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Pandemics like COVID-19 have a huge impact on human society and the global economy. Vaccines 
are effective in the fight against these pandemics but often in limited supplies, particularly in the 
early stages. Thus, it is imperative to distribute such crucial public goods efficiently. Identifying and 
vaccinating key spreaders (i.e., influential nodes) is an effective approach to break down the virus 
transmission network, thereby inhibiting the spread of the virus. Previous methods for identifying 
influential nodes in networks lack consistency in terms of effectiveness and precision. Their 
applicability also depends on the unique characteristics of each network. Furthermore, most of them 
rank nodes by their individual influence in the network without considering mutual effects among 
them. However, in many practical settings like vaccine distribution, the challenge is how to select a 
group of influential nodes. This task is more complex due to the interactions and collective influence 
of these nodes together. This paper introduces a new framework integrating Graph Neural Network 
(GNN) and Deep Reinforcement Learning (DRL) for vaccination distribution. This approach combines 
network structural learning with strategic decision-making. It aims to efficiently disrupt the network 
structure and stop disease spread through targeting and removing influential nodes. This method is 
particularly effective in complex environments, where traditional strategies might not be efficient or 
scalable. Its effectiveness is tested across various network types including both synthetic and real-
world datasets, demonstrting a potential for real-world applications in fields like epidemiology and 
cybersecurity. This interdisciplinary approach shows the capabilities of deep learning in understanding 
and manipulating complex network systems.

Pandemics, such as COVID-19, can impose harm and loss on human life and the social economy 1,2. Vaccines 
are among the most important medical resources in the fight against a pandemic, but they can face shortages in 
many countries 3, especially at the early stage of vaccine distribution. Therefore, it is imperative to distribute such 
crucial public goods effectively. The utilization of Social Network Analysis (SNA) in public health, particularly 
in the field of immunization, represents a significant intersection of epidemiology and network theory4. This 
approach is predicated on the understanding that human interactions and social structures play a critical role in 
the spread of infectious diseases. Identifying and targeting those influential individuals within these networks 
can be an effective strategy for disease control and prevention 5. As we know, not every node plays the same role 
in the network 6,7. Some individuals can have greater influence than others 8.

In the last few years, researchers have proposed various centrality-based measures, like degree centrality 
(number of direct connections), betweenness centrality 9 (role in connecting different parts of the network), and 
closeness centrality 10 (proximity to all other nodes), for identifying influential individuals in the networks. One 
of the challenges in using centrality measures is the dynamic nature of real-world networks. Networks evolve 
over time, and so do node centralities. Additionally, these measures, while powerful, can sometimes oversimplify 
the complexities of real-world networks. To incorporate more information of networks, some new centrality 
measures have been proposed, such as PageRank 11, Coreness 12, LocalRank 13, VoteRank 14, ClusterRank 15, 
LeaderRank 16, and TwitterRank 17. Each of these measures provides a unique lens through which to view and 
analyze network influencers. Their effectiveness and applicability can vary significantly based on the unique 
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characteristics of each network being analyzed, such as its size, density, the nature of connections, and the 
context in which the network operates (e.g., social, biological or technological).

Another research direction is to split the network into various levels. In these studies, higher levels represent 
the network’s core and lower levels refer to its periphery. This approach ranks nodes by assuming those at the 
center of the network wield greater influence. The k-core decomposition  18 is one representative of such a 
technique. Drawing inspiration from this, several methodologies 19–22 have been developed that adapt the k-core 
concept. These methods modify the basic k-core approach for determining influential nodes. Their findings 
indicated that the identified nodes surpass traditional measures in terms of spreading efficiency. Nonetheless, a 
significant limitation of these models is their relatively blunt precision. Depending on the network’s structure, 
numerous nodes might share the same k-core value, yet their actual influence may vary.

Apart from the centrality-based methods and k-core based algorithms, researchers also proposed heuristics 
to identify influential nodes efficiently. Chen et al. 23 developed an algorithm based on degree discounting that 
outpaces the typical greedy algorithm by over a million times 24, while achieving a similar level of accuracy. 
For networks featuring community structures, He et al. 25 have proposed a method centered on communities, 
employing algorithms for detecting communities  26 to pinpoint essential nodes within different groups. 
Additionally, Morone and Makse 27 have redefined the task of vital node identification as an optimal percolation 
problem, focusing on identifying the smallest group of pivotal nodes.

