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Abstract

Hearing relies on faithful signal transmission by cochlear inner hair cells (IHCs) onto auditory fibres over a wide frequency
and intensity range. Exocytosis at IHC ribbon synapses is triggered by Ca2+ inflow through CaV1.3 (L-type) Ca2+ channels. We
investigated the macroscopic (whole-cell) and elementary (cell-attached) properties of Ca2+ currents in IHCs positioned at
the middle turn (frequency ,2 kHz) of the adult gerbil cochlea, which is their most sensitive hearing region. Using near
physiological recordings conditions (body temperature and a Na+ based extracellular solution), we found that the
macroscopic Ca2+ current activates and deactivates very rapidly (time constant below 1 ms) and inactivates slowly and only
partially. Single-channel recordings showed an elementary conductance of 15 pS, a sub-ms latency to first opening, and a
very low steady-state open probability (Po: 0.024 in response to 500-ms depolarizing steps at ,218 mV). The value of Po

was significantly larger (0.06) in the first 40 ms of membrane depolarization, which corresponds to the time when most Ca2+

channel openings occurred clustered in bursts (mean burst duration: 19 ms). Both the Po and the mean burst duration were
smaller than those previously reported in high-frequency basal IHCs. Finally, we found that middle turn IHCs are likely to
express about 4 times more Ca2+ channels per ribbon than basal cells. We propose that middle-turn IHCs finely-tune CaV1.3
Ca2+ channel gating in order to provide reliable information upon timing and intensity of lower-frequency sounds.
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Introduction

In mammals, inner hair cells (IHCs) are responsible for the

transduction of sound stimuli into an electrical signal, which is sent

to the brain by afferent fibres. Sound stimuli entering the cochlea

cause the mechanical displacement of IHC stereocilia, which leads

to the flow of a cation current into hair cells via mechanoelectrical

transducer channels. This depolarizing current activates CaV1.3

Ca2+ channels [1,2] at the IHC active zones [3,4] thus inducing

Ca2+-dependent exocytosis [5,6,7] of glutamate that activates

afferent fibres [8]. Each afferent fibre, which makes only one

synaptic contact with an adult IHC [9], receives information from

a single presynaptic specialization named the synaptic ribbon [10].

Therefore it is essential that sound stimuli encoded by the IHC are

accurately preserved at this initial stage.

Sound frequencies are encoded in terms of the topography of

the stimulated cell along the cochlea (so-called tonotopicity). For

high-frequency tones (basal cochlear turn in the mouse and gerbil),

IHC membrane filtering prevents their membrane potential

tuning to stimulus frequencies above ,3.5 kHz. Therefore, the

receptor potential of basal IHCs is graded and sustained (d.c.

component) [11] and supported by the maintained activity of

presynaptic Ca2+ channels [4], which activate rapidly to accurately

signal high-frequency sound onset [12]. IHCs and afferent nerve

fibres in the lower-frequency regions (apical and middle cochlear

turns in gerbils: , a few kHz) show tuning and phase-locking to

sound stimulation [11], enabling a time code of frequency to allow

frequency discrimination and sound localization based on the

detection of interaural time differences [13,14]. This requires the

IHC receptor potentials not only to be graded to sound intensity,

similar to basal cells, but also have a phasic (a.c.) component

representing the sound frequency [15]. As such, Ca2+ channels in

low-frequency IHCs would need to activate/deactivate faithfully

during the excitatory/inhibitory phase of the sensory signal. In this

study we investigated Ca2+ channels in IHCs positioned at the

middle turn (frequency ,2 kHz) of the adult gerbil cochlea, which

is their most sensitive hearing region [16]. This cochlear region
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represents a close match with the frequency range present in the

apical coil of the more commonly used mouse (,3 kHz [17]).

We found that most of the properties of CaV1.3 Ca2+ channels

in IHCs, i.e. the elementary conductance, the sub-ms activation

kinetics, the rapid deactivation, the burst opening modality and

the slow inactivation, are similar between high- (basal: ,30 kHz:

[4]) and low-frequency (middle: ,2 kHz) IHCs. However, Ca2+

channels in IHCs positioned in the 2 kHz region showed briefer

bursts of activity in response to sustained depolarizations and an

overall lower Po compared to those in basal high-frequency IHCs.

As a result of the Ca2+ channel properties found here, low-

frequency sound waves of increasing intensity would elicit phase-

locked Ca2+ influx at progressively more presynaptic active zones,

allowing for internal coding of both frequency and intensity

properties of sounds within the middle coil characteristic

frequency range.

Results

Ca2+ channel expression in IHCs of the middle gerbil
cochlear turn

The distribution of CaV1.3 channels within IHCs of the gerbil

cochlear middle turn was investigated by performing immunola-

belling experiments (Figure 1). Ca2+ channel clusters in adult

IHCs were only found at their presynaptic region (Figure 1A: for

mice see also [5,18,19]). The average number of immunopositive

CaV1.3 spots was 20.661.5 (n = 13), which co-localized with

synaptic ribbons (Figure 1B). Single Ca2+ channel recordings were

only performed from the basal pole of IHCs.

Unitary current and open probability of CaV1.3 Ca2+

channels in middle coil IHCs
Single Ca2+ channel recordings from IHCs were performed

from acutely isolated organs of Corti maintained at body

temperature, using 5 mM extracellular Ca2+ and 5 mM BayK

8644 in the recording pipette. IHCs were held at their resting

membrane potential (i.e. the patch was clamped at 0 mV), which

was then stepped to different test potentials. The use of BayK 8644

was essential when working at body temperature since in its

absence the majority of single channel openings were not resolved

(see also [18]). BayK 8644 is known to produce longer openings of

L-type Ca2+ channel [20,21,22,23]. Previous investigation on

mouse IHCs have shown that at macroscopic level the impact of

BayK 8644 was to increase the peak Ca2+ current with no change

in activation kinetics [18].

