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A residual dense network assisted 
sparse view reconstruction 
for breast computed tomography
Zhiyang Fu1,2, Hsin Wu Tseng1, Srinivasan Vedantham1,3, Andrew Karellas1 & Ali Bilgin1,2,3*

To develop and investigate a deep learning approach that uses sparse-view acquisition in dedicated 
breast computed tomography for radiation dose reduction, we propose a framework that combines 
3D sparse-view cone-beam acquisition with a multi-slice residual dense network (MS-RDN) 
reconstruction. Projection datasets (300 views, full-scan) from 34 women were reconstructed using 
the FDK algorithm and served as reference. Sparse-view (100 views, full-scan) projection data were 
reconstructed using the FDK algorithm. The proposed MS-RDN uses the sparse-view and reference 
FDK reconstructions as input and label, respectively. Our MS-RDN evaluated with respect to fully 
sampled FDK reference yields superior performance, quantitatively and visually, compared to 
conventional compressed sensing methods and state-of-the-art deep learning based methods. The 
proposed deep learning driven framework can potentially enable low dose breast CT imaging.

Dedicated breast computed tomography (BCT) is an emerging, fully 3D, high-resolution (100–300 µm nearly 
isotropic voxels) imaging modality that does not employ physical compression of the breast. Compared to 
digital breast tomosynthesis1, BCT almost eliminates tissue superposition and does not suffer from limited-
angle acquisition associated artifacts2 seen in digital breast tomosynthesis. A multi-reader, multi-case receiver 
operating characteristic (ROC) study employing 18 readers and 235 cases showed improved sensitivity of non-
contrast diagnostic BCT over mammography-based diagnostic work-up3, leading to its regulatory approval 
for non-contrast diagnostic use. Non-contrast BCT can have a far greater role if its suitability for breast cancer 
screening is demonstrated. The radiation dose (mean glandular dose, MGD) from non-contrast diagnostic BCT, 
while similar to the MGD from mammography-based diagnostic workup, was approximately twice that of 2-view 
(standard) screening DM4. At radiation dose similar to mammography, a prior study using an early prototype 
showed improved visualization of masses and reduced visualization of microcalcifications with BCT compared 
to mammography5. Hence, the long-term goal is to reduce the radiation dose to be comparable to mammography 
screening, without loss of detection performance.

Radiation dose reduction in BCT to levels suitable for breast cancer screening can be achieved through 
improved hardware, acquisition strategies and advanced image reconstruction inclusive of post-processing 
techniques. In terms of hardware, photon-counting detectors6,7, low-noise, high-resolution, complementary 
metal oxide (CMOS) detectors8,9 and beam-shaping X-ray filters10,11 are being investigated. Acquisition strategies 
being investigated include helical scan6, laterally-shifted detector geometry12,13 short-scan14, and sparse-view 
acquisition15. Also, theoretical and empirical optimization of x-ray beam quality for acquiring projection data 
have been reported16–19.

In this study, we describe the potential of advanced image reconstruction employing deep learning techniques 
that can be used with existing BCT technology. This can lead to lower radiation dose and expedite its translation 
for breast cancer screening. This study is complementary to ongoing hardware-oriented research. Although, sta-
tistical iterative reconstruction20–22 and denoising techniques23 have been investigated for BCT, all BCT systems 
currently use Feldkamp–Davis–Kress (FDK) reconstruction24. Deep learning based image reconstruction has 
not been investigated in the context of BCT or for cone-beam CT; however, it has been explored for conventional 
multi-detector CT25–28. Jin et al.25 utilized the U-Net with residual learning and demonstrated the feasibility on 
parallel beam X-ray CT. A similar approach was independently proposed by Chen et al.26. The proposed residual 
encoder-decoder convolutional neural network (RED-CNN)26 was shown to be quantitatively outperforming 
the earlier version29 and the wavelet-domain CNN30.
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Recently, advanced network architectures using residual blocks31 or dense blocks32 have shown improved 
performance compared to standard convolutional neural networks in computer vision applications33,34. In this 
work, we adopt a derived version of the residual dense network33 and investigate its potential for low-dose cone-
beam BCT image reconstruction.