Recently, some studies proposed methods grounded in data-driven machine learning to identify influential 
nodes in complex networks. Zhao et al. 28 approached the issue of vital node identification through a classification 
model trained on a large subset of nodes from the original network. In a different study, Yu et al. 29 employed 
network embedding techniques in temporal networks to pick out influential nodes. Similarly, Khajehnejad et 
al. 30 applied adversarial graph embedding in networks with distinct communities to find influential nodes. Hao 
et al. 31 adopted network representation learning techniques for identifying influential nodes in networks with 
overlapping communities. Nevertheless, most of the methods above focus on ranking nodes based on finding 
individual influential nodes. In numerous practical scenarios, the task is often to locate a subset of influential 
nodes that are key to maintaining network connectivity and facilitating the dissemination of information or 
pathogen. Finding a group of influential nodes is more difficult than finding individual ones because the selected 
nodes can affect each other 32.

We propose a graph learning and reinforcement learning based vaccination strategy to identify a group of 
critical nodes in the network. It combines Graph Neural Networks (GNN) with Deep Reinforcement Learning 
(DRL), which brings together GNN’s ability to efficiently process and learn from graph-structured data 
with DRL’s prowess in learning optimal decision-making strategies in complex environments. In this hybrid 
approach, a GNN is used to represent the state of the environment in DRL. The graph-structured data is fed to 
the GNN, which effectively captures the relationships and interactions between different nodes in the network 
and generates a detailed representation of the network’s structure33. This enriched state representation is then 
piped to the DRL system. DRL, with its capabilities in learning optimal policies over time, can make use of the 
structured data provided by GNN to make informed decisions about which nodes in a network are influential.

Model
Framework
Figure 1 illustrates the proposed framework. It employs a model-free RL approach in conjunction with a graph 
representation learning module. There are two key components – the encoder and the decoder. The encoder’s 
role is to produce representations for both the states and actions within this context. Subsequently, the decoder 
utilizes these representations to construct a score function, guiding the selection of the appropriate action for a 
given state.

The algorithm follows a greedy approach, where it progressively builds a viable solution by adding nodes 
based on the underlying graph structure. This solution is continually updated to fulfill the stated objective. 
Greedy algorithms are commonly employed as a strategy for creating approximation and heuristic algorithms 
for various graph-related problems.

The encoder can either be a graph embedding model or a graph neural network. Specifically, this study 
uses Graph Convolutional Networks (GCN) 34, which are a type of GNN. Networks from the training set are 
fed into the encoder. It maps the structural information of the network into a low-dimensional latent space. 
Following multiple recursive iterations, all nodes acquires their own embedding vectors that encompass their 
structural position information within the network with the extensive interplay among node features. A virtual 
node that represents the whole graph is added in order to extract further information about the network. It is 
connected to all real nodes. The representation of the whole graph then can be obtained by the summation of 
those of all nodes. The decoder is implemented as a multi-layer perceptron (MLP). This component utilizes 
the representations derived from the encoder for both states and actions to compute a score that serves as a 
quantitative assessment of potential actions.

During the training phase, a graph is chosen at random from a set of synthetic graphs. This graph is 
subsequently processed through the proposed framework, where the agent engages in a game-like scenario to 
identify influential nodes. In this context, the state refers to the remaining network after node removals, the 
action is the elimination of an influential node, and the reward stands for the reduction in the number of infected 
nodes resulting from the action. To ascertain the appropriate action for a given state, GCN is employed to derive 
an embedding vector for each node (represented by orange bars in Figure 1). The embedding vectors are then 
utilized to compute scalar Q values (depicted as green bars with heights indicative of the values in Figure 1) for 
all nodes, forecasting the potential long-term benefits of the action.

In practical scenarios, the finely-tuned agent can be deployed on actual networks once the training is 
complete. The procedure is as follows. First, the network under consideration would be transformed into 
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compact vectors. Then, the Q values for each node are estimated using these vectors. The node with the highest 
Q value is selected at every iteration, and the network is modified accordingly. This procedure is repeated until 
the network arrives at a predetermined terminal condition (such as maximum number of nodes). The series of 
nodes that are sequentially removed during this process form the ideal group of influential nodes.

