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Abstract

The head direction (HD) system in mammals contains neurons that fire to represent the direction the animal is facing in its
environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues
implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular) inputs. Rat
pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and
similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study
we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up
movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between
physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we
implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show
that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD
system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain
movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems,
demonstrates that ‘grounding’ of modelled biological processes in the real world can reveal underlying functional principles
(supporting the importance of robotics to biology), and proposes a functional role for stereotypical behaviours seen in
infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend
to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in
entorhinal cortex.
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Introduction

Overview
Calibration is a major issue for all real-world systems, animal

and robotic. Of particular interest in this paper is how movement

strategies of an animal or robot may combine with learning rules

to calibrate a neural system. Strategic movements yield informa-

tion that random movement does not, and embodiment on a

physical system provides real world sensory input that is absent

from disembodied neural systems. In robotics, practical methods

for calibration of the fundamental components of navigation

systems are essential. In this paper we are particularly interested in

the head direction system, due to its foundational role in

navigating systems, both mammalian and robotic.

Head direction (HD) neurons are so-named because they fire

only when an animal is facing in specific directions relative to cues

in the environment [1,2]. Each HD neuron fires maximally for

typically just one preferred head direction, with firing tapering off

as the head turns away from this direction. In a population of HD

neurons, all directions are represented approximately equally

giving a unique activity pattern called the bump or hill of activity for

any given direction the animal faces [3–8]. The peak of the bump

represents the animal’s current direction and those neurons which

are firing to represent this direction will continue to fire at about

the same rate for as long as the animal’s direction remains the

same [9]. When the animal moves, the bump translates in a

systematic way through the HD neuron population such that the

peak continues to represent the current head direction.

The HD system is thought to function as a continuous attractor

neural network, allowing the system to represent any possible head

direction [10]. Inherent in such attractor networks is a tendency to

drift from any given state, since all adjoining attractor states (head

directions) are equally stable and even minor perturbations or

noise can cause a spontaneous shift to an adjoining state. Implicit

in most existing models of HD networks is the assumption that the

synaptic efficacies in the HD system are set perfectly from the

outset of system operation and never need fine tuning or

calibration [3–8]. However, since it is unlikely that the HD

system could be so precisely-wired from birth so as to never drift,

or that static HD connectivity could suffice indefinitely, a
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calibration mechanism is likely required for both initial wiring and

tuning of the system, and ongoing re-tuning in the face of injury

and age-related degeneration of system components.

The HD system has a foundational role in navigation; without

it, the determination of place during motion would not be

possible. Recent work has demonstrated that the HD system in

infant rats is fully functional while the place and grid cell systems,

which represent the animal’s location in the environment, are still

maturing [11]. This order of maturation is consistent with the

HD system being an input to these higher centres and that

it must be working before these centres can operate reliably.

The directional information provided by the HD system must

accurately reflect the animal’s rotational motion through the

world; that is, the HD system must itself be calibrated if it is to

provide a faithful representation of head direction to allow the

animal to accurately track its position. By definition, calibration is

not possible with arbitrary, uncorrelated sensory input – the input

needs to be reliably correlated with an animal’s movement. It is

an open question to what extent random movement (and its

corresponding correlated sensory input) could suffice and if not,

what kinds of movements are required to establish such reliable

correlations.

We conjecture that – as with other aspects of learning – specific

tasks may facilitate calibration by the repetition of experiences

with reliable correlations. Infant mammals of many species

including cats, badgers, and both laboratory and wild rats, exhibit

characteristic ‘warm-up’ periods of stereotypical motion prior to

commencing or resuming normal movements, particularly in

novel environments [12]. These warm-ups, by virtue of their

ubiquity and similarities across species, have been conjectured to

be important for development of the underlying neural sensori-

motor systems [12], although exactly in what capacity was not

clear. Their use as a general preparation for sensorimotor activity

is likely to serve many different neural sub-systems. We suggest

that one of their outcomes is a role in calibration of the head

direction system and in this study we test this proposal.

To examine how correlations in sensorimotor systems arise from

behaviour and to determine their efficacy for calibration, an

embodied system is required. In neuroscience, robotics platforms

are increasingly being used to explore the link between physical

embodiment, neural control, learning and behaviour [13,14]. In

particular, they can be used to study how physical movements can

impact learning in noisy, real world environments. Real world

noise is impossible to model accurately (e.g. as a simple Gaussian

process) due to its origins in multiple ill-defined sources (motor as

well as sensory), non-stationarity, potential unknown inherent

biases, and possible systematic variations based on factors such as

lighting conditions, temperature, time of day, proximity to noise

sources and countless other environmental dependencies. For

this reason, to determine if a system is robust to real-world

phenomena, it is necessary to implement it in the real world.

Embodied implementations have significant additional advantag-

es: Constraints from the real world have the potential to facilitate

the learning process through correlations, redundancy, and

physical laws which govern how objects must move and interact,

and learning processes can utilise actions that seek specific sensory

experiences, modify the state of the world, or both, in a

controllable and constructive manner.

Our overall aim in this paper is to show how targeted behaviour

can be used to calibrate neural systems. In particular, the reported

studies show how a neural HD system implemented on a mobile

robot can be calibrated by a combination of neurologically-

plausible learning mechanisms and the observed ‘warm-up’

behaviour in infant animals as they learn to move through the

world. We chose robotics as a method of testing the performance

of calibration in our HD network because it provides a way to

evaluate the effects of neural mechanisms on behaviour (and

behaviour on neural mechanisms) in a real world setting. For

sensorimotor calibration, it is clearly important to ground actions

in sensorimotor perceptions [15], particularly since we are also

proposing a link between animal behaviour and HD calibration.

We applied the behavioural warm-up strategies and appropriate

synaptic learning rules, first in simulation and then on the real

robot, and tested the resulting directional stability of the HD

representation and its ability to track ongoing head movements.

The studies demonstrate how specific movements, when combined

with the proposed synaptic weight updates, can lead to stable and

faithful representation of head direction, with performance in

darkness (i.e. without visual cues) similar to that seen in rodents.

Control studies show how the calibration breaks down if the

targeted movements are not performed or if movement and

sensory input are not correlated. Implications of the work are

discussed with regard to how targeted motion can calibrate neural

systems, the biological implementation of the proposed synaptic

learning rules, calibration of robotic systems, and the potential

importance of robotics in neuroscience.

The need for calibration
For the HD activity to accurately and consistently track physical

head rotations, the angular velocity of the heading representation

(the bump) in the attractor network must reliably correspond to the

angular velocity of the rat’s head in the azimuth plane. During

embodied motion through the physical world, the body has access

to acceleration (vestibular) signals, as well as the obvious but

exceptionally useful constraint that the head always returns to its

initial heading after a full 360u turn. These two information

sources – the vestibular motion and the heading invariant – are

real-world constraints available through embodiment. In the

context of the current study, we restate the HD accuracy

requirement as two stability conditions which use, respectively,

the two information sources, and are jointly sufficient to satisfy the

requirement.

N The bump must move at a consistent speed, in both directions,

throughout the entire HD network (this includes the

degenerate case of there being no induced bump movement

when there is no actual head movement).

N A continuous turn through 360u must return the attractor

bump to its starting point.

Condition 1 ensures that the HD bump is stable, that it does not

drift and that it turns evenly throughout its entire angular range.