Results
Breast CT datasets.  This retrospective study was conducted in accordance with relevant guidelines and 
institutional review-board (IRB) approved protocol (University of Arizona Human Subjects Protection Pro-
gram, Protocol #1903470973). The study used de-identified projection datasets from 34 women assigned Breast 
Imaging-Reporting and Data System (BIRADS)35 diagnostic assessment category 4 or 5, who had previously 
participated in an IRB approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant 
research study (ClinicalTrials.gov Identifier: NCT01090687). The study was conducted with informed consent 
from participants involved. This dataset was used in several prior studies4,36–41. All subjects underwent non-
contrast dedicated breast CT exam of the ipsilateral breast using a clinical prototype flat-panel cone-beam breast 
CT system (Koning Corp., West Henrietta, NY). The scan parameters were: 49 kVp, 1.4 mm of Al 1st HVL, 8 
ms pulse-width, 300 projection views, 360 degree full-scan acquisition, 12.6 mGy MGD, and 10 s scan time. The 
300 view projection datasets were reconstructed using the FDK algorithm with 0.273 mm isotropic voxel pitch 
and matrix size 1024× 1024 in the transverse (coronal) plane. Sparse-view (100 views, full scan; 4.2 mGy MGD) 
projection data were retrospectively undersampled from the 300 view datasets and reconstructed with the FDK 
algorithm at the same voxel pitch. The longitudinal direction represents the slices. The 34 breast CT datasets 
were randomly split as follows: 20 for training (total of 8346 2D slices), 5 for validation (total of 1920 slices) and 
the remaining for testing (total of 4056 slices). The 9 test subjects were evenly divided into groups corresponding 
to small, medium, and large sized breasts, based on the number of slices in each case. The number of slices for 
the 9 test subjects were: 250, 315, 390, 426, 450, 462, 523, 600, and 640. The training dataset had diverse lesions (4 
soft tissue lesions, 14 calcified lesions, and 2 soft tissue lesions with microcalcifications), BIRADS breast density 
categories (1, 6, 9, and 3 of categories a through d, respectively), and pathology (5 malignant, 2 hyperplasia, and 
the remaining benign).

Impact of tissue of interest (TOI) selection.  TOI selection was evaluated for the proposed multi-slice 
residual dense network (MS-RDN) and RED-CNN26. Test subject datasets were reconstructed by the single-slice 
networks with and without TOI selection. FDK reconstructions on the 300-view data (denoted as FDK300) were 
used as references across all the experiments. The performance was quantitatively evaluated with Normalized 
Mean Square Error (NMSE), bias, Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Metric 
(SSIM42). All four metrics significantly differed across all reconstructions (Wilks Lambda, P < 0.0001 ). Table 1 
panel (a) showed that TOI selection significantly improved all metrics for both RED-CNN and MS-RDN.

Impact of multi‑slice training.  Over the entire test dataset, MS-RDN with Z = 1 did not differ signifi-
cantly from MS-RDN with Z = 5 in terms of NMSE ( P = 0.211 ), bias ( P = 0.234 ), and PSNR ( P = 0.211 ) as 
shown in the panel (b) of Table 1. However, there was a significant improvement with MS-RDN5 compared to 
MS-RDNZ1 in SSIM (P<0.0001; mean improvement: 0.0005). For RED-CNN, multi-slice training significantly 
improved all metrics compared to single slice training. The boxplots in Fig. 1 show independent evaluations for 
small-size, medium-size, and large-size breasts. Figure 1a shows relatively consistent NMSE performance from 
small-size breasts to large-size breasts. Similar observation of robust performance can be made for the bias, 
PSNR, and SSIM boxplots shown in Fig. 1b–d, respectively. The quantitative performances of MS-RDN and 

Table 1.   Statistic analysis of the impact of TOI selection and multi-slice training for RED-CNN and MS-RDN 
architectures. The evaluation was performed on the entire testing breast dataset using NMSE, Bias, PSNR, and 
SSIM metrics. (a) shows the performance improvement by including TOI selection on single-slice ( Z = 1 ) 
RED-CNN and MS-RDN. (b) shows the performance difference between multi-slice ( Z = 5 ) and single-slice 
training for RED-CNN and MS-RDN, respectively. Please note that the values corresponding to NMSE and 
PSNR are identical since these quantities are related as shown in Eqs. (6) and (7).