The principal strength of this framework lies in its capacity to effectively handle deferred rewards, which can 
in turn be used by a simple greedy algorithm to achieve incremental improvement of the objective function. 
Updates to the network embeddings are made based on the partial solution at each stage of the greedy algorithm, 
enabling the integration of fresh insights regarding the contribution of every node to the ultimate solution.

Q-learning
The node identification process can be considered as a Markov Decision Process (MDP) using a quintuple 
(S , A , T , R, γ) in line with standard RL. In this formulation, S  represents the collection of states, A  
corresponds to the collection of available actions, T : S × A × S → [0, 1] denotes the transition function, 
R : S → R represents the reward function, and γ serves as the discount-rate parameter. Within this framework, 
a policy denoted as π : A × S → [0, 1] indicates the probability of taking an action when the agent is in a given 
state. Here, with a given policy π, a value-function is formulated to quantify the long-term accumulated rewards 
of states over the future in an episode. The value function represents the expected discounted return, defined as:

	 V π(s) = E
[
R (s0) + γR (s1) + γ2R (s1) + . . . | s0 = s, π(s)

]
.� (1)

The policy of optimizing the expected return can be determined by:

	

J(π) = max
π

E [V π(s)]

π∗(s) = arg max
π

J(π)
� (2)

Then, we can establish a policy π consisting of a sequence of selected nodes, strategically devised to maximize 
the expected discounted return, spanning from the initial state to the terminal state.

Q-learning 35 stands as one of the frequently employed algorithms for tackling the MDP problem. Its main task 
is to estimate value functions. The action-value function under a policy π is defined as,

	
Qπ(s, a) = E

[
∞∑

t=0

γt × R (st) | s0 = s, a0 = a, π

]
,� (3)

where s0 and a0 represent the state and the action taken in the beginning, respectively. The Q-learning algorithm 
operates on the foundation of the Bellman equation:

	
Qt+1(s, a) ← Qt(s, a) + α ×

[
r + γ × arg max

a′
Qt

(
s′, a′) − Qt(s, a)

]
.� (4)

Fig. 1.  Illustration of the proposed framework.
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The Temporal Difference (TD) incremental learning 36 is applied to recursively update the Q-table. An episode in 
the Q-learning algorithm consists of numerous steps, spanning from the initial state to the terminal state. During 
each step, the agent operating under a policy chooses an action based on the observation of the environment. 
Subsequently, it receives an associated reward and transitions to the next state. This iterative process persists 
until either the action-value function converges or a predetermined number of episodes is completed.

For discrete states, it is relatively straightforward to represent the action-value function as a table. However, 
this representation becomes increasingly challenging as the number of states grows and is often infeasible when 
dealing with continuous states. In these scenarios, we can use a parameterized function to represent the action-
value function. The task will focus on determining the optimal values for the parameter θ. With this approach, 
it becomes manageable to utilize a Deep Neural Network (DNN) to approximate the action-value function. 
Upon completion of training the DNN, it is ready to derive an approximation of the optimal policy by adopting 
a greedy strategy based on the predicted values.

Reinforcement learning formulation
States
In this context, a state denoted as S is defined as a series of actions, which correspond to nodes within a graph 
denoted as G. With the nodes in the graph already being represented by their embeddings, this state can be 
thought of as a vector in a p-dimensional space, mathematically expressed as the summation over all nodes in V, 
i.e., 

∑
v∈V

µv . This embedding-based state representation offers the advantage of versatility, as it can be applied 
across a range of distinct graphs. Moreover, it is important to note that the determination of the terminal state Ŝ 
is contingent upon the specific number of nodes requiring vaccination.

Actions
An action denoted as v corresponds to the removal of a node from the current state S within the graph G. 
Furthermore, we will depict actions by employing their corresponding p-dimensional node embeddings, 
represented as µv . Here, we underscore that this definition remains applicable across graphs of diverse sizes.

