molar masses, signifying intermolecular complexation,
the supramolecular assembles, however, are still can be considered to be in dissolved state.
The average size of the complexes is yet only about 10 to 15 nm. Further increase of the
metal-ion content brings us to the zone C that describes the M/L range from ∼0.2 to ∼0.3,
where we basically observe formation of higher order aggregates/assembles with sizes
of ∼30 to ∼50 nm and small amounts of their larger aggregates. The macromolecular
assembles consist here of about 50 to 100 initial polymer molecules. The Zone D describes
the macromolecular assembles at the M/L ratios close to the critical value (∼0.5)—after
which no stable solutions/suspensions can be obtained (Zone F). In Zone D, we only
observe large macromolecular assembles/aggregates consisting of >> 1000 of initial
macromolecules with the average sizes > 100 nm in diameter.

3.4. Discussion

In the “classical” approaches towards fabrication of metallo-supramolecular sys-
tems/assembles, the latter ones are assembled by the coordination interactions form the
corresponding ligand-monomeric units. The overall size of the supramolecular assem-
bles will mainly depend on the components concentration, initial M/L ratio, association-
dissociation rate etc. While in our case, the assembling mechanism and it’s the dynamics
will as well be affected by the polymer nature of the ligand’s carrier.

It has been shown for classical systems, on the example of ditopic bis-terpyridine
ligands coordinated by different metal ions (Fe2+, Co2+, Ni2+), that the overall “chain” size,
in terms of amount of monomers in supramolecular assembles will exponentially increase
at M/L = 1 and be very small at M/L < 1, and medium for M/L > 1 [44,45]. Furthermore,
when either metal ion or ligand is in excess (y 6= 1) the chain grow will eventually end
as soon as one of the components will be consumed. Which is markedly different from
the behavior we observe for the polymer-ligand based metallo-supramolecular complexes
where the overall working range of M/L ratios is shifted by an order of magnitude to-
wards smaller values with the M/L ∼ 0.5 being the critical value after which the system
precipitates, while the active chain grow length is observed already at M/L ≈ 0.1. The
molar stoichiometry ratio, y = M/L, we have been using along the manuscript, in classical
terms, reflects the metal to ligand/monomer molar concentration ratio [44]. Since we ini-
tially operate with polymer molecules having tpy ligands in the side chains, we have then
recalculated the M/L ratios as number of metal ions per one macromolecule (M/L∗). By
the virtue of numbers, in our case such transformation will result in a simple thousandfold
shift of the initially established M/L values. We see then that the active intermolecular
complexation, that begins by zone B at M/L ≈ 0.1, correspond to approx.100 metal ions per
single macromolecule having in average a 100 ligands groups (100 and 110 for the TerPol
and TerFerCop respectively), so in terms of metal to number of ligands calculated based
on the actual molar mass, it becomes one to one ratio. The precipitation is then accrued
when we have a large excess of free metal ions—approx. 5 metal ions per ligand, or in total
∼500 per macromolecule. It was quite surprising to note that even at such small initial
polymer concentrations were the polymer solutions can truly be described as dilute ones,
we observe such strong intermolecular self-assembly at high salt concentrations (zone C,
D). Moreover, as much clearly seen by DLS results, the inter macromolecular complexation
begins already at the very small M/L ∼ 0.02− 0.03 ratios.

Another interesting aspect, is that, we do not see any specific differences between
the complexation behavior of Eu3+ or Pd2+ metal ions. It is however known, that at the
equal ratio of Eu3+ ions to tpy sites a 1:1 complex is formed; this complex further contains
a number of charge-balancing ions or solvent molecules, as the ancillary ligands (up to a
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coordination number of 9 in total). In the presence of an excess of ligand moieties, Eu3+

is capable of binding with a maximum of three tpy ligands with some dynamic ligand
exchange until an equilibrium state is reached (Scheme 2a), whereas, Pd2+ ions are known
to form square-planar complexes in which the metal center should be chelated by the tpy
ligand in tridentate fashion (in the case of a 1:1 stoichiometry, one counterion is expected
to occupy the fourth position). At a lower Pd2+ content the situation might be more
complicated and complexes might be formed, in which two tpy ligands are coordinated
via two of their N-atoms (leaving the third N-atom vacant; Scheme 2b), so due to the its
square-planar geometry and lower coordination number (up to 4), the Pd2+ ions should
preferably form only unimolecular complexes with the tpy ligands.
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ions (L denotes an ancillary ligand—either counterions or solvent molecules).

Very active intermolecular complexation together with generally equality of the hy-
drodynamic and macromolecular behavior of the of Eu3+ and Pd2+ based supramolecular
systems could probably be explained from the perspective of polymer-solvent and charge
interactions. When substantial amount of metal ions is bound to the ligands distributed
along the polymer chain, the solubility (thermodynamic quality of the solvent) of these new
polymeric species changes (decreases) tending, thereby, macromolecule to minimize its
contact with the solvent molecules causing at certain point a phase separation that should
in general provoke formation of compact spherical like particles. A variation of such nano-
precipitation techniques is widely applied in fabrication of polymeric particles/micelles.
The “only” difference is that the solvent quality is changes not by addition a non-solvent
to the system, but by the addition of metal ions to the polymeric chain. Stable nanopar-
ticle suspensions, from the thermodynamic perspective, can be obtained only in a very
narrow metastable region,—the so called “Ouzo” region [46]. It was shown for example
that ∼100 nm in diameter particles can be obtained from the comparable by molar mass
(Mw ≈ 40, 000 gmol−1) poly(methyl methacrylate) based at c[η] = 0.01 [42]. In our case
due to the supramolecular nature of such tpy based supramolecular particles they may
further aggregate/assemble either in order to reduce its contact with unfavorable solvent
molecules or due to the metal-ligand coordination mechanism. That is well confirmed
by the performed microscopy studies, where it is clearly seen that the supramolecular
aggregates/assembles consist of individual spherical/globular like particles. Another
important aspect to be considered of is associated with the charge effects, that will arise due
to the presence of the metal ions/counterions in the polymeric chain and/or solution [6].
At high salt content when most of the binding sites are occupied or unavailable due to steric
effects further increase of the salt concentration may lead to the salting out effects [6] which
are typical for classical polyelectrolyte systems [47]. Similar behavior was also previously
observed for poly(butyl methacrylate)-co-2-(1,2,3-triazol-4-yl)pyridine copolymers com-
plexed with Eu3+, Fe2+ and Co2+ metal ions in solution [5,6]. So, at later stages the extensive
agglomeration/structuring of the initially formed complexes can be trigged by the solvent
quality changes and the charge effects that will accompany the coordination interactions.
However, the real contribution each of these effects on the complexation behavior is ought
to be discovered.
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4. Conclusions

Applying mutually reinforcing combination of synthetic and analytical tools, model
polymer systems bearing tpy ligands were synthesized and subsequently investigated
in detail with respect to their complexation behavior with Eu3+ and Pd2+ metal ions in
dilute solutions. Both metal ions were shown to provoke the intra and the inter macro-
molecular complexation in solution at principally the same M/L ratios. It was shown that
the supramolecular complexation in addition to the basic parameters that define it from
the classical coordination chemistry will also be influenced by the polymer nature of the
ligand’s carrier and associated with the polymer solvent and charge interactions in solution.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym14050944/s1, Figure S1: H1NMR spectra with the integration, Figures S2–S5: SEM im-
ages of the corresponding TerPol and TerFerCop polymers with Eu3+ and Pd2+ metal ions, Figure S6:
DLS analysis of the TerPol and TerFerCop polymers with Eu3+ and Pd2+.
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