RED-CNN P-value MS-RDN P-value

(a) Impact of TOI selection

NMSE + 0.090 dB < 0.0001 + 0.253 dB < 0.0001

Bias − 0.998 × 10
−4

cm
−1

< 0.0001 − 2.099× 10
−4

cm
−1

< 0.0001

PSNR + 0.090 dB < 0.0001 + 0.253 dB < 0.0001

SSIM + 0.0009 < 0.0001 + 0.0011 < 0.0001

(b) Impact of multi-slice training

NMSE + 0.035 dB < 0.0001 Not significant 0.211

Bias − 0.411 × 10
−4

cm
−1

< 0.0001 Not significant 0.234

PSNR + 0.035 dB < 0.0001 Not significant 0.211

SSIM + 0.0004 < 0.0001 + 0.0005 < 0.0001
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Figure 1.   MS-RDN reconstructions with different number of adjacent slices ( Z = 1, 3, 5, 7, 9 ) are evaluated 
with (a) NMSE, (b) bias, (c) PSNR, and (d) SSIM for a range of breast sizes. Fully sampled FDK reconstructions 
are used as reference. These metrics computed along the longitudinal direction are presented using box plots. 
On each box, the central mark is the median, the top and bottom edges are the 25th and 75th percentiles, 
respectively. Outliers are denoted as red plus signs.
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RED-CNN with multi-slice training were breast size dependent with smaller improvements, or degradation, for 
smaller breasts than for medium and large breasts. For the medium-size and large-size breasts, MS-RDN with Z 
= 5 (MS-RDNZ5) achieved the best performance for all metrics. For small-size breasts, the single-slice MS-RDN 
(MS-RDNZ1) appeared to perform better than multi-slice networks. The lower cone-angle of small-size breasts 
could reduce longitudinal correlation for the multi-slice networks to exploit, and the under-representation of 
small-size breasts (approximately 16% of slices) in the training dataset may be contributing factors to the above 
observation. Studies into these aspects will be pursued in future with the availability of larger datasets. Figure 2a 
shows the (medium-size) breast images reconstructed by FDK and MS-RDNs with varying slice depths on the 
retrospectively undersampled 100-view data together with the reference image obtained using FDK on the 300-
view data. Figure 2b shows the zoomed-in views corresponding to the red bounding boxes indicated in Fig. 2a. 
Note that the sagittal and axial ROIs were rotated 90 degrees clockwise for display. Compared to the reference 
images, all MS-RDN outputs appear less noisy. It is worth noting that the Venetian blind artifacts appear in the 
longitudinal reconstructions of MS-RDN with single slice training. As the slice depth increases, these artifacts 
are suppressed but the glandular tissues become blurred gradually. Importantly, multi-slice training eliminates 
longitudinal artifacts and enhances the reconstructions as well. On the other hand, MS-RDN with large slice 
depths increases computational complexity in training and testing without gaining substantial performance. 
Hence, we opted to train MS-RDN with 5 adjacent slices in the following experiments as a balance between 
performance and complexity.

Comparison with RED‑CNN.  Our MS-RDN was compared with RED-CNN in three sets of network con-
figurations: single slice training without TOI selection ( Z = 1 , nonTOI), single slice training ( Z = 1 ), and multi-
slice training ( Z = 5 ). Figure 3 shows the breast images (small-size) reconstructed by RED-CNN and MS-RDN 

Figure 2.   (a) A comparison of breast images reconstructed by MS-RDNs with different slice depth 
( Z = 1, 3, 5, 7, 9 ) on retrospectively undersampled 100-view cone-beam data. The network inputs are obtained 
using FDK on the 100-view breast data, denoted as FDK100, and the references are obtained using FDK on 
the 300-view breast data, denoted as FDK300. The bounding boxes on the reference images indicate the ROIs 
enlarged in (b). Note that the sagittal and axial ROIs were rotated 90 degrees clockwise for presentation. The 
display window is [0.15, 0.35] cm−1.
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on the retrospectively undersampled 100-view data together with the reference image obtained using FDK on 
the 300-view data. Overall, MS-RDNs preserved high-frequency features such as edges and textures better than 
their RED-CNN counterparts. In addition, the aforementioned Venetian blind artifacts are also presented in 
the non-transverse images obtained using RED-CNN with single slice training. Figure 4 shows the boxplots of 
(a) NMSE, (b) bias, (c) PSNR, and (d) SSIM for the RED-CNN and MS-RDN reconstructions of various-size 
breasts. For small-size breasts, MS-RDN with single slice training ( Z = 1 ) attained the best NMSE and bias 
performance. For medium-size and large-size breasts, it can also be observed that TOI selection and multi-slice 
training improve performance of MS-RDN independently. Table 2 shows that MS-RDN outperforms RED-CNN 
significantly in all configurations.

Comparison with the fast, iterative, TV‑regularized, statistical reconstruction technique 
(FIRST22).  Figure 5 illustrates the breast (large-size) reference images reconstructed by FDK and FIRST using 
the 300-view data as well as the reconstructions obtained using FIRST and MS-RDNZ5 on the 100-view data. 
Compared to the 300-view FDK reconstructions (FDK300), the 300-view FIRST reconstructions (FIRST300) 
suppress the noise and preserve breast tissue structures in fine scale. However, the FIRST reconstructions with 
the 100-view data (FIRST100) exhibits blurred structures/textures and increased streak artifacts. In contrast, 
MS-RDNZ5 with 100-view data is able to remove the streaks as well as suppress the noise. In Table 3, the per-
formance of FIRST and MS-RDNZ5 are evaluated with NMSE, bias, PSNR, and SSIM using 300-view FDK 
and 300-view FIRST reconstructions as references, respectively. For all these metrics, MS-RDNZ5 outperforms 
FIRST considerably. It is noteworthy that these metrics are improved by a large margin (roughly 5–8 dB NMSE 
increase, 4–6 ×10−3cm−1 bias decrease, 5–8 dB PSNR increase, and 0.04–0.07 SSIM increase) when FIRST300 
images rather than FDK300 reconstructions are used as references.