Rewards
The primary aim of the exploratory agent is to identify the optimal solution, characterized by the highest 
resistance to the spreading, at any point within an episode. In a formal context, the reward function, denoted as 
r(S, v), is represented as the alteration in the influence of the spreading that occurs subsequent to the execution 
of action v, leading to a transition to the next state S′, which can be expressed as:

	
r(S, v) = I(h(S), G) − I (h (S′) , G)

|V | ,� (5)

where I(h(S),  G) is the number of infected nodes using SIR simulation and I(h(ϕ), G) = |V |. To address 
potential variations in reward scales stemming from different graph sizes, the reward is standardized by dividing 
it by the total number of vertices, denoted |V|. In this work, we chose a discount factor γ = 0.95, which is a 
commonly used value in reinforcement learning literature to balance immediate and future rewards effectively 37.

Policy
In reinforcement learning, a policy represents the agent’s behavioral strategy, which guides the agent 
in selecting subsequent actions. The policy established is deterministic greedy, which is defined as 
π(v | S) = argmaxv′∈S̄ Q̂ (h(S), v′). Under this policy, taking an action means removing a node from the 
graph, consequently resulting in the accrual of a reward r(S, v).

Results
To demonstrate the effectiveness of the proposed model, it is compared with Graph Dismantling with Machine 
learning (GDM) 38, Generalized Network Dismantling (GND) 39, and Explosive Immunization (EI)40. The GDM 
method utilizes machine learning, specifically graph convolutional-style layers, to efficiently dismantle complex 
networks by identifying and removing critical nodes. The GND method optimizes the process of fragmenting a 
network by removing nodes with varying costs, utilizing a spectral bisection approach combined with a weighted 
vertex cover problem to break the network into isolated components. The EI method combines the explosive 
percolation paradigm with a strategy that incrementally selects nodes to immunize by evaluating their potential 
to maintain network fragmentation.

The experiment was conducted on an Ubuntu 20.04.4 LTS system with Lenovo ThinkStation, Xeon 5118, 
256 GB RAM and NVIDIA RTX 2080 Ti with 12GB memory size. The proposed model was trained on 10 small 
synthetic random networks, each consisting of 40 nodes with an average degree of 6. The training process took 
approximately 6 hours.

Comparative analysis of the degradation in network structures
The network connectivity serves as the conduit through which pathogens can propagate to a greater scope. 
The topological structure of the network determines its suitability for the dissemination of pathogens or 
information. This section assesses the proposed framework’s ability to disrupt network structure 41 considering 
five key aspects: edge quantity, connectivity, epidemic threshold, largest component size, and the count of 
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network components. These dimensions collectively provide a comprehensive evaluation of the framework’s 
impact on network integrity and dynamics. Each dimension is associated with a specific network structural 
property, and measurements are conducted on the residual network following the removal of a specific number 
of nodes. The epidemic threshold is a pivotal measure indicating a network’s defense against pathogen spread. 
For a pathogen to successfully propagate, its propagation rate must exceed the network’s epidemic threshold 42. 
Hence, networks with higher epidemic thresholds are more challenging for pathogens to infiltrate and propagate 
within. The largest component in a network refers to the largest set of nodes within a network where any node 
is reachable from every other node. This component is often of particular interest because it represents the most 
significant and interconnected part of the network and plays a crucial role in determining the overall structure 
and connectivity of the network. The component number indicates how many separate groups of nodes exist in 
a network, each of which is internally connected but not connected to nodes outside their respective group. It 
is an important topological property of a network and can provide insights into its structure and connectivity.

Graph Dismantling with Machine learning (GDM)  38, Generalized Network Dismantling (GND)  39, and 
Explosive Immunization (EI)40 strategies are used as comparison baselines. To demonstrate the broad versatility 
of our proposed approach, we carried our experiments on five distinct synthetic network types and four real-
world networks. Synthetic networks include Erdős-Rényi (ER) random networks, ER random networks with 
communities, scale-free networks, scale-free networks with communities, and small-world networks. The 
presence of communities within a network can significantly impact the spreading phenomenon, as nodes 
within the same community often exhibit more connections with one another compared to nodes in separate 
communities. In our experiments, communities are introduced into ER random networks and scale-free 
networks to assess the adaptability of the proposed method to networks with varying characteristics.