Using a high-K+ extracellular solution, which allowed control

over the transmembrane potential in the recorded patches (see

Methods), we found that the unitary Ca2+ channel openings

became more frequent and longer with membrane depolarization

(Figure 2A). Openings were often very brief (Figure 2A, arrow),

although some longer openings were occasionally seen (Figure 2A,

arrowhead). In several cases we recorded clusters of Ca2+ channel

openings that were interrupted by brief closing periods (asterisk in

Figure 2A). We defined ‘‘burst’’ as a cluster of openings separated

by brief closures (see also below). This gating behavior resembles

mode 1 and 2 originally reported for high-voltage-activated (HVA)

Ca2+ channels, also named long-lasting (L-Type) Ca2+ channels

because of their depolarized activation voltage threshold

(,230 mV) and little inactivation [21,23]. However, only in

recent years it has been shown that CaV1.3 channels activate at

more negative voltages (,260 mV) than the other members of

the HVA family (1.1, 1.2, and 1.4) [24,25,26,27]; for a recent

review see [28]. Indeed, single CaV1.3 Ca2+ channel activity was

present at the resting membrane potential of adult gerbil IHCs

(near 260 mV). The single channel current-voltage (I-V) relation

was linear over the voltage range investigated, with an average

slope conductance of 15 pS (Figure 2B).

In order to study the Ca2+ channel behaviour while maintaining

adult IHCs at their physiological membrane potential, all the

following experiments were performed with the high_Na+

extracellular solution in the bath. The use of this extracellular

solution prevented us from directly determining the IHC resting

membrane potential. Therefore, the patch transmembrane voltage

is indicated as the unknown IHC membrane potential (Vm) plus

the voltage step delivered to the patch pipette (e.g. Vm+20: 20 mV

depolarization from Vm). We were able to estimate the patch

transmembrane voltage using the amplitude of the elementary

Ca2+ current and extrapolating it from the I-V curves in high_K+

extracellular solution, assuming identical single channel conduc-

tance between the two recording conditions (Figure 2C; see also

[4]). Examples of single Ca2+ channel recordings in high_Na+

extracellular solution obtained at Vm+20 and Vm+50 are shown in

Figure 3A. The estimated mean transmembrane voltage applied

to IHCs was 250 mV for Vm+20 and 218 mV for Vm+50. Single

Ca2+ channel open probability (Po) increased with depolarization

(Figure 3A, lower trace). However, the percentage of null-sweeps

(sweeps in response to 500 ms voltage steps with no detectable

Figure 1. Distribution of CaV1.3 and CtBP2/RIBEYE in adult gerbil IHCs. A, IHC positioned in the middle coil (frequency ,2 kHz) of the adult
P20 gerbil cochlea immunostained for the CaV1.3 Ca2+ channel (red) and ribbon marker CtBP2/RIBEYE (green). Note that both CaV1.3 Ca2+ channels
and ribbons are localized at the IHC basal pole, which is the region used for all single Ca2+ channel recordings shown in the following figures. Merged
images are shown in the right column, which show colocalization between CtBP2/RIBEYE and Ca2+ channel immunopositive spots in yellow. White
dotted lines delineate the IHC. Images represent the maximum intensity projection over all layers of the z-stack. Nuclei were stained with DAPI (blue).
Scale bar = 10 mm. B, Total number of immunopositive spots for CaV1.3 (red bar), for CtBP2/RIBEYE (green bar) and colocalized (yellow bar); n = 13
IHCs analyzed from three gerbils.
doi:10.1371/journal.pone.0113750.g001
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channel activity) was rather high even at Vm+50 mV (55%; 294/

535; n = 6 cells). As previously noted for basal IHCs [4], null

sweeps were often clustered, indicating that the channel could shift

from a willing-to-open to an unwilling-to-open configuration,

possibly due to the biochemical state of the cell [23,29,30]. The

possibility that the high frequency of null sweeps was due to a high

incidence of brief, unresolved single channel openings missed

during threshold analysis of amplitude levels was excluded based

on the fact that we found no significant difference in the variance

and the standard deviation of the current recorded in null sweeps

at Vm+20 and at Vm+50.

When considering the active sweeps only (sweeps containing at

least one Ca2+ channel opening during the 500 ms stimulus), Po

was 0.009 (60.022) at Vm+20 mV (n = 7 patches) and 0.024

(60.048) at Vm+50 mV (n = 6 patches), the latter value being

much smaller than found in adult basal gerbil IHCs (0.21; [4]).

However, when only the first 40 ms of the sweeps were considered,

Po at Vm+50 mV increased to 0.058 (60.116; P,0.001). Thus,

Figure 2. Elementary Ca2+ currents recorded in cell-attached
configuration. A, Representative unitary currents recorded from adult
IHCs positioned in the middle region of the gerbil cochlea using a high-
K+ extracellular solution (High_K+; see Methods). The pipette solution
contained 5 mM Ca2+ and 5 mM BayK 8644. Transmembrane patch
potentials are shown next to the traces. The inter-stimulus interval in all
cell-attached recordings was 2 s. Grey lines indicate the channel closed
state (here and in the other figures Ca2+ channel openings are indicated
by a downward deflection of the current trace). Arrows and arrowheads
show single brief and long-lasting openings, respectively. In several
cases clusters of openings were seen, which were interrupted by short
closing periods (asterisk). B, Average current-voltage (I-V) data for single
Ca2+ channel currents recorded in High_K+ from eight IHCs (4#n#8
patches). Mean channel conductance values was 14.960.1 pS. C,
Average single Ca2+ channel recordings from IHCs in high_Na+

extracellular solution (High_Na+; see Methods) plotted on the fit from
panel B. Number of IHCs tested is shown. Note that the slope of the
linear fit was virtually identical to that shown in panel B.
doi:10.1371/journal.pone.0113750.g002