Outlier inspection.  The slice with the worst NMSE for MS-RDNZ5 was identified in Fig. 4. This slice was 
from a small heterogeneously dense breast (BI-RADS density category c). Figure 6 shows the reconstructions 
obtained using the investigated methods for this slice. A hyper-intense signal, corresponding to a calcification, is 
located near the center of the breast, which was biopsied subsequent to breast CT. Pathology indicated a benign 
finding—fibrosis with calcification. It is interesting to note that this calcification is not reconstructed well by any 
of the deep-learning techniques in terms of the shape, whereas the iterative reconstruction captures the shape 

Figure 3.   Comparisons to the residual encoder–decoder convolutional neural network (RED-CNN). The 
proposed MS-RDN was compared with RED-CNN in three sets of configurations: single slice training 
without TOI oriented patch extraction ( Z = 1 , nonTOI), single slice training ( Z = 1 ), and multi-slice training 
( Z = 5 ). Breast images of the test subject were reconstructed by these RED-CNNs and MS-RDNs using the 
retrospectively undersampled 100-view data. The reference images were obtained using FDK on the 300-view 
data. The display window is [0.15, 0.35] cm−1.
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Figure 4.   The boxplots of (a) NMSE, (b) bias, (c) PSNR, and (d) SSIM for the reconstructions obtained using 
RED-CNN and MS-RDN with the following configurations: single slice training without TOI oriented patch 
extraction ( Z = 1 , nonTOI), single slice training ( Z = 1 ), and multi-slice training ( Z = 5 ). For example, 
“MS-RDNZ1” represents MS-RDN with single slice training. On each box, the central mark is the median, the 
top and bottom are the 25th and 75th percentiles respectively. Outliers are denoted as red plus signs. Note that, 
in each breast-size group, MS-RDN and RED-CNN with the same configurations are placed next to each other 
for comparison.
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better. However, there is loss of detail and texture in other regions, such as the edges between adipose and fibro-
glandular tissues, with the iterative reconstruction.

Discussion
In this study, we presented a deep learning (DL) based reconstruction framework for 3D sparse-view breast CT. 
In reference to full view FDK reconstructions, the proposed framework yields image quality superior to com-
pressed sensing techniques such as FIRST while requiring comparable reconstruction times. In this study, the 
reconstructed FOV was relatively large (280 mm × 280 mm or 1024 pixel × 1024 pixel) to accommodate breasts 
with large diameter at the chest-wall36, which leads to large fraction of background in some of the datasets. Thus, 

Table 2.   Statistical analysis of MS-RDN and RED-CNN reconstructions using generalized linear models. 
The table reports the performance gained by MS-RDN over RED-CNN for three different configurations 
and four quantitative metrics. All improvements are significant with P < 0.0001 . Please note that the values 
corresponding to NMSE and PSNR are identical since these quantities are related as shown in Eqs. (6) and (7).

NMSE (dB) Bias ( cm−1) PSNR (dB) SSIM

Single slice training, non-TOI + 0.034 − 0.399 × 10
−4 + 0.034 + 0.0003

Single slice training + 0.197 − 1.501 × 10
−4 + 0.197 + 0.0006

Multi-slice training ( Z = 5) + 0.144 − 0.975 × 10
−4 + 0.144 + 0.0007

Figure 5.   A comparison to the FIRST algorithm. Breast reference images, FDK300 and FIRST300, are obtained 
using FDK and FIRST algorithms on the 300-view data respectively. Similarly, FIRST100 represents FIRST 
reconstructions on the retrospectively undersampled 100-view data. On the same undersampled data, breast 
images were reconstructed using MS-RDN with multi-slice training ( Z = 5 ), indicated as MS-RDNZ5. The 
display window is [0.15, 0.35] cm−1.
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we adopted a tissue of interest oriented patch extraction strategy, termed TOI selection, during the network train-
ing to enforce learning on the breast tissue region rather than the irrelevant background regions. Importantly, 
patches that contain less than 50% background pixels were also included in training to ensure the recovery of 
breast anatomy boundary. This TOI selection alone enhanced the sharpness of breast textures and achieved 
improved NMSE and bias compared to random patch extraction.