However it does not ensure that the absolute turn rate exactly

corresponds to the angular velocity of the rat’s head, which is

realised by condition 2. A full 360u turn is a minimal condition

requiring only a single landmark to afford recognition of the full

turn. It provides ‘ground truth’ for the total turned angle that

requires neither measurement nor calibration of any further angle

tracking mechanism; alternatives to full turns, such as using angles

between whiskers, total neck flexion or visual fields of view, are

possible mechanisms for deriving turn angle information, but they

require either prior calibration or else a priori knowledge of the

angular extent covered by the given sensorimotor modality. While

the above conditions are sufficient for satisfying the HD accuracy

requirement, it is not currently possible to prove that they are

necessary, since different (perhaps as-yet unknown) sensory input

could lead to different learning conditions. However, the need for

calibration somewhere in the system is indisputable.

Strategic Movement to Calibrate a Neural Compass
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In most existing models of HD networks, the synaptic efficacies

in the HD system are perfectly preset so as to never need fine

tuning or calibration [3–8]; we call this class of models the non-

adaptive attractor models. In contrast, some computational studies

have suggested that vestibular control of the HD system can be

calibrated using visual input [16–18]. However these simulation

models required that multiple visual landmarks be clearly and

uniquely pre-associated with distinct head directions prior to

training, and it is unclear how such precise and correct pre-

associations could be effectively formed before the HD system is

fully functional. In previous work we have demonstrated that pre-

associations to specific head directions are not required, using a

rate-coded continuous attractor network implemented on a robot

[19]. Furthermore, HD drift can be eliminated and turns of equal

angle in opposite directions can result in equal but opposite

displacement of the HD bump (stability condition 1 above) with no

reliance on visual input [20]. In the latter study we demonstrated

an adaptive attractor model that used the turn information conveyed

by a complementary class of cells, the symmetric angular head

velocity (AHV) cells, to tune the HD attractor system. In so doing

we proposed a novel role for these symmetric AHV cells, which

previously had no known function despite their abundance in the

brain. However this system did not include a mechanism for

satisfying stability condition 2, to ensure that the absolute speed of

the bump through the network during head turns exactly matched

the speed of the head.

In the current study we extend our earlier work to include the

use of a single heading landmark which does not need to be pre-

associated with a given direction, and show how a 360u turn can

be calibrated to return the attractor to its starting point (stability

condition 2). We introduce a synaptic learning rule in a spiking

neural network model of the HD system which adjusts a global

turn gain parameter controlling how quickly the HD bump moves

through the network for given AHV input. The gain is updated

each time the HD bump position is reset by recognition of a

heading landmark. Strategic movements facilitate the association

of a landmark with a given head direction and elicit landmark

reset events.

Infant Mammal warm-up movements
Rat pups follow developmental milestone ‘warm-ups’ which are

often carried out prior to commencing any other movements [12].

N From birth (day 0) to 3 days old (day 2), pups move about

significantly with no stereotypical warm-up period.

N On days 3 and 4 most movement ceases, being limited to very

small lateral head trajectories.

N On day 5 or 6 gross movements re-emerge, always beginning

with small side-to-side head movements which slowly increase

in amplitude, before resumption of normal motion.

N On day 6 ‘pivoting’ behaviour appears after the lateral head

movements, where the rat rotates its entire body through 360u
or more by walking in circles with three legs while keeping one

hind leg firmly placed.

N Forward and backward ‘rocking’ motions then appear and

occasionally also backwards walking.

N From day 11, warm-up sequences are shortened, some steps

may be skipped, and eventually regular movements commence

with no prior warm-up period.

Infant mammals of several other species display similar periods

and patterns of warm-up movements during development [12].

Adult rats that have lesions of their lateral hypothalamus (resulting

in a movement disorder known as lateral hypothalamic akinesia)

follow a similar pattern of warm-up movements, on an accelerated

timescale, when placed in novel environments during recovery

from the lesion. After initially freezing in the new environment,

they begin movement with small lateral head turns that rapidly

increase in amplitude, followed by pivoting and then front-back

rocking motions, prior to resuming normal movement [21]. When

accompanied by ultrasonic vocalisations, warm-ups have been

conjectured to be involved in rat pups’ searching and calling for

their mothers [22], however this theory does not explain why

weaned adult rats with movement disorders would exhibit these

behaviours. An alternative proposal [12] is that the onset,

organization and similarities of these warm-up movement

strategies may indicate their importance to the underlying neural

systems that mediate them, and movement warm-ups may be a

basic principle common to many mammalian species during times

of development and re-development of these movement systems.

Because rat pups’ eyes do not typically open until day 14 or 15,

after the warm-up stage of their development, orienting landmarks

used by pups are likely to be tactile in nature, detected by the

whiskers (we used vision for the robot implementation because

vision sensors for robots are cheap, common and reliable, unlike

current tactile sensors and artificial whiskers which remain

experimental, but the principles remain the same). Rat whiskers

are extremely sensitive and possess exceptional discriminatory

power. Using their whiskers, rats are able to locate and recognise

objects, perceive space and navigate through complex environ-

ments [23]. Rats rarely venture far from enclosed spaces where

whisking input is plentiful, but in open spaces rat whiskers have the

perceptual acuity to be able to detect subtle changes in floor

texture. Learned landmark-to-HD associations are hypothesized to

reset the HD bump to match the known direction of the landmark

[9,24].

Targeted movement for calibration
Calibration of sensorimotor systems in humans and other

animals, also known as sensorimotor adaptation, has been widely

investigated, usually in the contexts of visual saccades [25,26] or

arm movements [27–29]. Infants spend a significant amount of

time touching their own faces [30] and in continuous repetition of

the same movements [31]. Targeted movement is a viable strategy

for learning associations and invariants in the physical world, and

the recurrent effects of motion and perception; that is, correlation

of action with effect, or calibration.

In robotics, calibration is a critical yet often time-consuming

and expensive operation [32]. Current research efforts are focused

on calibration without elaborate external sensors (self-calibration)

[32,33], in the face of only partial information [34], and through

selection of specific movements and poses [35], however there are

no existing practical examples of calibration of neural systems using

behavioural strategies. Can behaviour be used to calibrate a neural

system? In this study we combine all three approaches of self-

calibration, unreliable real-world sensors and targeted movement

to reliably and efficiently calibrate the neural HD system on a

mobile robot.

Methods

Network Architecture
The head direction adaptive attractor network (HDAAN) used

in this study contained populations of four distinct types of

neurons; head direction (HD) cells, left turn angular head velocity

(AHV) cells, right turn AHV cells, and symmetric AHV cells (see

Figure 1). Apart from the symmetric AHV cells, the network was

Strategic Movement to Calibrate a Neural Compass
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configured similarly to non-adaptive attractor models [3–8], with

each set of cells connected in a ring so that head direction activity

‘‘wrapped around’’ and restarted after a full rotation. The

symmetric AHV cells were connected uniformly to the HD cell

population and were not circularly arranged (see Figure 1), since

they were involved in providing the calibration signal to the

HDAAN, not in asymmetrical left/right movement of the HD

bump. The relevant subcortical brain regions for the adaptation

mechanisms hypothesised by this model are the Dorsal Tegmental

Nucleus (DTN), containing the symmetric and asymmetric AHV

cells [9], the Lateral Mammillary Nucleus (LMN), containing the

HD cells to which the AHV cells directly project [9], and the

Postsubiculum (PoS). PoS was modelled functionally, not explicitly

as a group of individual neurons; the excitatory input that caused a

reset of HD bump position in the network when the head faced a

landmark was assumed to come from PoS, as has been commonly

conjectured [9,24].