Figures 2 and 3 show that all five metrics of interest are improved (e.g., networks are compromised) after 
the removal of 20% selected nodes. The proposed strategy consistently outperformed the GDM, GND and EI 
methods for both the synthetic and real-world networks. The three plots in the top row of Figure 2 illustrate 
that small-world networks exhibit the highest resilience against structural disruption, while scale-free networks 
are the most susceptible to immunization. This distinction is primarily due to the presence of prominent high-
degree nodes, often referred to as hubs, within scale-free networks, which play a pivotal role in the spread of 
information or pathogens. Detecting and immunizing these hubs can have a substantial effect on the network’s 
propagation potential. Nevertheless, small-world networks tend to exhibit greater homogeneity and lack 
conspicuous hubs. Each node can rapidly reach out to others in a small number of steps, making it intricate to 
disrupt the network structure by immunizing only a limited number of nodes. In contrast, random networks do 
not display a bias towards hubs or short network distances, falling somewhere in between. It is also worth noting 
that the proposed approach demonstrates consistent performance across networks with or without community 
structures, underscoring its resilience to community variations. The performance improvement of the proposed 
method over the three baseline methods varies across the different real-world datasets illustrated in Figure 3, 

Fig. 2.  The degradation of network structures resulting from the removal of 20% nodes by different models 
on synthetic datasets with various properties. Each dimension has been scaled to fall within a range of 0 to 1 
to enhance visualization. To ensure consistency in the result display, we use the inverse of component number 
and epidemic threshold as the measurement. This means a lower reciprocal value signals a stronger ability 
of the network to prevent the spread of pathogens. The proposed method proves to be the most effective in 
dismantling the network structure, leaving the smallest area remaining in each dataset.
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likely due to the distinct characteristics of each dataset. Nevertheless, the proposed method consistently 
outperforms the baselines in all datasets, highlighting its adaptability and effectiveness.

The spreading simulation on the immunized networks
The SIR (Susceptible-Infected-Recovered) model, as implemented in the EoN (EpidemicsOnNetworks) 
framework 43,44, is employed to simulate network spreading events across five different synthetic network types 
and four real-world networks. Simulations are performed with a transmission rate per edge (β) of 0.1, a recovery 
rate per node (γ) of 0.01, and an initial infection ratio (ρ) of 0.1, representing the proportion of initially infected 
nodes to the total network nodes.

Figures  4 and 5 present the infection scale outcomes of SIR simulation for the GDM, GND, EI, and the 
proposed strategies, applied to synthetic and real-world datasets, respectively. The y-axis represents the scale 
of infection over time. All curves follow a similar pattern: they show a swift increase in infection rates at the 
initial stages, reach a peak, and then gradually decrease to nearly zero. This pattern occurs because there is an 
abundance of susceptible nodes initially, allowing for a high potential for infection. As the number of susceptible 
nodes diminishes, the recovery rate surpasses the infection rate, leading to a decline in the infection levels.

Fig. 4.  The infection scale on five synthetic networks with 20% of nodes removed by various models, where 
β = 0.1, γ = 0.01 and ρ = 0.1. Each network consists of 500 nodes. The proposed approach outperforms 
the baseline methods across all datasets. This is primarily because it more effectively reduces the network’s 
conductivity and leads to smaller peaks in infection scale compared to the baselines. For instance, in the ER 
random network, immunizing 20% of the nodes identified by the proposed method results in a decrease of the 
infection scale peak from 86.8% to 75.6%, compared to using the GDM method. These results represent the 
average of 100 independent runs.

 

Fig. 3.  The degradation of network structures resulting from the removal of 20% nodes by different models 
on real-world datasets. Consistent with the findings in synthetic networks, the proposed method demonstrates 
superior effectiveness in breaking down the network structure, resulting in the smallest area remaining across 
each dataset.
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There are distinctions between the timing and magnitude of peak infection for the different networks and 
strategies. Both the three baseline approaches and the proposed strategy can reduce the peak of infection scale. 
However, the proposed method outperforms the all the baselines, resulting in a consistently lower peak of 
infection scale across all different types of networks (i.e., both synthetic and real-world datasets). For example, 
in the ER random network, immunizing 20% of the nodes identified through the proposed method leads to a 
reduction in the peak of infection scale from 86.8% to 75.6%, in contrast to employing the GDM method. In 
the random network with community, the performance of the four methods is comparable to that observed 
in the ER random network. Here, the infection scale peak for the proposed method is 63.4%, while the GDM 
method exhibits a peak infection scale of 82.5%. This indicates that the proposed method has strong resilience 
to community variations.