This work used multi-slice training as a compromise between 2D and 3D network training. We demonstrated 
that multi-slice training is effective in exploiting the correlations between adjacent slices. Most importantly, it 
eliminated the Venetian blind artifacts in images obtained using single slice training. However, we also noticed 
that the performance gained with increased slice depth of MS-RDN saturates at small number of slice depth. 
This suggests the longitudinal correlation is largely local. One future extension to the current work could be 
assembling three networks trained in the axial, coronal, and sagittal planes respectively. The ensemble of three 3D 
networks explores local similarities along all three orientations similar to what a 3D network does but it would 
still require much less GPU memory and training data.

Our DL-based framework uses residual dense blocks33,43 as the backbone of the network. It has been shown 
that such combination of residual connections31 and densely connected structures32 improved network parameter 
efficiency and reconstruction accuracy in single image super resolution problems33,43. Our MS-RDN was com-
prehensively compared with the residual learning based RED-CNN and showed superior reconstruction quality 
of breast CT images. While this study demonstrated promise in the task of sparse-view breast CT reconstruction, 
it has several limitations. The reference FDK reconstruction exhibits higher noise than multi-detector CT used 
for imaging other organs, due to the hardware limitations and radiation dose constraints. Our MS-RDN recon-
structions looked (perceptually) more similar to the FIRST approaches in terms of signal-to-noise ratio. Recent 
studies44–46 suggest that pixel-wise losses, such as ℓ1 or ℓ2 loss, are prone to overly smoothing image structures. 
In contrast, adversarial training47,48, perceptual loss49, as well as texture matching loss50 are proven to preserve 
high frequency image content and improve the perceptual quality. However, it should be noted that these tech-
niques may hallucinate high frequency textures44, which makes them less appealing for medical applications. 
In breast CT imaging, hallucinated high frequency texture may mimic microcalcifications. Nevertheless, the 
impact of alternative loss functions in dedicated breast CT needs to be investigated and can be an extension of 
the current work.

We also investigated the possible failure cases for the proposed deep learning technique. For the example 
shown in Fig. 6, we found out that both MS-RDN and RED-CNN (irrespective of their configurations) pro-
duced poor reconstructions of the shape of a calcification. Note that the calcification is a minor class compared 
to the fibroglandular or adipose tissues in the training dataset. Unlike the iterative compressed sensing method, 
which includes data consistency and model based priors, the proposed method learns from training samples. 
Hence, the network may not learn the characteristics of tissues that are scarcely represented in the training data. 
It would be interesting to develop deep learning techniques that can yield improved reconstructions of such 
calcifications in future works.

Table 3.   Quantitative analysis of the proposed method (MS-RDNZ5) and the FIRST algorithm. One small-
size breast (S), one medium-size breast (M), and one large-size breast (L) were selected for testing, respectively. 
The suffixes “100” and “300” denote the number of projections in the data. The MS-RDNZ5 network was 
always trained using FDK100 as input and FDK300 as label. However, either FDK300 or FIRST300 were used 
as the reference when computing the quality metrics, as indicated by the column labels “FDK300 Reference” 
and “FIRST300 Reference”, respectively. Median and interquartile range in the bracket are shown. Bolded 
values indicate better performance in pairwise comparison.

Metrics

FDK300 reference FIRST300 reference

FIRST100 MS-RDNZ5 FIRST100 MS-RDNZ5

NMSE (dB)

S 27.19 (1.03) 27.50 (1.03) 32.67 (1.01) 32.99 (1.17)

M 24.85 (0.19) 25.67 (0.31) 29.15 (0.36) 31.45 (1.53)

L 26.11 (0.38) 26.78 (0.29) 34.93 (0.52) 35.68 (0.71)

Bias ( 10−3 cm−1)

S 9.08 (1.24) 8.60 (1.65) 4.55 (0.71) 4.12 (0.81)

M 11.80 (0.21) 10.69 (0.29) 6.98 (0.26) 5.19 (0.79)

L 8.68 (0.34) 8.07 (0.19) 2.92 (0.19) 2.75 (0.26)

PSNR (dB)

S 41.17 (1.17) 41.42 (1.37) 46.77 (1.09) 47.00 (1.28)

M 38.95 (0.16) 39.80 (0.25) 43.23 (0.31) 45.56 (1.43)

L 41.62 (0.32) 42.28 (0.21) 50.45 (0.53) 51.22 (0.73)

SSIM

S 0.941 (0.020) 0.946 (0.021) 0.988 (0.004) 0.989 (0.003)

M 0.893 (0.004) 0.914 (0.003) 0.964 (0.003) 0.985 (0.002)

L 0.938 (0.003) 0.944 (0.002) 0.994 (0.001) 0.994 (0.001)
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Methods
Projection acquisition and three‑dimensional image reconstruction.  In 3D cone-beam BCT, 
multi-projection data P ∈ R

Nd×Np were acquired in a complete circular trajectory composed of Np projections 
using a two-dimensional (2D) X-ray area detector consisting of Nd pixels. From the cone-beam projections P , an 
estimate of the underlying image volume V ∈ R