Figure 3. Elementary and macroscopic Ca2+ currents recorded
in high_Na+ extracellular solution. A, Representative unitary
currents recorded from middle-coil IHCs in high_Na+ extracellular
solution (see Methods) with 5 mM Ca2+ and 5 mM BayK 8644. Values for
transmembrane patch potentials (Vm+20 and Vm+50) represent the sum
of the voltage step command (+20 mV or +50 mV) and the cell resting
membrane potential (Vm). The actual transmembrane voltage
(,250 mV and ,218 mV) was derived from the single channel
current amplitude of Figure 2C. Continuous gray lines indicate the
channel closed state. B, Ensemble-averaged Ca2+ current at Vm+50 mV
(data from 163 active sweeps from 8 patches). Ca2+ current activation
time course is shown in an expanded scale below the trace. C,
Representative macroscopic ICa recorded from a middle-coil IHC in the
whole-cell configuration. Recordings were performed using the same
extracellular solution to that for the single-channel recordings and at
the cell membrane voltage of 221 mV, starting from a holding voltage
of 280 mV. Activation and inactivation time course are fitted using a
single exponential. The horizontal dashed line in B and C indicates the
zero current level. D, Mean current-voltage relationship for the
macroscopic Ca2+ current recorded in high_Na+ extracellular solution
from 6 adult gerbil middle turn IHCs. Data points were fitted with eqn.
3. The fitting parameters are: gmax 9.6 nS (61.1); Vrev 28.1 mV (62.0); V1/

2 220.6 mV (62.02); S 5.9 mV (60.5). The current-voltage relationship
for the elementary current (same as Figure 2C) is also shown in gray.
doi:10.1371/journal.pone.0113750.g003
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although the channel shows a very low overall opening probability

during prolonged depolarizations, it is more inclined to remain

open at the beginning of a stimulus than afterwards. Visual

inspection of the recordings revealed a tendency of channel

openings to cluster in the initial part of the sweeps (Figure 3A; see

also below). The activation time course of the ensemble-average

current (Figure 3B) could not be fully resolved because it already

reached the peak at the earliest time points available, which

indicates a sub-ms activation kinetics (Figure 3B, inset). The

inactivation kinetics was also difficult to assess due to the relatively

high current noise and was found to vary between 30 ms and

180 ms depending on the starting position of the fit with a

monoexponential function (not shown). The steady-to-peak ratio

of the ensemble-average current (40%) was quite consistent with

the ratio (35%) of the average Po measured in the first 40 ms (0.06)

to that measured in the last 100 ms (0.02160.059) of the sweeps

(total sweeps number: 294 from 8 patches; total duration of each

sweep: 500 ms).

Macroscopic Ca2+ current in IHCs of the middle cochlear
region

We performed whole-cell Ca2+ current (ICa) recordings from

age- and location-matched gerbil IHCs using extracellular

solutions analogous to those used for cell-attached recordings

(high_Na+ extracellular solution with 5 mM Ca2+ together with

100 mM linopirdine, 50 mM niflumic acid and 5 mM BayK 8644).

The partial inactivation of the macroscopic ICa (Figure 3C) at

221 mV was consistent with the decrease in single Ca2+ channel

Po during the sweeps (Figure 3A) and the partial inactivation of

the ensemble-average current (Figure 3B) in cell-attached record-

ings, although the steady-to-peak ratio of the macroscopic current

was larger (65%). Fitting the inactivation kinetics with a single

exponential function provided an inactivation time constant, ti, of

181 ms (613 ms; n = 6). Thus, Ca2+ channel inactivation appears

to be more pronounced and faster than that measured in cell-

attached configuration, possibly due to the fact that the whole-cell

configuration could affect the normal intracellular modulation of

the Ca2+ channel or the physiological ATP concentration (see

Discussion). The sub-ms activation time constant of ICa in whole-

cell (ta = 0.7760.08 ms at 221 mV, n = 6: Figure 3C, inset) was

comparable to the sub-ms activation of the ensemble average.

These results indicate that the macroscopic ICa recorded from

IHCs of the middle cochlear region can be sufficiently well

described by the summed behavior of the single Ca2+ channel.

The macroscopic current-voltage (I-V) curve (Figure 3D) shows

that ICa begins to activate positive to 260 mV. However, due to

the surface charge screening effect in elevated extracellular Ca2+,

this value is slightly (few mV) overestimated, i.e. less negative than

expected in physiological (1.3 mM) extracellular Ca2+ concentra-

tion [31,32]. Given an average peak ICa amplitude of 310 pA at

220 mV, with an elementary current extrapolated at the same

potential of 0.33 pA (Figure 2C) and a Po of 0.058, the total

number of about Ca2+ channel per IHC is likely to be in the order

of 16,000 (eqn. 1). Considering an average number of active

presynaptic sites (active zones) per IHC of 21 (Figure 1), we

calculated that there would be about 770 Ca2+ channels in each

presynaptic active zone, which is about four times higher than that

calculated in basal IHCs (,180; [4]).

Very short delay-to-first Ca2+ channel opening
We further investigated the single Ca2+ channel activation

kinetics by analyzing the first-latency, which is the delay between

the stimulus onset and the first observed Ca2+ channel opening.