Comparing the performance of our method in random, scale-free, and small-world networks, the lowest 
infection peak (43.8%) occurs within the scale-free network, the highest (75.6%) in the random network, and an 
intermediate peak (61.3%) is observed in the small-world network. This occurs due to the scale-free network’s 
heterogeneous degree distribution, which features more hubs. Our method is capable of efficiently identifying 
these hubs and preventing the virus spreading in the scale-free network. On the other hand, the small-world 
network is conducive to rapid virus spreading due to their unique combination of high clustering and short 
path lengths. It is challenging to stop the spread by immunizing only a subset of nodes. This is mainly because 
the small-world network contains highly interconnected clusters that enable rapid local spreading, while the 
presence of shortcuts between distant nodes ensures that the virus can quickly bridge otherwise distant parts of 
the network.

Figures  6 and 7 show the cumulative infection scale results of the synthetic and real-world datasets, 
respectively. The presented approach surpasses the baseline methods in every dataset tested, which underscores 
the versatility and effectiveness of the proposed method. For some networks, the cumulative infection scale is 
reduced by over 10 percentage points. Table 1 provides a summary of infection scale peak and final infection 
scale of all the methods.

Another notable observation is that, in random, scale-free and small-world networks, the proposed approach 
can delay the occurrence of the infection scale peak when compared to the other three strategies. This indicates 
that the proposed strategy surpasses the other strategies in targeting influential nodes to hinder the spread of 
disease.

Discussion
Managing the spread of phenomena in complex networks is crucial in fields such as disease spread and viral 
marketing. An essential element in this context is the challenge of pinpointing key nodes with strong dissemination 
abilities that are capable of projecting information broadly across the network. Practical observations reveal that 
common measures of node importance, such as degree and betweenness, fall short in identifying nodes with 
effective dissemination capabilities. For instance, a node might be connected to many others, but if it is on the 
network’s fringe, its influence is diminished.

Influence maximization and epidemic control in networks are well-known examples of combinatorial 
optimization problems. IMM 45, a traditional method, utilizes a martingale-based statistical approach to estimate 
influence spread. While traditional methods are typically highly efficient and come with strong theoretical 
guarantees, they often involve complex dependencies in their analysis and rely on approximations. In recent 
years, rapid developments in machine learning have paved the way for a new, learning-based approach to solving 
combinatorial optimization problems. For instance, GLIE 46 employs a GNN to address influence maximization 
with high scalability by predicting the influence of nodes and ranking them to optimize seed set selection. A key 
practical advantage of neural network approaches is their ability to easily integrate additional node information 
by incorporating the corresponding embeddings into the input. Another notable work, FINDER 47, utilizes a 
deep Q-learning architecture, where node representations are derived through three GraphSage layers, to solve 
the network dismantling problem. In this approach, the reward is based on the size of the giant connected 
component; each node chosen aims to dismantle the network as effectively as possible. FINDER further 
demonstrates the potential of learning-based methods in tackling combinatorial optimization challenges in 
complex networks. The proposed approach in this paper combines a graph representation learning model and 

Fig. 5.  The infection scale on four real-world networks with 20% of nodes removed by various models, where 
β = 0.1, γ = 0.01 and ρ = 0.1. The presented approach surpasses the baseline methods in every dataset tested. 
For example, in the weaver network, targeting 20% of the nodes as identified by this new method leads to a 
reduction in the peak of infection scale from 83.2% to 35.8%, a notable improvement over the GDM method. 
These results represent the average of 100 independent runs.
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DRL to process and learn from graph-structured data and make informed decisions in complex environments. 
The framework proposed employs a model-free RL approach working in the environment extracted from the 
network structure by a GNN module, aiming to disrupt network structure and hinder disease spread effectively. 
It is accomplished by a one-time offline training on small synthetic graphs for a specific application scenario 
without the need for specialized domain knowledge.