Nx×Ny×Nz was reconstructed using the conventional analytical 
FDK algorithm24. The reconstruction process can be expressed using the following equation

where F denotes the FDK reconstruction operator interpolated by voxel-driven approach51,52. Reconstructed 
volumes are assumed to have isotropic voxel resolution as the voxel sizes are principally determined by size of 
the imaging detectors. However, the spatial resolution can be location-dependent and anisotropic due to reduced 
sampling at the periphery of the field of view within a transverse slice and due to geometric distortions arising 
from cone-beam geometry (commonly referred to as cone-beam artifacts) as the acquisition does not satisfy 
data-completeness requirement53,54 with the exception of the central transverse slices.

(1)V = F(P),

Figure 6.   Reconstructions of the slice that yields the worst NMSE performance for MS-RDNZ5 in Fig. 4a. 
Reconstructions from all investigated methods are shown in (a). The zoomed regions of the central part of the 
breast tissue with a calcification are shown in (b). The display window is [0.15, 0.35] cm−1.
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To reduce radiation dose, a common way is to uniformly reduce the number of projections without compro-
mising the full angular coverage55–57. This sparse-view projection data was obtained by retrospectively under-
sampling the full-view projection data P using

where Pu ∈ R
Nd×⌊

Np
u ⌋ represents the sparse-view projection data, u denotes the undersampling factor, and the 

notation i: j: k in Eq. (1) denotes regularly spaced sampling between indices i and k using j as the increment. 
Similarly, an estimate of the image volume Vu was reconstructed from the sparse-view data Pu using the FDK 
algorithm, that is

It should be noted that the reconstructed image volume Vu typically exhibits streaking artifacts due to 
undersampling.

Deep neural network reconstruction.  Earlier studies on abdominal contrast-enhanced CT58 and optoa-
coustic tomography59 showed promising performance of deep neural network reconstruction with sparse data. 
The goal of this work is to combine sparse-view data acquisition with deep neural network reconstruction to 
reduce undersampling artifacts. A deep neural network D(w, ·) can be utilized to recover V from Vu , where w 
are the weights of D . In supervised learning, w are optimized by minimizing a pre-defined loss function L(·) , 
namely,

over a training dataset.
Our proposed framework uses supervised training where the inputs and targets of the network are obtained 

using Eqs. (1) and (3), respectively. While it may be ideal to process the entire volume using a 3D neural net-
work, there are practical constraints associated with 3D networks60–65. Conventional denoising methods for 
3D CT images based on non-local means66 or block matching filter67 showed that a multi-slice approach is able 
to leverage inter-slice spatial dependencies with small growth in computational complexity. Hence, we jointly 
reconstruct Z ∈ Z

+ adjacent slices as a compromise between 2D and 3D processing.
Figure 7a illustrates the proposed training procedure for Z = 3 . The first step in processing is a masking 

procedure to remove the background regions in each slice. Figure 8 illustrates this masking process for an 
individual image slice. In this process, masking was performed to remove the artifacts outside of the circular 
Field of View (FOV). The image data within the circular FOV across all slices were used to create a histogram 
of linear attenuation coefficients for the entire volume. Based on the observation that the background noise and 
undersampling artifacts (streaks) are well separated from the breast tissue in this histogram, we selected the bin 
center with the lowest bin count as the hard threshold and created segmentation maps that identify the breast 
tissue in each slice. We further dilated the segmentation maps using a flat disk-shaped structuring element with 
a radius of 2 pixels. Segmentation maps created from the input slices were shared with the corresponding target 
slices as shown in Fig. 7a. Training is performed using patch pairs extracted from the input and target volumes. 
Selection of training samples is a well-studied area in machine learning literature and numerous methods have 
been proposed to reduce bias through training sample selection68–70. Inspired by these techniques, patches that 
contain more than 50% foreground pixels were selected as training samples. This patch extraction process is 
referred to as tissue-of-interest (TOI) selection. 

The network testing phase is illustrated in Fig. 7b. Since the proposed network reconstructs multiple slices 
simultaneously, a target slice (indicated by dotted yellow bounding box) is reconstructed multiple times in dif-
ferent slice contexts (indicated by red, green, and blue bounding boxes). In this illustration, 5 adjacent slices 
were first preprocessed using the same masking procedure as the training phase. Using a sliding window of size 
3 and stride of size 1, the target slice is processed three times by the network. The three reconstructions are then 
combined using an ensemble strategy. In summary, for any trained network DZ(ŵ, ·) with slice depth Z, the 
ensemble strategy to obtaining the target slice reconstruction Ŝt can be formulated as

where f denotes the ensemble function, gt only retains the reconstruction of the target slice t, and Si denotes the 
slice i of the input. In our experiment, we found evenly averaging is a simple yet effective ensemble approach. 
We replicate border slices to handle slices at edges.