The latency distribution obtained by plotting data from 6 patches

could be well fitted by the sum of two (Vm+20 mV; not shown) or

three (Vm+50 mV; Figure 4) exponentials. Time constant values

and their relative weight are shown in Table 1. We found that the

first latency decreased with membrane depolarization. Further-

more, at near 218 mV (Vm+50 mV), but not at 250 mV (Vm+
20 mV), the latency showed a sub-ms time constant (0.15 ms).

These results show that the average waiting time for an IHC Ca2+

channel to open decreases with depolarization, which is consistent

with macroscopic ICa activation kinetics accelerating with depo-

larization [7].

Dwell time analysis reveals a complex gating behavior
Next, we analyzed the distribution of the channel open and

closed lifetimes at the two membrane depolarization levels (Vm+
20 mV and Vm+50 mV; n = 6). Fitting the dwell time distributions

with eqn. 2 (Figure 5) revealed two open (to1 and to2) and three

closed (tc1, tc2 and tc3) time constants (Tables 2 and 3,

respectively). The values of these time constants could be grouped

as follows: t1 below 1 ms, t2 between 1 ms and 10 ms, t3 larger

than 10 ms. The analysis of the distinct kinetic parameters

revealed that the values of the open and closed time constants were

similar between the two transmembrane voltages. However, there

was an overall increase of the relative weight of to2 with

depolarization. Moreover, the relative weight of the shortest close

time constant (tc1) increased with depolarization. This indicates

that membrane depolarization caused an increased Ca2+ channel

mean open time due to a higher number of openings, though with

similar lifetime and kinetics. A similar result, i.e. depolarization

changing the relative importance of dwell times constants but not

their absolute values, was also found in immature apical mouse

IHCs [18], and in adult basal gerbil IHCs [4], and thus it appears

as a typical feature of IHC Ca2+ channels.

Ca2+ channels preferentially open in bursts
Analysis of the closed-time distribution (Figure 5D; Table 3)

revealed the presence of a very slow exponential component with a

Figure 4. First latency of single Ca2+ channel opening. First
latency distribution was obtained by plotting the natural logarithm of
the number of observations ms21 as a function of the delay between
the stimulus (Vm+50) onset and the first observed Ca2+ channel
opening at. The distribution was well defined by the sum of three
exponentials (eqn. 2).
doi:10.1371/journal.pone.0113750.g004

Role of Ca2+ Channels in Mid-Frequency IHCs

PLOS ONE | www.plosone.org 4 November 2014 | Volume 9 | Issue 11 | e113750



mean time constant (tc3) of 84 ms (Vm+50 mV). tc3 was about 20

times greater than the ‘‘intermediate’’ time constant of the closed-

time distribution (tc2: 4.1 ms). Moreover, the relative weight of the

slowest exponential component was only 15% compared to the

total. Therefore, the average number of ‘‘long’’ closures per sweep

was exceeded by that of ‘‘short’’ closures, and single Ca2+ channel

openings had a relatively high probability of being separated from

each other by short closings. This implies that Ca2+ channel

activity was largely organized in bursts, consisting of clusters of

openings separated by short closings, and interrupted by

prolonged closures (see Figure 2A and 3A). In order to analyze

the properties of burst openings, we first defined a burst as any

cluster of openings occurring without superimpositions and

separated by the previous and/or following openings by an

interval of at least 8 ms (i.e. twice the value observed for tc2). The

mean duration of the burst (for bursts not terminated by the end of

Table 1. Time constants (t) and the relative contributions (W, %) were obtained from the exponential fits of the latency of the first
opening at two different membrane voltages.

t1 (ms) w1 t2 (ms) w2 t3 (ms) w3

Vm+20 mV (,250 mV) 6.24 17 144 83 - -

Vm+50 mV (,218 mV) 0.15 24 4.2 22 104 53

doi:10.1371/journal.pone.0113750.t001

Figure 5. Kinetic properties of single Ca2+ channels. A–D, Semi-logarithmic plots of dwell times distributions at Vm+20 mV (A and B) and Vm+
50 mV (C and D) in middle turn IHCs. Time intervals were binned at 16–20 bins/decade. Data were fitted by the sum of two or three exponential
functions (eqn. 2). For the fitting shown in panel C, the last point, which appears to be representative of a third, very slow time constant that is
however poorly resolved due to the small number of observations for such long open times, was ignored. The values for open (A and C) and closed (B
and D) time constants with their relative weight and number of events are reported in Tables 2 and 3.
doi:10.1371/journal.pone.0113750.g005
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the sweep) was 19620 ms (n = 137 from 6 patches). Burst onsets

were concentrated at the very beginning of the sweep (Figure 6),

consistent with the short Ca2+ channel first latency.

Ca2+ channels deactivate quickly upon repolarization
We found that upon IHC membrane repolarization, the

majority (,90%; 173/193) of the sweeps did not show any

channel activity (Figure 7A, top trace). Out of the small number of

sweeps showing some Ca2+ channel activity during the repolar-

ization step, a few showed an occasional opening after a ‘‘silent’’

period (Figure 7A; middle trace), while the majority represented

the instantaneous current through a channel already open just

before repolarization (Figure 7A, bottom trace). The almost absent

Ca2+ channel activity upon repolarization, is consistent with the

rapid deactivation of the macroscopic ICa (Figure 7B). Indeed, ICa

deactivation, elicited by a repolarizing step from 221 mV to 2

80 mV, was extremely rapid and best fitted with a double

exponential function (tfast = 0.13 ms; tslow = 1.13 ms, with tfast

contribution being seven fold larger than tslow). Thus, the

deactivation kinetics of ICa is dominated by a very fast component,

with the slower one likely resulting from BayK 8644 [21].