Neurons were modelled as leaky integrate-and-fire (LIF) cells

[36] and synaptic currents were modelled as fast rise, slow decay

currents. The number of HD cells in the HDAAN was set to two

hundred, however tests were performed to ensure results

generalised to much larger numbers of cells. Synaptic connection

efficacies between cells were modelled with Gaussian functions

where the standard deviation controlled the width of the HD

activity bump. Each HD neuron had a maximum firing rate of

150 Hz and a Gaussian-like tuning curve 110u wide, giving them

firing profiles similar to HD neurons recorded in LMN [9]. Full

details of the neuron and synapse models and the network

architecture are available in [20].

The initial state of the system was deliberately configured to

model an uncalibrated system in which correction would be

required. First, the untrained HD connection weights were

initialised with a circular bias, implemented as a shift in the

postsynaptic target cells of recurrent excitatory HD connections.

The systematic offsets in the synaptic connections caused significant

drift which had to be corrected to satisfy stability condition 1.

Second, the absolute speed of the bump through the HDAAN was

set independently of the physical head turning speed; the turn gain

therefore needed to be corrected to satisfy stability condition 2.

Removing Drift and Equalising Turn Rates (stability
condition 1)

In previous work we demonstrated that HD drift can be

eliminated and turns equalised (stability condition 1) using just the

information conveyed by symmetric AHV cells in the DTN [20].

For example, prior to calibration the HD bump could be rapidly

drifting in one direction (at d deg/s) and turns of equal magnitude

in opposite directions could result in different angular displace-

ments of the bump (head turns of 6a deg could result in bump

displacement of respectively ga+d and –ga+d deg where g is the turn

gain). Following calibration for stability condition 1, bump drift is

removed (d = 0 deg/s) and bump displacement is equal in opposite

directions but not necessarily equal to actual head turn angle (head

turns of 6a deg result in bump displacement of respectively 6ga

deg). These aspects of the model [20] were retained in the current

work and the equations are reproduced in this section for

completeness:

At time t, the instantaneous firing rate of cell i, ri, is given by:

ri tð Þ~

1

ts{t’s
when d(t{ts)=0

1

ts{t’s
e{(t{ts)=t when d(t{ts)~0

8>><
>>: ð1Þ

where ts is the time of the last spike, t’s is the time of the second-last

spike (hence ts{t’sis the most recent interspike interval (ISI)), t is

the firing rate time constant (33 ms) and d is the Dirac delta

function. The instantaneous change in HD cell i’s firing rate is

calculated as the difference between its instantaneous firing rate

and its short term average firing rate:

Dri~ri{ms(ri) ð2Þ

where ms(.) is the short-term average, calculated as an exponential

moving average with a time constant of 20 ms.

The change in the strength of the connection w from

presynaptic HD cell i to postsynaptic HD cell j is given by:

Dwji~aDri( Drj

�� ��{AHVsym) ð3Þ

Figure 1. Head direction adaptive attractor network (HDAAN). HD cells excited their close neighbours strongly and more distant neighbours
less strongly, and this self-excitation created the HD activity bump. Most, but not all HD system models, utilise recurrent excitatory connectivity to
maintain the activity bump; those without recurrent connectivity require continuous external input to sustain the bump [3,7]. The HD cells also
excited the asymmetric AHV cells using a similar neighbourhood relation. The left turn AHV cells then projected back to the HD cells with an offset in
one direction (‘‘leftwards’’) and the right turn AHV cells projected back to the HD cells with offset in the other direction (‘‘rightwards’’). These AHV
projections back to the HD cells were inhibitory, and the combined effect of these two populations was to constrain growth of the bump to be within
the bounds of the offset distances in both directions. The symmetric AHV cells projecting to the HD cells aided calibration for drift removal and turn
equalisation (stability condition 1). PoS sent excitatory current to the HD cells to reset HD position when a landmark was recognised. DTN: Dorsal
tegmental nucleus, LMN: Lateral mammillary nucleus, PoS: Postsubiculum.
doi:10.1371/journal.pone.0025687.g001
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where a is the learning rate, ri is the current firing rate of cell i,

|…| denotes the absolute value of a term and AHVsym is the

current input from the symmetric AHV cells. AHVsym input was

assumed to be rate coded, with firing rate (and hence input current

to the HD neurons) proportional to the head turning speed. All

HD neurons received the same AHVsym input. For this reason, the

AHVsym neurons were modelled as just one neuron that had

connections to every HD cell. In biological systems, such a large

connectivity fan-out is not usually possible; however this

simplification in our model system reflected our view that each

real HD neuron receives identical AHVsym input, limited only by

fan-out constraints that require a larger number of AHVsym

neurons in practice.

Intuitively, the calibration works as follows. If the bump is

moving too quickly, then AHVsym is less than the absolute change in

the HD neuron’s firing rate, so the term |Drj| – AHVsym is positive.

Connections are weakened from those presynaptic HD cells whose

firing rates are decreasing (Dri is negative), and strengthened from

those presynaptic HD cells whose firing rates are increasing. HD

cells with decreasing firing rates are necessarily on the trailing edge

of the bump, while cells with increasing firing rates are on the

leading edge. Weakening the weights from cells on the trailing

edge (where the bump just came from) to the cells which are

currently firing retards the movement of the bump because it

reduces the impetus of the bump to move forward. Similarly,

strengthening the weights from cells on the leading edge (where

the bump is moving to), has the same effect because it is trying to

stabilise the bump back in its current position. Hence when the

bump is moving too quickly, the net effect of the weight updates is

to decrease its speed. Conversely, when the bump is moving too

slowly, the net effect of the weight updates is to speed it up. For full

details of how stability condition 1 was satisfied and results of

experiments see [20].

The learning rule for condition 1 was modified in two ways to

improve performance for this study. Firstly, autapses (excitatory

connections from a cell to itself) to HD cells were omitted. HD

autapses are not functionally useful for control of movement of the

HD bump, since they excite only themselves and therefore cannot

assist in propagation of the peak of HD activity to surrounding

cells. Removal of these connections resulted in faster convergence

to ideal synaptic efficacies in the HD connections. Secondly, the

HD connection efficacy decay used in the earlier study was

replaced with an explicit presynaptic sharing where efficacies were

shifted between adjacent connections, from stronger to weaker

synapses. Each postsynaptic HD cell j shared connection weights

from its presynaptic cells i and the circularly adjacent presynaptic

cells i+1 and i21. The change in the weight from cell i to cell j was

given by:

Dwji~{a(wji{(wj,iz1zwj,i{1)=2) ð4Þ

where a is the learning rate. Recent evidence indicates that

synaptic resources are shared between close synapses in neurons

[37]. In the current study, sharing resulted in a smoothing of any

noise in the synaptic connections which, in conjunction with the

ongoing calibration, resulted in connection weights that tended

towards their ideal Gaussian distributions. These two modifica-

tions to the drift calibration resulted in superior convergence and

HD tracking performance.