Network architecture.  The proposed MS-RDN architecture is shown in Fig. 9a. Multi-slice inputs are first 
processed by a shared 2D convolutional layer. The resulting 3D spatial features are then consecutively propagated 
through the high resolution and low resolution feature branches. Learned high resolution and low resolution 
features are summed using a trainable weighting factor. In the end, the output convolutional layer reconstructs 
multi-slice outputs from the fused feature maps. Inspired by Ledig et al.44, our feature branch is sequentially 
composed of multiple dense compression units (DCUs)33, a 3× 3 convolutional layer and a skip connection. As 

(2)Pu = P[1 : 1 : Nd , 1 : u : Np],

(3)Vu = F(Pu).

(4)ŵ = argmax
w

L(D(w,Vu),V)

(5)

Ŝt = f (gt(DZ(ŵ, St−Z+1, St−Z+2, · · · , St)),

gt(DZ(ŵ, St−Z+2, St−Z+3, · · · , St+1)),

· · · ,

gt(DZ(ŵ, St , St+1, · · · , St+Z−1)))
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shown in Fig. 9b, the DCU consists of stacked densely connected blocks, a 1× 1 convolutional layer, a residual 
scaling (0.1) and a local skip connection. The 1× 1 convolutional layer compresses accumulated features to the 
same number of input features, which enables the residual connection within the dense structure. The constant 
scaling stabilizes network training, when the number of filters is high34,71. The DCU structure efficiently merges 
local feature information and periodically breaks dense connections to improve back projection of gradients33. 
Figure 9c details the layout of modified dense block, where all batch normalization layers are removed compared 
to the original DenseNet configuration32.

Figure 7.   Network multi-slice (a) training and (b) testing framework. Training with three slices is shown 
as an example. (a) Multi-slice inputs reconstructed from sparse projection data is processed with the 
masking procedure described in Fig. 8. The generated segmentation maps are shared with multi-slice targets 
reconstructed from full projection data. Patches are extracted as training samples only when they contain more 
than 50% foreground pixels based on the generated masks, termed tissue of interest (TOI) oriented. (b) Five 
consecutive testing slices are used to reconstruct the central slice, indicated by the yellow bounding box. Three 
sets of multi-slice inputs, where the target slice has different slice context, are independently processed by the 
same trained network. Only the target slices are retained and aggregated to obtain the final reconstruction of the 
target slice.

Figure 8.   The masking procedure. Circular Field of View (FOV) of the FDK reconstruction is extracted to 
remove out-of-FOV artifacts. Typically, streaks and breast tissue are well separated in the histogram of linear 
attenuation coefficients. Based on the histogram, an adaptive thresholding algorithm that selects the bin center 
with lowest bin counts as the hard threshold is used to generate the segmentation map and the thresholded 
output. The images and plots linked by dashed line show the intermediate outputs of the entire processing 
pipeline.
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Network evaluation.  To demonstrate the superiority of multi-slice training, we first trained multiple MS-
RDNs with the same configurations except for the number of adjacent slices, i.e., Z = 1, 3, 5, 7, 9 , respectively. 
Note that when Z = 1 , MS-RDN reduces to the single slice network, i.e. 2D network.

Our MS-RDN was compared with the residual encoder–decoder convolutional neural network (RED-CNN)26 
designed for low dose CT image reconstruction. We followed the implementation of RED-CNN from https​://
githu​b.com/SSiny​u/RED_CNN and adopted the suggested network parameters (for example, convolutional 
kernel size is set to 5). Note that unlike our proposed deep learning reconstruction framework, RED-CNN26 
was trained with randomly extracted single-slice patches. We therefore applied the TOI selection and multi-slice 
training scheme to the RED-CNN architecture for comparison.

Nine randomly selected test subjects were evenly grouped by the size of breast. To reduce the impact of breast 
size or slice location, we always select a constant number of measurement samples within the breast for quantita-
tive analysis. The network reconstructions were evaluated with normalized mean square error (NMSE), bias, peak 
signal-to-noise ratio (PSNR), and Structural Similarity Index Metric (SSIM42). The NMSE metric was computed 
as the ratio of mean square error to mean square of the reference image and converted into decibel (dB), that is

The bias metric was computed as the mean absolute error. The PSNR metric was computed as the ratio of the 
maximum pixel intensity ( Imax ) squared to mean square error as

The SSIM index was computed using the default hyper-parameters except that the dynamic range of pixel values 
was set to the maximum pixel intensity within the entire dataset. All metrics were calculated in the longitudinal 
direction as the representation.