Discussion

In the present study we have characterized the biophysical

properties of voltage-gated Ca2+ channels in adult gerbil IHCs of

the middle cochlear region (low frequency: ,2 kHz). We found that

most of the macroscopic and elementary properties of the Ca2+

current, namely the sub-ms activation and deactivation kinetics, the

slow inactivation, the elementary conductance and the bursting

activity, closely resemble those previously described in basal-region

IHCs (high frequency: ,30 kHz: [4]). This similarity is consistent

with a predominant expression of the CaV1.3 Ca2+ channel a-

subunit in the mammalian cochlear hair cells [1,5]. However, Ca2+

channels present in IHCs of the middle cochlear region showed on

average a much lower Po and shorter burst duration in response to

sustained depolarization than those reported for basal cells [4]. The

elementary Ca2+ channel properties in IHCs of the middle cochlear

region appear to be best suited to follow the a.c. component of their

receptor potential and thus phase-lock cell’s neurotransmission to

low-frequency sounds.

Mid-cochlear turn IHC CaV1.3 channels show very rapid
activation and deactivation

We found that the fastest time constant of Ca2+ channel first

latency (t1) was ,0.15 ms (at 218 mV, 5 mM Ca2+ and 34–

Figure 6. Single Ca2+ channels open in bursts. Time of burst
beginning in the sweeps recorded at Vm+50 mV for middle turn IHCs.
Note that bursts appear more frequently at the very beginning of the
sweep.
doi:10.1371/journal.pone.0113750.g006

Figure 7. Ca2+ channel activity upon repolarization. A, The first
portion of the trace shows Ca2+ channel activity at Vm+50 (arrows),
while the last portion, as also indicated by the red vertical dashed line,
shows Ca2+ channel activity upon repolarization to Vm (arrowheads).
Like the trace shown at the top, the majority of the traces showing Ca2+

channel openings at Vm+50 did not show any openings upon
repolarization. The second and third traces from the top are rare
examples of Ca2+ channel activity upon repolarization. Note the
increase in current amplitude upon repolarization due to the increased
driving force. In the bottom trace, a Ca2+ channel was open at Vm+
50 mV just before repolarization. B, Macroscopic tail current elicited by
repolarizing the cell from 221 mV to 280 mV. In order to increase the
signal-to-noise ratio, the fit was performed on the average current
recorded from six IHCs. Note the fast time course of ICa deactivation,
which was fitted (red line) by a double exponential function.
doi:10.1371/journal.pone.0113750.g007
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37uC). This value is similar to that found in adult basal IHCs in

analogous experimental conditions (,0.18 ms), which is assumed

to decrease to about 40 ms in the presence of 1.3 mM instead of

5 mM Ca2+ [4] because of surface screening effects [31,32,33]. A

similar rapid (sub-ms) activation kinetics was also recorded from

the macroscopic Ca2+ current. We have also found that Ca2+

channel openings were rarely seen upon repolarization following

depolarizing steps, which is consistent with very rapid macroscopic

tail currents (Figure 7). L-type Ca2+ channels have been reported

to show enhanced Ca2+ channel activity early after repolarization

from positive voltage levels and generate slow tails currents [34],

though the CaV1 isoform/s involved were not identified. In many

tissues CaV1.3 channels are expressed together with other CaV1

isoforms [28], whereas in IHCs ICa is carried almost exclusively by

CaV1.3 (.90%: [1]). Therefore, it is reasonable to assume that the

rapid (sub-ms) activation and deactivation kinetics observed here is

a specific property of the CaV1.3 Ca2+ channel isoform, which is

consistent with a previous report on chicken cochlear hair cells

[35], mouse outer hair cells [36] and in heterologous expression

systems [37].

Depolarization favors long openings
Analysis of dwell time distributions revealed a complex gating

behavior that is similar to that found in basal IHCs [4], with two

open and three closed time constants (Table 2 and 3). With

depolarization the relative weight of long openings and short

closures increased, which is consistent with the increase in size of

the macroscopic ICa with depolarization. The absolute t values

were also similar to those found in basal IHCs [4], although their

relative weight at comparable membrane potentials indicates a

higher percentage of long duration openings in basal than mid-

cochlear turn IHCs, which is consistent with the overall larger Po

in basal cells.

Depolarization induces the earlier appearance of brief
bursts of Ca2+ channel activity

Dwell time analysis also indicates that single Ca2+ channel

openings had a relatively high probability of being separated by

short closings despite the very low Po. This implies that Ca2+

channel activity was largely organized in bursts. As also found in

basal IHCs [4], burst activity was most frequent during the initial

part of the depolarizing response (Figure 6). When we limited the

analysis of Po to the first 40 ms of each sweep, indeed, its value

increased to 0.058, i.e. , twice the 500 ms value. A decrease in Po

during the 500 ms step was consistent with partial inactivation of

the ensemble average current (Figure 3C) and of the macroscopic

current (Figure 3D).

Diversity of elementary Ca2+ channel properties
The elementary properties of voltage-dependent Ca2+ channels

have been characterized in vestibular and cochlear hair cells of

lower vertebrates and mammals [4,18,36,37,38]. Synaptic vesicle

fusion at IHC presynaptic active zones is controlled almost

exclusively by Ca2+ entry through L-type (CaV1.3) Ca2+ channels

[2,5], which show a negative voltage activation range [4,18].

These channels show only partial inactivation and a complex

gating, characterized by multiple open and closed time constants,

together with periods of no activity. The elementary Ca2+ current

activation kinetics (delay-to-first opening) were found to be slower

in immature [18] compared to mature IHCs ([4]; present study).