The adaptability and effectiveness of the proposed approach was investigated by conducting experiments 
on both synthetic and real-world networks. Removing nodes identified by the proposed method enhances the 
uniformity of the residual network and is more successful in breaking down the network structure than the 
baseline methods. SIR simulations on networks immunized by this method reveal its higher efficacy in targeting 
influential nodes to impede disease transmission, significantly lowering the peak of the infection scale, e.g., from 
86.8% to 75.6%, compared to using the GDM method in the ER random network. Our experimental results 
reveal that halting the spread of a virus within a random network presents a more significant challenge than 
scale-free networks and small-world networks. The final infection scale in the small-world network is 93.4%, in 
the scale-free network it is 69.1%, and in the random network it is 94.6%. The results also demonstrate the model’s 
effectiveness across various network types and scenarios, emphasizing its potential in real-world applications. 
This shows an encouraging potential of applying deep learning methods to grasping the fundamental principles 
governing complex networked systems. This advancement enables the design of networks that are more robust 
and capable of resisting attacks and breakdowns.

Fig. 7.  The cumulative infection scale on four real-world networks with 20% of nodes removed by various 
models, where β = 0.1, γ = 0.01 and ρ = 0.1. The presented approach surpasses the baseline methods in 
every dataset tested. For example, in the weaver network, targeting 20% of the nodes as identified by this new 
method leads to a reduction in the final infection scale from 98.8% to 47.9%, compared to using the GDM 
method. These results represent the average of 100 independent runs.

 

Fig. 6.  The cumulative infection scale on five synthetic networks with 20% of nodes removed by various 
models, where β = 0.1, γ = 0.01 and ρ = 0.1. Each network consists of 500 nodes. The proposed approach 
outperforms the baseline methods across all datasets. For instance, in the scale-free network, immunizing 20% 
of the nodes identified by the proposed method results in a decrease of the final infection scale from 95.3% to 
69.1%, compared to using the GND method. These results represent the average of 100 independent runs.

 

Scientific Reports |        (2024) 14:29923 8| https://doi.org/10.1038/s41598-024-78626-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


This research is not without certain limitations. Learning the embeddings can be time consuming when the 
network is very large, as embeddings need to be learned before each action. The group of individuals whose 
vaccination can generate the most benefit to the whole society depends upon demographic properties, such 
as age and profession, which is not included in our framework. This makes it hard to achieve social utility 
and equity simultaneously. Nonetheless, this study uncovers a more effective strategy for identifying influential 
nodes in a deep learning manner.

The introduced framework is versatile and can be applied in various scenarios, including halting the spread of 
infectious diseases or misinformation, preventing cascading failures in cyber-physical systems, and identifying 
high-risk accounts in financial networks. On the other hand, reinforcing important nodes in large networks 
can effectively increase the systems’ robustness against malfunctions, attacks, and deterioration in the food 
security 48, human gene regulatory network 49, and supply chains 50.

Finally, this method paves the way for using artificial intelligence to understand the spreading phenomena 
in complex networked systems, which enables us to design dependable networks from the ground up. For the 
future research, we could consider utilizing other metrics as rewards, such as IMM 45, to enhance the efficiency 
of the framework. We could also enhance node characteristics by including supplementary details like the node’s 
age, vaccination costs, and vaccine effectiveness. This method will shift the objective from simply identifying 
influential nodes to incorporating probabilistic features of nodes. As a result, the issue our study tackles will be 
more practical and closely aligned with real-world scenarios.

Methods
Datasets
To assess the versatility and effectiveness of our method, experiments were conducted using both synthetic 
network and real-world network datasets. The statistical characteristics of these networks are presented in 
Table 2.

Synthetic networks used include random, scale-free, and small-world. Each has distinctive features. 
Community structures were also considered in random and scale-free networks, as community structures 
influence network spreading. Note that the small-world network did not have an accompanying community 
variant by definition. Random networks were generated via the Erdős-Rényi (ER) model 51, scale-free networks 
through the Barabási-Albert (BA) model 52, and small-world networks using the Watts-Strogatz (WS) model 53. 
All the network generators above are available in NetworkX  54. Additionally, a random modular network 
generator 55 was employed for creating networks with community features. It was run with a desired value of 
modularity, Q, of 0.5 and number of community, m, of 3.