Note that the calibration performed for condition 1 eliminated

drift and ensured that the relative turn rates in both directions were

equal, but it could not ensure that the absolute turn rate would track

actual head position in the world, since the absolute turn gain l

remained uncalibrated. Calibration of the turn gain is the focus of

section 2.3.

Turn Gain Calibration Mechanism (stability condition 2)
We modeled the calibration of HD turn rate to real world turn

rate by adjusting a global gain parameter, g, on the vestibular input

from the asymmetric AHV cells, AHVasym, to the HDAAN (i.e. total

turn input to the HD network is g.AHVasym). If the HD bump

was moving too slowly, the gain was increased to amplify the effect

of vestibular input on the bump, which sped the bump up.

Conversely, if the bump was moving too quickly, the gain was

decreased. A single gain parameter g controlled the overall efficacy

of the vestibular input to the HDAAN and hence the overall speed

of the bump during head turns. The gain parameter was set by a

local learning rule which operated at the level of individual HD

cells. Each HD cell preserved a memory of its recent firing history

by maintaining a decaying trace of its highest recent firing rate.

HD cells could also receive input current from PoS when the head

was facing a recognized landmark. Landmark recognition and its

association with specific head directions in the HD network was

assumed to be performed by the PoS (see section 2.5 for details). If

landmark association input was received by an HD cell which was

not currently firing, then the need for landmark reset of the bump

position indicated that the bump had not been correctly tracking

real head direction and the gain needed to be modified. Unlike

previous studies, only a single landmark was required and it could

be positioned at any arbitrary angle from the head. When gain

adjustment was needed, its increase or decrease was controlled by

the recent firing history of the cell. If the cell had been firing

recently, indicated by a firing rate trace above a certain threshold

(set to 10 Hz), then the bump was being reset backwards to a

position it recently occupied, in which case it had turned too

quickly and the gain needed to be reduced; the individual HD cell

sent a signal which very slightly reduced the gain. Conversely, if

the cell hadn’t recently been firing, indicated by a firing rate trace

below the threshold, then the bump was being reset forwards to a

position it hadn’t recently occupied, in which case it had turned

too slowly and the gain needed to be increased (see Figure 2).

Turn gain calibration is implemented as follows:

The firing rate trace of HD cell i is calculated exactly as for Eqn

3 above, except that the time constant t is increased to give a

longer memory of recent firing (t = 2000 ms).

When actual head direction approaches a landmark heading,

and landmark reset input impinges on the HDAAN, the 360u
calibration learning is activated; that is, calibration requires

landmark reset input from PoS in order to provide output signals

to adjust the turn gain in the HD network. HD cells that are

currently firing, as indicated by an instantaneous firing rate above

1 Hz, also do not adjust the turn gain, since cells that are already

firing when landmark input is received are already representing

head direction accurately. However, if a cell i is receiving

landmark input and the cell is not currently firing, but has

recently been firing as indicated by a firing rate trace activation of

above 10 Hz, then the activity bump has already moved past the

location where it should be, so the cell sends a gain reduction

signal, gr:

gi
r~arI

i
landmark ð5Þ

where ar is the learning rate for gain reduction and I i
landmark is the

landmark input current to the HD cell. Conversely, if a cell j is

receiving landmark input, is not currently firing, and has not

recently been firing as indicated by a firing rate trace activation of

below 10 Hz, then the activity bump has not reached the location
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where it should be, so the cell sends a gain enhancement signal, ge:

g j
e~aeI

j
landmark ð6Þ

where ae is the learning rate for gain enhancement. The learning

rate for gain enhancement, ae, is set to 161026, while the learning

rate for gain reduction, ar, is set to 1.5ae, to compensate for the

slightly delayed fall in instantaneous firing rate after the bump has

passed a cell (the delay reduces the number of cells sending gain

reduction signals). The total gain adjustment signal, Dg, is the sum

of the individual gain adjustments:

Dg~
X

j

g j
e{
X

i

gi
r ð7Þ

As soon as an HD cell commences firing (i.e. if the HD bump is

reset to the landmark position), it ceases sending gain adjustment

signals since when it is firing it meets the criteria for the HD bump

being correctly positioned, meaning that no gain adjustment from

that particular HD cell is appropriate.

Learning Suppression and Annealing
When an HD reset which actually moves the HD bump occurs,

calibration for stability condition 1 is suppressed for 1 second. This

suppression is necessary because the movement of the bump to a

new position clearly induces large HD activity changes, interpret-

ed by the stability calibration mechanism as instabilities in the

network and causing large maladaptive updates to the HD

connections. By suppressing connection updates for a short time,

the time-weighted average HD activity, which is used by this

calibration mechanism to eliminate drift and equalise turn rates in

the HDAAN, is allowed to re-settle to the new HD bump position,

after which no maladaptive connection updates occur.

The initial learning rate is set to 20 times the base learning rate.

At the end of each second of training, the learning rate is reduced

by 0.5%. This reduction means that for each minute of training

the learning rate falls by about 26% (1–0.99560) and in just under

10 minutes falls back to its original baseline value, after which no

further reduction occurs. Annealing the learning rate in this way

dramatically shortens the training time for the network, since it

allows large adjustments to the connection weights to be made

initially while still allowing very fine adjustments to be made when

the weights have approached optimal calibration.

Landmark Resetting of HD Position
Landmark recognition and the association of a landmark with

specific head directions in the HD network are assumed to be

performed by the PoS. Experimental studies [38,39] and other

models (e.g. [3]) have investigated this phenomenon in detail,

including the dependence of HD representation on landmark

direction, relative HD orientation in different environments and

response latency to abruptly reoriented landmarks. These issues

are not the focus of the current study. In the current model, the

important characteristic of a landmark reset is that it causes a

discontinuous jump in HD bump position to a prior known head

direction irrespective of how that association was made or the

exact reset mechanism. When actual head direction is aligned with

a landmark, input current, Ilandmark, is injected into the HDAAN at

the bump position for that landmark. Maximum current is injected

into the cell at the centre of the landmark location and the current

tapers off to the cells on either side (see Figure 3a) according to:

Ilandmark~
hlandmark 1{ d=lbHH

� �2
� �

when dvlbHH

0 otherwise

8<
: ð8Þ

where d is the absolute distance, in number of cells, from the

centre of the landmark location, bHH defines the width of the

excitatory HD connections which create the activity bump (see

Figure 1), and l is a parameter based on the relative widths of the

activity bump and the excitatory HD connections (the activity

bump width is greater than the connection width from each

neuron, since surrounding neurons also project to neurons further

away, extending the bump; l was set to 1.5 in all simulations).