Recently, it has been shown that CaV1.3 channels expressed in

the same IHC can be functionally heterogeneous [19,39], possibly

as a consequence of different intracellular modulation, alternative

alpha1-subunit splicing or subunit composition (e.g. association

with different beta-subunit isoforms or splice-variants) [40,41]. In

principle, CaV1.3 channels could vary in several elementary

properties, e.g. conductance, voltage- or Ca2+-sensitivity, kinetics,

etc. The most obvious difference that we found in CaV1.3 channel

properties between IHCs from the basal [4] and middle cochlear

turn was the lower Po of the latter. Given the overall low

frequency of Ca2+ channel openings, the Po value was largely

determined by the channel entering the bursting modality of

opening. Consistent with this observation, mean burst duration

was on average shorter in mid-cochlear IHCs (19 ms) compared to

that of basal cells (81 ms: [4]), the latter showing a larger Po than

the former. We found that bursting activity appeared clustered in

successive sweeps, as previously found in recordings from basal

IHCs [4], and more generally for L-Type Ca2+ channels [21]. This

phenomenon has been attributed to some cellular modulation or

metabolic state [23,29,30]. This suggests that functionally different

CaV1.3 channels among IHCs, and possibly between presynaptic

active zones in a same IHC, are achieved by modulating the

channel bursting modality.

Number of Ca2+ channels per IHC
The total number of Ca2+ channels per IHC (about 16,000) was

estimated using eqn. 1, which uses values obtained under different

experimental conditions (whole-cell and cell-attached recordings)

that could have caused an overestimation. One crucial factor

required to maintain CaV1.3 channel activity is the concentration

of intracellular ATP [42], which may vary between whole-cell and

cell-attached configurations. While whole-cell recordings were

performed using 5 mM ATP, the concentration of the cytosolic

ATP in the unperturbed IHC (cell-attached recordings) is not

known, but it could be lower [42,43]. Moreover, the possible fine

intracellular modulation of Ca2+ channels [44] is likely to be lost in

whole-cell recordings. Therefore the Ca2+ channel Po in whole-cell

recordings could be artifactually augmented by the experimental

condition, resulting in an overestimation of the Ca2+ number per

IHC. Despite this possibility, lower-frequency middle-coil IHCs

(about 300 Hz) express about 4-times more Ca2+ channels

compared to high-frequency basal cells ([4]: about 30 kHz), under

the same experimental conditions. This larger Ca2+ channel

number in middle-turn IHCs is likely to increase the dynamic

range for exocytosis in low-frequency cells showing a phasic (a.c.)

component, revealing a major difference among cells along the

mammalian cochlea.

Functional significance of Ca2+ channel properties in IHCs
of the gerbil mid-cochlear turn

IHC properties change along the length of the gerbil cochlea

[45] in order to process sound at their characteristic frequency,

which varies from about 0.1 to 60 kHz [46]. It has been suggested

that the properties of one or very few Ca2+ channels are likely to

govern the fusion of each docked vesicle at IHC ribbon synapses

(nanodomain control of exocytosis: [3,47,48]. Therefore, knowl-

edge of elementary Ca2+ channel properties, together with their

functional coupling with vesicles, is an essential pre-requisite to

understand how IHC ribbons release neurotransmitter with the

required precision of timing. We found that Ca2+ channels in

middle-coil IHCs promptly (sub-ms latency) respond to depolar-

ization with short bursts of activity and to repolarization with very

fast deactivation. This would ensure phase-locked Ca2+ influx in

response to sinusoidal acoustic stimuli up to a few kHz [11].

Similar, fast activation kinetics were also found for basal IHCs

Ca2+ channels [4]. Although basal IHCs are not expected to be

able to follow their characteristic high frequency stimuli, the rapid
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activation/deactivation kinetics would enable them to signal the

beginning and the end of a high-frequency sound with just

minimal delays, which is important for binaural sound localization

[49,50].

As previously found for basal IHCs, the Ca2+ channel Po was

largely determined by the bursting mode of gating, and was

otherwise (i.e. outside bursts) negligible. This property is even

more prominent in mid-cochlear IHCs, and together with the

relatively high prevalence of null sweeps (55%), indicates that upon

depolarization only a small fraction of the Ca2+ channels at each

active site will open. This suggests a ‘‘volley principle’’ for ICa-

coupled neurotransmitter exocytosis such that by increasing sound

intensity it will increase the probability that a vesicle fusion event

will occur at each active site. This might explain how increasing

sound intensity can be encoded at the single afferent auditory

nerve axons as an increase in the number of cycles of the sound

wave that elicit a phase-locked action potential [51].

With depolarization, the macroscopic ICa increases and

accelerates, consistent with single channel Po increasing and

latency to first opening decreasing. This would ordinarily be

expected to reduce synaptic delay as at other chemical synapses

[52,53], thus producing a phase advance with increasing stimulus

intensity. Indeed, synaptic delay was shown to decrease with

increasing depolarization for hair cells that are initially at rest

[54,55]. However, the relative timing of afferent fibre action

potentials remains constant throughout their intensity range

[12,54,56]. It has been proposed that Ca2+ channel facilitation

at membrane voltages close to rest [54,57] and vesicle pool

depletion at more depolarized voltages balance each other, so that

for sine-wave stimuli of different intensities the average phase will

be conserved [54]. Also, it has recently been reported that

multivesicular release, which requires Ca2+ inflow but does not

appear to depend upon the amplitude of Ca2+ inflow [47], could

be responsible for EPSC phase-lock at all stimulus intensity [55].