The fast, iterative, tv-regularized, statistical reconstruction technique (FIRST22) was also used for sparse-view 
image reconstruction. This algorithm is an ultra-fast variant of the adaptive steepest descent-projection on to 
convex sets (ASD-POCS72) and has been shown to suppress additional artifacts on the periphery of the object. 
The performance of FIRST was compared to MS-RDN using one small-size breast, one medium-size breast, and 
one large-size breast.

Implementation.  We construct our MS-RDN with a high resolution branch and a low resolution branch, 
where each branch consists of 9 DCUs and each DCU is composed of 8 modified dense blocks. The initial 
number of features is set to 64 with a growth-rate of 32. To evaluate the impact of network depth on RED-CNN 

(6)NMSE(x, xref ) = −10× log10
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Figure 9.   The architecture of multi-slice residual and dense network (MS-RDN). (a) Overall layouts; (b) the 
detailed layouts of dense compression unit (DCU); (c) the detailed layouts of modified dense block.

https://github.com/SSinyu/RED_CNN
https://github.com/SSinyu/RED_CNN
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performance, we implemented RED-CNN with 10, 22, and 42 convolutional layers. Note that the 10-layer archi-
tecture corresponds to what was proposed in the RED-CNN paper26 and the 42-layer RED-CNN with Z = 5 has 
roughly the same number of trainable parameters (9,243,941) as our MS-RDN with Z = 5 (9,237,126). In line 
with observations made in earlier studies26,73, we determined that deeper RED-CNNs perform roughly the same 
as the 10-layer RED-CNN in our application (see Supplementary Fig. S1). Thus, we used the 10-layer RED-CNN 
for its computational simplicity.

All models were optimized using ADAM with its standard settings (β1 = 0.9, β2 = 0.999, and ǫ = 10−8) 
for 100 epochs. Each mini-batch consists of 8 training samples with patch size 128× 128× Z , and was normal-
ized by the mean and standard deviation of the entire training data. All networks were trained with ℓ1 loss. The 
learning rate was initially set to 1× 10−4 and halved every 2× 105 mini-batch updates. The single slice network 
was trained from scratch and used as a pre-trained model for other multi-slice networks. To fine-tune on the 
pre-trained single slice network, we replicated the single channel weights along the channel dimension at the 
input and output convolutional layers, respectively74. Pre-training, as an approach to initializing network weights, 
has been shown to improve training stability of larger networks27,74. In contrast, we found that further training 
of the single-slice network does not lead to considerable improvements (see Supplementary Fig. S2). The model 
with the best validation loss was evaluated at inference time.

Our MS-RDN was implemented in PyTorch75 with CUDA backend and CUDNN support, and trained on a 
NVIDIA Quadro P6000 GPU. The network took about 60 hours on average for 100 epochs training. The FDK 
and FIRST algorithms were implemented in MATLAB with GPU acceleration. Ram-Lak filter was used for the 
FDK algorithm and FDK reconstructions were used as the initialization of the FIRST algorithm. Other standard 
hyperparameters of FIRST were: β = 1 , βresidual = 0.995 , α = 0.001 , αresidual = 0.95 , rmax = 0.95 , 100 total itera-
tions, and 30 Total Variation iterations. On average, MS-RDN, RED-CNN, FDK, and FIRST require about 2.3 s, 
1.2 s, 0.01 s and 3.1 s per slice (1024×1024 matrix size), respectively, on a single NVIDIA Quadro P6000 GPU. 
Note that MS-RDN and RED-CNN are able to reconstruct breast images in a slice-by-slice manner, whereas 
FDK and FIRST reconstruct the entire breast volume simultaneously. MS-RDN, RED-CNN, FDK, and FIRST 
require about 9.0 GB, 2.4 GB, 2.5 GB, and 6.3 GB GPU memory, respectively.

Statistical analysis.  Generalized linear models (repeated measures analysis of variance) were used to test 
if the metric (NMSE, bias, PSNR, and SSIM) differed between the reconstructions, as the same set of test cases 
were reconstructed using different methods. Effects associated with P < 0.05 were considered statistically sig-
nificant. If the generalized linear model showed significant difference, then follow-up paired t-tests were per-
formed to determine (i) if the metric differed between TOI and non-TOI strategies for MS-RDN and RED-CNN; 
(ii) if the metric differed between Z = 1 and Z = 5 for MS-RDN and RED-CNN; and (iii) if MS-RDN differed 
from RED-CNN for the TOI strategy when Z = 1 and Z = 5 . For each metric, this results in a total of 7 com-
parisons. Hence, Bonferroni-adjusted alpha of 0.007 was considered statistically significant for these pairwise 
comparisons. The data analysis for this paper was generated using SAS software, Version 9.4 of the SAS System 
for Windows.
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