Additionally, the injected current attenuates rapidly when the

Figure 2. Turn gain is updated when the HD bump is reset by landmark input. (A) The bump is travelling to the right, as indicated by the
arrow, at approximately 40 deg/sec. However the head is turning at approximately 65 deg/sec, meaning that the HD turn gain is too low. The dot-
dash line shows the instantaneous firing rate; that is, the HD cells which are currently firing, denoted as region F. These cells do not send a gain
adjustment signal if they receive landmark input. The solid line shows the firing rate trace; the region of the network immediately behind the bump,
denoted as region B, shows higher trace activation than the region just ahead of the bump, region A. HD cells in region B send a gain reduction signal
if they receive landmark input while cells in region A send a gain enhancement (discussion of how this signal may be implemented in nervous
systems is in section 4). The demarcation between regions A and B is based on the firing rate trace activation threshold of 10 Hz. (B) 120 ms later, the
HDAAN has received landmark input causing the bump to jump ahead to the landmark location at 180u. Since most of the HD cells which received
landmark input were in the low activity-trace region (region A), the turn gain is increased overall.
doi:10.1371/journal.pone.0025687.g002
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head is not facing directly towards the landmark according to the

landmark heading factor hlandmark:

hlandmark~
1{

ffiffiffiffiffiffiffi
a=e

p
when ave

0 otherwise

(
ð9Þ

where a is the absolute angular difference in degrees between the

current real head direction and the landmark position, and e is the

tolerance (for these studies e was set to 3 degrees). A small

landmark input current therefore begins being injected into the

HD cells when the real head direction is within 3 degrees of the

landmark, then reaches a maximum when the head direction

matches the landmark exactly, then falls off equally as rapidly as

the head continues to turn (see Figure 3b). If the head stops while

facing the landmark, current is injected continuously into the

HDAAN.

Pioneer Robot Implementation
Experiments were performed on a Pioneer 3-DX MobileRobots

robot (Figure 4a, www.mobilerobots.com/ResearchRobots/

ResearchRobots/PioneerP3DX.aspx). The testing environment

was a standard office room. A unique black landmark cue was

located against a white wall, as shown in Figure 4a and b. The

egocentric bearing to the landmark was calculated using intensity

profile vision processing techniques [40]. Detection of the

landmark was not perfect, meaning that landmark direction used

for calibration of the HDAAN was noisy.

The robot was commanded to follow an alternating sequence of

small lateral head turns and 360u head calibration routines,

switching routines every minute. Small head turns consisted of the

robot turning to a random absolute orientation, and then

commencing a period of small alternating turns of 40u to 80u,
centered on that absolute orientation (Figure 4c). 360u calibration

consisted of the robot performing alternating turns of 1 to 3 full

revolutions in each direction (Figure 4d). Command rotational

velocities for both routines varied randomly between 25 and

100 degrees per second. Sensed rotational velocities, akin to the

vestibular sense in mammals and used as the rotational input to

the HDAAN, came from the wheel velocity encoders which, on

the robot used for HD training, systematically under-represented

total turn angle by approximately 8% in addition to being noisy,

and so accumulated major error over time. Calibration of the HD

system needed to be robust to these errors.

Results

Results of the HDAAN trained on simulated head direction

movements are presented first, followed by training based on

visual flow from a mobile robot platform.

Simulation – 360u turn gain calibration only
To demonstrate the functioning of 360u turn gain calibration for

stability condition 2 in isolation, results are first presented for an

HDAAN with no bias in the connection weights so that tuning for

stability condition 1 is not required. Random turns in the range

290 to 90 degrees/s were initiated for random durations of 0 to

15 s. At random times (on average once every second), the turn

rate was randomly changed by adding a value in the range 245 to

45 degrees/s. Turns were allowed to reverse direction, however

absolute turn rate was capped at 135 degrees/s. Whenever a new

turn was to be initiated, a similar period of rest (i.e. a turn at

0 degrees/s) could instead occur with 10% probability. The

network was deliberately initialised with an incorrect low turn

gain, causing the HD bump to move too slowly. A simulated

landmark at 180u reset the HD bump to the correct position

whenever the head crossed that heading. Training occurred for

600 s (10 minutes) of simulated time. The training successfully

increased the turn gain and allowed the HDAAN to reliably track

head direction (see Figure 5 for results from a typical 10 minute

training run).

Robot
3606 turn gain calibration. In a manner similar to the

simulation results presented above, we first demonstrate the

functioning of 360u turn gain calibration for stability condition 2 in

isolation, using turn data gathered from a Pioneer mobile robot

platform (see Methods for details of data collection from the

robot). The robot was instructed to turn on the spot from one to

three full turns in alternating directions at random speeds between

14 and 70 deg/s. The robot also visually tracked a landmark fixed

to an adjacent wall, and when the robot turned to directly face the

Figure 3. Landmark reset. (A) The activity template injected into the HDAAN when a landmark is recognised. The template shows the maximum
current injected when the head is facing the landmark exactly; injected current falls to zero when the head deviates from the landmark by more than
63 degrees. (B) The HD bump position being updated by the landmark input during a head turn. Each dot represents a spike of an HD neuron. The
solid blue line tracks the centre of the HD activity bump, which corresponds to the head direction represented by the network. The dashed red line
tracks the actual head angle of the head. At time 5.65 secs the head reaches the landmark at 180u but the HD network is trailing behind (turning too
slowly). The injected landmark reset current resets the head direction representation to the landmark position, from where the turn continues.
doi:10.1371/journal.pone.0025687.g003
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landmark, the HD bump position was reset to 180u (the bearing

associated with the landmark). Two HDAANs were tested with the

same 10 minute-long robot turn sequence, one with an initially

low turn gain that caused the activity bump to move too slowly,

and one with an initially high gain where the bump moved too

quickly. In both cases the training successfully adjusted the turn

gain (see Figure 6a and b) and allowed the network to reliably

track the robot heading.

The robot’s visual tracking of the landmark was not perfect,

resulting in gaps and jumps in the perceived heading of the

landmark from the robot (see Figure 6c). These heading jumps

caused the perceived landmark heading to skip the 180u63u
region needed to cause a landmark reset approximately 30% of

the time; despite this, the turn gain converged rapidly to its

optimal value, which illustrates the robustness of the learning

algorithm.

All calibrations. We next performed simultaneous bump drift

correction, turn equalisation and 360u gain calibration on the

mobile robot for an HDAAN with biased HD connection

efficacies. The systematic bias in the HD connections caused the

bump to drift in one turn direction continuously, completing a full

360u rotation in just four seconds (see [20] for details). To follow a

similar (although accelerated) developmental timeline and similar

warm-up strategies to infant rats, the robot’s motion profile

proceeded in two stages as follows:

N A 15 minute period of lateral head rotations of small amplitude,

corresponding to rat pup behaviour at days 5 and 6, alternating

with 360u rotations, which appear in rat pups shortly afterwards

on day 6. Each period of behaviour, either small lateral head

rotations or 360u rotations, lasted for 60 seconds duration

before switching to the alternate behaviour. After 60 seconds of

360u rotations, the following 60 seconds of small head rotations

occurred around a random heading that was fixed for this

60 second period but changed for the next (corresponding to a

given random body position for the rat). For the full 10 minutes

of this alternating behaviour, calibration for stability condition 1

only was functioning. For the robot, this stage of HD calibration

is used to ensure that turns of equal speed in opposite directions

result in equal speed displacement of the HD bump.