Here, we infer that during the repolarizing phase of each cycle of

the acoustic stimuli, the single-channel Ca2+ current will likely

reaches its maximal amplitude because of the increased driving

force (the elementary ‘‘tail’’ current in Figure 7A, middle and

bottom traces). Since only ,4% of the IHC mechano-transducer

(MET) channels are open at rest [58], the IHC depolarizing peak

produced by the excitatory phase of the sound wave can vary

largely depending on the sound intensity (louder sounds: more

MET channels open; dynamic range .90% of the MET

channels), while the hyperpolarizing peak will vary little. Thus,

the amplitude of the elementary tail current will result solely

dependent to the (invariable) Ca2+ equilibrium potential, and not

to the stimulus intensity, and we propose that this brief maximal

elementary Ca2+ signal is able to evoke a (multivesicular?) release

event which, because of the very fast deactivation kinetics of

CaV1.3 channels, would occur in a phase-locked manner while

minimizing asynchronous vesicle release (see also ref. [55]). This

Ca2+ signal will occur with a probability that will reliably reflect

the open-channel probability increase during the foregoing

depolarization and, hence, the stimulus intensity. In other words,

the chance to see an elementary tail current will be greater the

larger the previous depolarization, in keeping with the above

hypothesized volley principle.

In summary, the elementary properties of Ca2+ channels

expressed in mid-cochlear IHCs appear to show specific biophys-

ical properties that make these channels ideal to code the timing

and the intensity of the sound wave in the frequency range to

which gerbils are most sensitive [16].

Materials and Methods

Ethics Statement
All animal work has been conducted according to relevant

national and international guidelines. All gerbils of either sex were

killed by cervical dislocation, under Schedule 1 in accordance with

UK Home Office regulations. Our animal work adhere to the

NC3Rs guideline (ARRIVE). Specifically, the protocol was

approved by: 1) In Italy animal studies were licensed by the

Ministero dell’Istruzione, Università e Ricerca, Rome, and

approved by the Committee on the Ethics of Animal Experiments

of the University of Pavia; 2) In the UK, all animal studies were

licensed by the Home Office under the Animals (Scientific

Procedures) Act 1986 and were approved by the University of

Sheffield Ethical Review Committee; 3) In Germany, care and use

of the animals and the experimental protocol were reviewed and

approved by the animal welfare commissioner and the regional

board for scientific animal experiments in Tubingen. A total

number of 41 adult (from postnatal day 20 (P20) to P37, where the

day of birth is P0) gerbils were sacrificed, of which 25 animals

provided useful data as follows: 3 for immunocytochemistry, 8 for

single-channel recordings in high-K+ extracellular solution, 8 for

single-channel recordings in high-Na+ extracellular solution, and 6

for whole-cell recordings.

Patch-clamp recording
Inner hair cells (IHCs) from gerbils were studied in acutely

dissected organs of Corti. Recordings were obtained from IHCs

positioned in the middle turn of the adult cochlea corresponding in
vivo to mean characteristic frequencies of ,2 kHz [59]. The

organs of Corti were dissected as previously described [43,60] in

normal extracellular solution (in mM): 135 NaCl, 5.8 KCl, 1.3

CaCl2, 0.9 MgCl2, 0.7 NaH2PO4, 5.6 D-glucose, 10 Hepes-

NaOH, 2 sodium pyruvate, amino acids and vitamins (pH 7.5;

osmolality ,308 mmol kg21). Cochleae were viewed using an

upright microscope (Leica DMLFS, Germany). Unless otherwise

stated, all recordings were performed near body temperature (35–

37uC) and with the normal extracellular solution as the bath

solution.

For single Ca2+ channel recordings, patch pipettes were made

from quartz glass capillaries (Sutter Instruments, USA) coated with

surf wax (Mr Zoggs SexWax, USA) to minimise the fast electrode

capacitative transient. Patch pipettes contained the following

solution (in mM): 5 CaCl2, 102 CsCl, 10 Hepes-KOH, 15 4-AP

and 40 TEA (pH 7.5). Linopirdine (100 mM: Tocris, Bristol, UK),

niflumic acid (50 mM: Sigma, UK) and BayK 8644 (5 mM: Sigma)

were added to the pipette solution. Stock solutions of niflumic acid

and BayK 8644 were prepared in DMSO and stored at 220uC
(final dilution 1:2000). In a few experiments (Figure 2A,B) the

membrane potential of IHCs was zeroed by superfusing a high-K+

extracellular solution [18] containing (in mM): 140 KCl, 0.2

CaCl2, 6.2 MgCl2, 0.7 NaH2PO4, 5.6 D-glucose, 15 Hepes-KOH

(pH = 7.5) In some initial experiments trypsin (0.025–0.05% v/v)

was very briefly and topically applied onto IHCs prior attempting

to seal. Data were filtered at 2 or 5 kHz (4-pole Bessel) and

sampled at 20 or 50 kHz. In very few cases, current traces were

additionally filtered offline at 1 kHz (8-pole Bessel). Membrane

potentials were corrected for the liquid junction potential of +
3 mV.

Whole-cell recordings were performed using soda glass capil-

laries (resistance 2–3 MV) coated with surf-wax and filled with (in

mM): 106 Cs-glutamate, 20 CsCl, 3 MgCl2, 1 EGTA-CsOH, 5

Na2ATP, 0.3 Na2GTP, 5 Hepes-CsOH, 10 Na2-phosphocreatine

(pH 7.3). Inward Ca2+ currents were recorded in isolation by
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superfusing IHCs with a high_Na+ extracellular solution (in mM):

103 NaCl, 5.8 KCl, 5 CaCl2, 0.9 MgCl2, 0.7 NaH2PO4, 5.6 D-

glucose, 10 Hepes-NaOH, 30 TEACl, 15 4-AP (pH 7.5;

osmolality ,306 mmol kg21) daily added with 100 mM linopir-

dine, 50 mM niflumic acid and 5 mM BayK 8644. Recordings

were filtered at 5 or 10 kHz (8-pole Bessel) and sampled at 50 or

100 kHz. Membrane potentials were corrected for residual series

resistance (Rs: 1.2760.05 MV, n = 6) and liquid junction potential

(211 mV). Leakage and residual capacitative transients were

subtracted off-line by scaling the current and artifacts generated by

a voltage step from 280 mV to 270 mV, a voltage range at which

the contribution by voltage- and time-dependent currents is

negligible or absent in the presence of a Cs+-based intracellular

solution.

Immunocytochemistry
Cochleae from adult gerbil (P20) were used to prepare

cryosections for immunofluorescence microscopy and processed

as previously described [61]. Briefly, cochleae were dissected and

fixed for 2 hrs with 2% paraformaldehyde (w/v), decalcified,

embedded in Tissue-Tek optimal cutting temperature compound

(Sakura Finetek) and cryosectioned at a thickness of 10 mm.

Sections were embedded with Vectashield mounting medium with

DAPI (Vector Laboratories). Antibodies directed against CaV1.3

(rabbit, Alomone Laboratories, diluted 1:50) and Ribeye/CtBP2

(mouse, BD Transduction Laboratories, diluted 1:50) were used

for cryosection preparations. Primary antibodies were detected

with Cy3-conjugated (Jackson ImmunoResearch Laboratories) or

Alexa Fluor 488–conjugated (Molecular Probes) secondary anti-

bodies. Sections were viewed using an Olympus BX61 microscope

equipped with motorized z-axis, epifluorescence illumination and

differential interference contrast (DIC). Images were acquired

using a CCD camera and analyzed with cellSense Dimension

software (OSIS GmbH, Münster, Germany). To display Ca2+

channel and ribbon distribution, cochlea slices were imaged over a

distance of several mm with the coverage of the IHC synaptic

region in an image-stack along the z-axis (z-stack) followed by

three-dimensional deconvolution using cellSense Dimension

module with the advanced maximum likelyhood estimation

algorithm (ADVMLE, OSIS). The immuno- histological figures

display composite images, which represent the maximum intensity

projection over all layers of the z-stack. Immunopositive spot

counting and co-localization was performed as previously

described [18]. Immunolabeling has been done on three animals

as follows: one cochlea, four different counts; one cochlea, four

different counts; both cochleae, three counts + two counts, for a

total of 13 IHC counts.

Data analysis
Single Ca2+ channel analysis was performed as previously

described [18] using Clampfit (Molecular Devices) and Origin

(OriginLab, USA). Briefly, leak and uncompensated capacitive

currents were corrected by subtracting average episodes without

channel activity (null sweeps) from the active sweeps. Event

detection was performed with the 50% threshold detection method

with each transition visually inspected before being accepted.

Idealized traces were used to calculate single channel amplitude

distribution (event duration .0.34 ms), open probability (Po) and

open and closed time histograms. Po was calculated as the time

fraction spent in the open time vs. the total recording time [18].

Dwell times distributions were fitted with multiple exponentials.

The total number of Ca2+ channels expressed in IHCs was

estimated using the following equation:

N~I=iPo ðeqn:1Þ

where N is the total number of channels, I is the size of the

macroscopic Ca2+ current measured using 500 ms voltage steps, i
is the single-channel current size and Po the open channel

probability.

The distributions of open and closed times were analyzed using

log–log plots [62]. Dwell-time lower and upper bin limits were first

set according to a logarithmic scale (12 bins per decade). After

binning, the number of events (n) was divided by the correspond-

ing bin width (dti), and the natural logarithm of ni/dti ratio was

calculated. These values were plotted as a function of x = lnt to

construct log–log frequency distribution graphs. Exponential

fitting of log–log histograms was performed by applying them

following double-logarithmic transform of a sum of exponential

equations [62]:

I~
gmax V{Vrevð Þ

1z exp
V1=2{V

S

� � ðeqn:2Þ

where x0j = lntj, and Wj and tj are the weight coefficient and time

constant, respectively, for each exponential component. The plots

and fittings obtained in this way were then shown on a linear time

scale for better clarity (see Figs. 4 and 5).

The first latency distribution was investigated by measuring the

time interval between the first point of the capacitative transient

and the first Ca2+ channel opening. These values were corrected

for the number of channels in the patch [63]. The number of

events used for this analysis was smaller than those used for the

dwell times, since only the time to the first opening from each trace

could be used. The distribution of the first latency was analysed as

for the open and closed times. In a few sweeps Ca2+ channel were

already open at the onset of the voltage step. These ‘‘zero delay’’

openings were not included in the analysis because obtained while

Vm was varying.The macroscopic current-voltage curve was fitted

with the following equation:

I~
gmax V{Vrevð Þ

1z exp
V1=2{V

S

� � ðeqn:3Þ

where I is the current, gmax is the maximum chord conductance, V
is the membrane potential, Vrev is the reversal potential of the

current, VK is the potential at which the conductance is half

activated and S is the slope factor that defines the voltage

sensitivity of current activation. In the text and figures, mean

values are quoted 6 SEM unless otherwise specified. To

determine if the mean Po obtained from each sweep during the

first 40 ms or the for its whole duration (500 ms) were significantly

different, F-test followed by t-test were used. In the text, n refers to

the number of cell/patches/sweeps. Mean values are provided 6

S.D.
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