N A final 15 minute period during which alternating behaviour

continued but with all calibration mechanisms active simulta-

neously. Operation of the calibration mechanisms at this stage

worked under the assumption that the HD bump was now

relatively stable and drift-free due to training in stage 1. A

stable HD bump meant that a landmark position could be

Figure 4. The robot platform, testing environment, and movement schemes. (A) The robot was equipped with a panoramic imaging
system, laser and wheel encoders, which provided self-motion data and landmark tracking capabilities. The environment consisted of a typical office
room with a distinct and unique black landmark against a white wall background. (B) Panoramic image from the robot’s camera showing the testing
environment and the landmark. (C) Movement scheme for the small head turn routine, consisting of small alternating turns, centered around a
random initial orientation (shown by the dashed arrow). (D) Movement scheme for 360u calibration, consisting of alternating turns of 1 to 3
revolutions in either direction.
doi:10.1371/journal.pone.0025687.g004
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reliably associated with a given heading representation in the

HDAAN, allowing turn gain calibration to commence. The

heading at the commencement of each 60 second small

rotation period became the landmark heading for the following

period of 360u rotations (corresponding to a landmark that we

conjecture is learned by the rat during its small head rotations).

For the robot, this final stage was used to calibrate the absolute

turn gain (stability condition 2).

The systematic bias in the initial HD connections caused the

bump to drift in one turn direction continuously (see Figure 7a)

and exhibit poor tracking of real head direction (see Figure 8a).

After training, the systematic bias was removed, ensuring that the

bump was stable in all positions in the HDAAN (see Figure 7b),

and the turn gain was calibrated to reliably track real world head

direction (see Figure 8b and c).

Performance in darkness
The HDAAN, fully trained for bump drift correction, turn

equalisation and 360u gain calibration on the mobile robot platform

as in the previous section, was presented with turn data in simulated

darkness – that is, turns were performed with no visible landmarks,

such that reset of the HD bump position was not possible. During

continuous turns with alternating one-minute periods of small

lateral rotations and 360u turns, the HDAAN tracked actual head

direction closely for several minutes before a large angular disparity

became evident (see Figure 9). Smaller amounts of angular drift has

been observed in the HD system of blindfolded rats in a similar

amount of time [41], however the rats’ behaviours and, importantly,

total turn angles while blindfolded, were not reported in that study.

In general, rats would turn sporadically, not continuously, and

would be unlikely to make as many full 360u turns (20) as made by

the robot in the 5 minutes shown in Figure 9.

Importance of movement strategy for calibration
To illustrate the dependence of correct calibration on movement

strategy, movements were modified to test whether calibration would

be successful. Three movement modifications were examined.

N Small lateral head turns were performed as normal, but during

the time when 360u turns would normally be conducted, the

head was held still.

Figure 5. Head direction tracking improved as turn gain was calibrated. Actual and represented head directions were tracked for the first and
final 60 seconds of training (respectively graphs (A) and (B)). X axis – time in seconds, Y axis – head orientation in degrees, dashed red – actual head
position, solid blue – head position as represented in the HDAAN. (A) At the commencement of training, the HD bump consistently under-turned and
therefore lagged behind actual head direction. At this stage, large HD landmark resets occurred each time the actual head direction passed through the
landmark position at 180u (indicated by solid vertical lines in the represented head direction and marked with arrows). The HD resets became
progressively smaller as training progressed due to adjustment of the turn gain by the ongoing calibration. (B) At the completion of training, the
represented head direction tracked actual head direction almost perfectly. The slight discrepancies apparent between actual head direction and the HD
bump position from 580 to 590 seconds were due to HD reset being performed during fast head turns; during the reset, which took a short time, the
head continued to turn slightly past the reset position, causing head direction to lag slightly even when the turn gain was correctly calibrated. (C) Turn
gain was initialized to 1.0 prior to training and within 5 minutes (300 seconds) it reached its correctly calibrated value of 1.735, from which time the
calibration remained stable. The first five gain adjustments (circled in (C)) correspond to the five arrowed head direction resets shown in (A).
doi:10.1371/journal.pone.0025687.g005
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N 360u turns were performed as normal, but during the time

when small head turns would normally be conducted, the head

was held still.

N Sensory input was uncorrelated with head motion.

Calibration failed in all cases (see Figures 10 and 11) and the

failures occurred in systematic ways for the different movement

modifications, indicating specific effects of movement type on

calibration outcome. When small head turns alone were

performed (case (a)), stability of the HD bump was excellent, with

no drift apparent from any bump starting position (see Figure 10a),

indicating the importance of these small head turns for satisfying

stability condition 1. However the lack of 360u turns meant that

turn gain calibration was not possible (see Figure 11a); in fact, with

the small head turns alone, head direction resets almost always

occurred from alternating directions, causing the sign of the gain

adjustment to usually be erroneous, resulting in an overall gain

increase instead of the desired decrease (compare Figure 11a with

Figure 8c). When 360u turns alone were performed (case (b)),

stability of the HD bump was compromised (see Figure 10b), with

some variable amounts of residual drift remaining throughout the

network. Because of the residual drift causing continuous bump

position changes, gain calibration was not possible even with the

execution of 360u turns, and gain varied widely throughout the

training (see Figure 11b). When sensory input was uncorrelated

with head motion (case (c)), bump stability was further compro-

mised (see Figure 10c) since HD synaptic weight changes were

almost as likely to increase HDAAN bias as decrease it. Because of

the lack of correlation between head direction and HD bump

position, HD resets to landmark locations usually appeared as

Figure 6. Turn gain converged rapidly for turns on the mobile robot platform. Convergence occurred despite unreliability of the visual
tracking of the landmark that was used for calibration. Turn gain was increased when it started too low (A) and decreased when it started too high (B)
as needed to reliably track robot heading. The bottom panel (C) shows the robot’s perceived heading to the landmark at each time point that the
landmark was detected, during the first two minutes of training. Imperfections in the robot’s visual tracking of the landmark caused approximately
30% of the landmark alignments with 180u (which should cause landmark reset of the HD bump) to be neglected in the first two minutes (red crosses
in (C)). Despite the variable landmark tracking success, turn gain was quickly optimised, indicating robustness of the training.
doi:10.1371/journal.pone.0025687.g006

Figure 7. Head direction stability was greatly improved by
training. The graphs track the centre of multiple HD bumps started at
one of many positions in the HDAAN. (A) Prior to training, a head
direction bump initiated at any one of 10 positions around the HDAAN
drifted continuously. (B) Following training, drift was eliminated and the
bump was stable in all positions.
doi:10.1371/journal.pone.0025687.g007
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Figure 8. Head direction tracking improves as drift and turn gain are calibrated on the mobile robot. Actual and represented head
directions are tracked for the first and final 120 seconds of training (respectively graphs (A) and (B)). X axis – time, Y axis – head orientation, dashed
red – actual head position, solid blue – head position as represented in the HDAAN. (A) At the commencement of training, represented head
direction drifts continuously upwards resulting in poor tracking of actual head direction. (B) At the completion of training, the represented head
direction tracks actual head direction almost perfectly after the elimination of drift and equalization of turn rates (stability condition 1) and turn gain
calibration (stability condition 2). (C) Turn gain is initialized to 1.0 prior to training and after 15 mins (900 secs) turn gain calibration commences. In
the final 5 minutes of training the gain is stabilized at its final value.
doi:10.1371/journal.pone.0025687.g008

Figure 9. Typical head tracking in darkness maintains reasonable accuracy for several minutes. Actual and represented head directions
are initially aligned at 150 s; over the next 5 minutes (300 s), angular disparity slowly increases. The error arises due to slight residual imbalances
(directional biases) in the HD connections, causing the HD bump to move faster in one direction than the other in certain bump locations, as well as a
small speed-dependent (nonlinear) response of the HD bump to varying input current from the asymmetric AHV cells.
doi:10.1371/journal.pone.0025687.g009
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forward jumps (since, with all the HD positions the bump could

have recently occupied, it was unlikely to have recently been at the

landmark position). Consequently gain was usually increased each

time landmark reset occurred, resulting in a large erroneous final

gain value (see Figure 11c).

Discussion

Targeted embodied movement facilitates calibration of
neural systems

We have shown how exact, static pre-wiring of the HD system is

not required for accurate orientation tracking. Instead, targeted

movement strategies, combined with appropriate synaptic learning

rules, can be used to calibrate a model of the neural HD system on

a mobile robot platform, allowing the robot to reliably track real-

world head direction. Successful calibration is dependent on

execution of the required movement strategy; if specific move-

ments are removed from the action repertoire, calibration fails in

systematic ways. The movement must also be correlated with

sensory input, highlighting the importance of embedding the body

in the environment so that actions consistently impact on

perceptions. Real-world constraints, such as the physical invariant

that a full 360u rotation always results in return to the original

heading, can greatly simplify the learning problem.

Figure 10. Bump stability varied with different modifications to movement strategy. (A) Small lateral head turns, but no 360u turns.
(B) 360u turns, but no small head turns. (C) Sensory input uncorrelated with head motion. See text for discussion.
doi:10.1371/journal.pone.0025687.g010

Figure 11. Turn gain calibration varied with different modifications to movement strategy. In all cases turn gain should have stabilised around
0.8 (see Figure 8C). (A) Small lateral head turns, but no 360u turns. (B) 360u turns, but no small head turns. (C) Sensory input uncorrelated with head motion.
doi:10.1371/journal.pone.0025687.g011
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Several considerations motivated implementation of the HD

calibration on a mobile robot. First, it demonstrated that the

hypothesised calibration mechanism is robust to real-world noise.

The robotic version of the vestibular sense, coming from the wheel

rotation sensors, was biased and noisy, as was the visual

determination of landmark direction. Sources of real-world noise

are often unknown and the noise distributions are typically

uncharacterised. Simulations of procedures and adaptive algo-

rithms using simulated injected noise are therefore inadequate for

determining robustness to noise in the real world. On the

particular robot used for the HD calibration tests, turn angles

were systematically under-represented by approximately 8%, and

approximately 30% of landmark alignments with the robot’s

heading were missed, yet calibration successfully completed.

Second, implementation on a robot allowed for grounding of

the required movements in the real world [15]. Similar to the

distinction between simulated and real-world noise, the presumed

effects of action on perception may vary significantly in the real

world due to sensor placement on the robot, less-than-ideal

response of sensors to different materials (e.g. acoustic sensors to

soft walls; optical sensors to reflective or shiny surfaces) and

intrinsic sensor and motor variability. To truly test our hypothesis

that targeted movement can calibrate neural systems, real world

implementation was imperative.

Third, recognising that calibration continues to be a significant

challenge to those in the robotics community [32], we suggest that

this study further demonstrates how biology can afford practical

solutions to engineering problems. This study is the first to show

how a neural robotic system for head direction can self-calibrate

with noisy (and sometimes absent) inputs using targeted move-

ments. This result is particularly relevant to brain-based robot

navigation systems such as RatSLAM [19,42], which has achieved

several seminal navigation and mapping results [40,43]. Rat-

SLAM, like more traditional probabilistic robot navigation

systems, is not widely deployable without either pre-training or

parameter tuning. Its neural basis in place and grid cells makes it

particularly suited to the calibration methods presented in this

paper, affording it a means of autonomous self-calibration that is

not available to other mapping methodologies.

More generally, the study shows how neural systems can be

calibrated using embodied movement strategies. Self-calibration

[32,33], in the face of partial information [34], and with specific

pose selection [35], are currently salient topics in robotics research.

Mechanical components wear and accrue damage over time, which

can be particularly significant for mobile robots that are deployed

long term such as in factory and warehouse delivery operations. In a

future study, we plan to test a calibration algorithm on our robot

where the need for HD recalibration is indicated by the magnitude

of the head direction resets which occur. When these exceed a

threshold, the robot can re-initiate calibration behaviour; addition-

ally, the calibration learning rate and annealing schedule can be set

relative to the magnitude of the head tracking error.

Finally, there is growing acceptance of the importance and

effectiveness of robotics in the modelling of biology, particularly in

the neurosciences. Biological processes are best modelled in the

context of real-world constraints and contingencies [13] in order to

discover the general principles underlying their function [14].

These principles are often concealed under the colossal detail and

complexity inherent in most biological systems, and many times

can only be revealed by making simplifications and abstractions

from this reality. The danger of making these abstractions is in

compromising a model’s relevance to real-world phenomena.

Robotics can mitigate this risk, by re-introducing and testing the

real-world relevance of the abstracted principles.

We propose that the stereotypical developmental warm-up

movements, undertaken by infants of many mammalian species

and adult animals with certain movement disorders, may be used

for calibration of their neural head direction systems. The small-

amplitude head turns which begin on day 5 or 6 serve two

purposes. Firstly, they facilitate calibration of bump movement

such that equal-speed turns in opposite directions cause equal-

speed movement of the bump (stability condition 1). Secondly,

they allow the animal to learn a landmark directly in front of it

and to associate the landmark with a specific head direction

represented in the HD network. With the formation of this stable

association between a landmark and a given head direction, the

animal can then detect when it has turned a full circle through

recognition of the landmark when it completes a full 360u rotation.

The 360u movements have a special purpose within the proposed

calibration mechanism, since a 360u turn ‘grounds’ the calibration

within a physical invariant and allows calibration to function from

a single learned landmark. The 360u turns are used for setting the

overall gain of the bump movement (stability condition 2). These

movements rely on stability condition 1 already being met, so

appear in animals subsequent to the small lateral head turns. To

test the hypothesis that warm-up movements are used for

calibration of the HD system, calibration should be disruptable

by immersing rat pups in an environment with constantly rotating

tactile cues. Older rats can be tested with rotating visual cues as we

have previously suggested [20]. Behavioural indications that the

HD system is functioning improperly would be a bias in the rat’s

turn choices during path integration with no external cues; the bias

should be in the same direction as the earlier applied continuous

environmental rotation. Alternatively, neural recordings of the

HD system should be able to reveal instability or drift in the HD

bump directly.

Comparison with other HD models
We have previously shown in the head direction adaptive

attractor network (HDAAN) that calibration to remove HD bump

drift and equalise turn rates in both directions does not require

visual input [20], relying instead on input from symmetric angular

head velocity (AHV) cells in the dorsal tegmental nucleus (DTN),

which have been hypothesised to be driven by the vestibular and

motor efference systems. Calibration of the absolute turn gain to

ensure that a 360u turn results in exactly one rotation of the HD

bump through the HDAAN, as presented in the current study,

requires just one landmark to be associated with the HD network

and the association can be at any arbitrary position.

The majority of models of the HD system – those we have

deemed the non-adaptive attractor models [3–8] – assume that the

HD system does not require calibration. Even those models [3],

robotics applications [44] and experimental studies [38,39] which

specifically address resetting of the HD bump position by learned

landmark locations assume that, once the absolute head direction

is reset by a learned landmark, subsequent head turns are tracked

reliably by the HD system with no further calibration require-

ments. The reliable tracking presumably occurs by vestibular input

where the gain has already been manually preset.

The few models that have previously addressed the issue of HD

calibration have all required many visual landmarks [16–18].

More importantly, all prior studies have assumed that the

landmarks are already uniquely and accurately associated with

their correct HD bump positions within the HD network prior to

HD calibration; the role of calibration in these studies was limited

to learning how to move the bump with vestibular input while

using landmark input as the training signal, so that the bump

position could be updated in darkness, for example. However, it is
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unclear how these correct and accurate HD associations with

landmark positions could be made before the network learned to

update the bump position based on vestibular input (i.e. prior to

calibration). While a single landmark could be learned at an

arbitrary position of the HD bump, as in the current study, an

unposited mechanism would be required to update the HD bump

when the head rotated to the next landmark, so that the bump

could be in the correct position to learn the next association. This

is a chicken-and-egg dilemma, in effect requiring a fully functional

HD network prior to calibration. The HDAAN, with its adaptive

attractor model of the HD system, solves this dilemma by requiring

just one landmark which can be learned at any arbitrary HD

bump position.

Whilst the connection weight update algorithm hypothesised in

this study operates on the recurrent excitatory connectivity

between the HD neurons, the principle underlying its operation

is general and is applicable to any HD model with connections

between neurons of differing preferred directions. The hypothe-

sised calibration mechanisms are therefore not reliant on recurrent

excitation and will function equivalently if added to non-recurrent

models. In the case of such models [3,7], the connection weight

update would need to be applied to the offset inhibitory

connections to the HD neurons (i.e. the connections from the

asymmetric AHV cells), with the signs of the weight updates

negated to compensate for their inhibitory, rather than excitatory

effect on the HD neurons.

Stability of the learning rules
The size of the HD bump in the HDAAN is both set by and

limited by the offset inhibitory connections from the asymmetric

AHV cells, not by the strengths of the recurrent HD attractor

connections. Therefore changes in the strengths of the HD

connections, within reasonable limits, do not result in significant

changes to the HD bump extents (maximal firing rates within the

bump may be affected however). For this reason, and due to the

Hebbian-like nature of the HD connection weight update rule

which ensures that synaptic connections between any two HD

neurons are updated only if both neurons are already firing (see

Eqn 1), the HD bump will not fade, split or otherwise dissipate

through the network during training. The ability of the HDAAN

to maintain a single activity bump of stable size is therefore not

compromised for a broad range of starting conditions, excitatory

and inhibitory synaptic efficacies and learning rates.

Biological plausibility
The 360u turn gain calibration is implemented in the model

through a mechanism using local inputs to modulate an increase

or decrease in the strength of the turn signal to the HD cells. The

gain is updated each time the HD bump position is reset by

recognition of a heading landmark. Each HD cell adjusts the gain

based solely on its own firing history when it receives landmark

input. The inputs to the gain calibration mechanism therefore

require nothing more than local knowledge, at each HD cell, of its

instantaneous and average firing rates, and its current sources of

input (specifically, each HD cell responds with a calibration signal

when it receives landmark reset input from the postsubiculum

(PoS), as long as that HD cell itself is not currently firing).

Average firing rate, or a memory of recent firing, as calculated

in Eqn 3, may be maintained neurophysiologically by intracellular

calcium levels. Whilst these have not been measured for HD cells

specifically, intracellular calcium transients, induced by spiking in

cortical pyramidal cells, decay with time constants in the range of

1.5 to 3.0 s [45], matching the 2 s constant required for HD gain

calibration. Synaptic plasticity is well known to depend on

calcium, as well as on levels and timing of pre- and postsynaptic

activity. Whilst no currently-known mechanism can account for

the computation of the difference between average and instanta-

neous firing rates as required by Eqn 2, neurons are known to be

capable of regulating their long term average firing rates to a set

fixed point by increasing or decreasing total synaptic efficacies

[46], and must therefore be able to calculate the difference

between that set point and their long term averages. It is therefore

not unreasonable to suggest that calculation of the difference of the

decaying average and instantaneous firing rates is also possible by

as yet unknown molecular mechanisms.

Known synaptic mechanisms could at least partially account for

the required learning suppression effect, when synaptic updates for

HD bump stability (condition 1) are suspended for a short period

when the bump position is reset by landmark input. Inhibitory

synaptic input is able to exert a shunting effect on an entire branch

of a neuron’s dendritic tree, effectively isolating that branch from

the cell soma for the duration of the inhibitory current flow. It is

conceivable (though is an untested hypothesis) that such shunting

inhibition occurs in the HD network in mammals to restrict

symmetric AHV input to the HD neurons during head direction

resets. This hypothesis, and other suggestions above, are

predictions of specific neuro-molecular mechanisms that may

exist in the HD network in order for HD calibration to occur.

It is an open question how a turn gain calibration parameter

could be stored and adjusted in the nervous system. The turn gain

controls the overall efficacy of the synapses from the asymmetric

AHV cells in the DTN to the HD cells in the LMN, or

alternatively the overall firing rates of the AHV cells (see Figure 1).

The control of turn gain could therefore manifest as a diffuse

feedback effect from the HD cells to all of the asymmetric AHV

cells in the DTN (or if not to DTN then to the population of AHV

cells known to exist in LMN [9]). Diffuse effects are generally

implemented in nervous systems through neuromodulatory

signals. Neuromodulators are specialised neurotransmitters which,

instead of undergoing immediate re-uptake at the synapse, diffuse

through large areas of the brain and have an effect on multiple

neurons. Our theory of 360u turn gain calibration therefore posits

that HD cells should have a diffuse neuromodulatory effect on the

strengths of all the connections from asymmetric AHV cells that

synapse back to the HD cells themselves. This neuromodulation

would be used to control the overall strength of the asymmetric

AHV cells onto the HD cells, thereby controlling the speed of the

HD bump. By this theory, any deficits in neuromodulation in these

structures would result in deficits in calibration of the neural HD

system. Dystonia (uncontrollable muscle movements resulting in

awkward posture, gait and head and limb movements) is thought

to be caused by disturbances in neuromodulator function.

Interestingly, dystonic rats spend a much larger amount of time

than normal controls in pivoting motions [47]; our theory of HD

calibration would suggest this is due to sluggish calibration of the

HD system, or perhaps complete calibration failure, resulting in

repeated and prolonged attempts by the rat to recalibrate.

Calibration of other movement systems
The head direction system is only one of the neural systems so

far discovered which seem to contribute to animals’ navigation

abilities. Grid and place cells also hold allocentric (world-based)

representations of an animal’s position in its environment. Grid

cells in particular, which fire in repeating triangular tessellations in

all directions uniformly [48], are also likely to require calibration.

Evidence for how grid cell firing patterns can be temporarily

influenced by changing environmental cues before returning to

their original configurations [49] suggests that some mechanism of
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calibration is likely to be active. Intriguingly, after the head turns

and 360u pivoting warm-up behaviour displayed by rat pups and

other infant mammals, periods of forward and backward rocking

motions and even backwards walking can be observed [12]. We

have demonstrated in the current study that head turns of

alternating directions are useful for equalising turn speeds in the

HDAAN. We conjecture that longitudinal rocking motions and

backward walking could play a calibration role for translational

motion tracking. Investigation of this potential mechanism for

calibration of grid cell firing is left for future study.
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