Four real-world network datasets were used in the experiments. Netscience 56 is a collaboration network of 
scientists working on network theory and experiment. In this network, nodes represent scientists, and an edge 
between two scientists is included if they have co-authored a research paper. Weaver 57 describes a real-world 
animal interaction network, specifically focusing on the social interactions among weaver birds. Each node 
in the network represents an individual weaver bird from a specific colony observed within a particular year. 
An edge is drawn between two individual birds if they used the same nest chambers. Mammalia 58 is a vole 

Network

Peak Infection Scale Final Infection Scale

GDM GND EI Method Our Method GDM GND EI Method Our Method

SYN-SF-100 83.5±0.9 70.4±1.1 69.4±1.3 54.4±2.5 99.2±0.1 90.9±1.1 92.4±0.7 80.6±1.5

SYN-SF-500 66.3±1.0 76.4±0.5 67.4±0.7 43.8±1.7 89.2±0.6 95.3±0.3 90.8±0.5 69.1±1.4

SYN-SF-1000 64.6±0.6 76.0±0.3 67.8±0.5 50.9±0.9 86.4±0.5 94.8±0.2 90.5±0.4 76.0±0.9

SYN-ER-100 87.8±0.6 86.3±0.7 83.6±0.9 82.0±0.8 99.6±0.1 99.5±0.1 99.2±0.1 99.1±0.2

SYN-ER-500 86.8±0.3 82.1±0.4 84.3±0.4 75.6±0.5 99.4±0.1 98.3±0.1 99.0±0.1 94.6±0.6

SYN-ER-1000 86.9±0.2 82.1±0.3 84.6±0.3 76.0±0.4 99.5±0.0 98.3±0.1 99.0±0.1 95.2±0.3

SYN-SW-100 78.4±1.2 72.6±3.3 78.2±1.2 56.4±6.2 99.4±0.2 98.1±0.6 99.5±0.2 87.7±6.3

SYN-SW-500 75.8±1.5 74.1±1.4 78.1±0.8 61.3±1.8 99.2±0.2 97.7±1.0 99.6±0.1 93.4±0.9

SYN-SW-1000 78.3±0.4 71.5±1.2 78.9±0.5 60.2±1.2 99.2±0.1 96.5±1.0 99.7±0.0 92.6±0.7

SYN-SF-C-100 77.0±1.1 69.1±2.7 80.2±0.9 47.5±3.7 94.5±0.6 90.1±1.1 98.0±0.3 69.4±2.6

SYN-SF-C-500 83.2±0.3 67.7±0.7 78.8±0.4 43.7±1.0 98.5±0.1 88.2±0.6 97.4±0.1 65.2±1.3

SYN-SF-C-1000 82.6±0.3 72.5±0.3 80.5±0.3 52.7±0.5 97.7±0.1 90.1±0.3 97.4±0.1 72.4±0.6

SYN-ER-C-100 83.8±1.0 79.2±1.3 80.5±1.5 69.3±2.0 99.4±0.1 97.7±0.4 98.8±0.2 92.8±0.9

SYN-ER-C-500 82.5±0.3 76.4±0.5 80.7±0.3 63.4±1.0 98.9±0.1 97.0±0.3 98.3±0.2 89.5±0.7

SYN-
ER-C-1000 82.5±0.2 76.4±0.2 79.8±0.3 63.5±0.7 99.2±0.0 97.5±0.1 98.5±0.1 87.8±0.6

N-netscience 74.2±1.9 59.7±3.3 73.6±2.1 20.6±1.8 91.4±2.1 74.9±4.1 93.8±2.2 26.0±2.4

N-weaver 83.2±1.5 60.1±4.7 77.9±1.7 35.8±6.2 98.8±0.2 76.8±5.1 97.4±0.5 47.9±8.2

N-mammalia 70.1±5.0 55.5±4.4 55.9±5.1 24.9±3.5 88.5±5.3 73.8±5.0 76.8±6.5 32.6±4.7

N-tortoise 45.2±4.1 28.2±2.7 31.2±2.8 18.0±1.7 60.2±5.8 38.1±3.4 39.8±3.5 23.4±2.2

Table 1.  Infection scales for different networks and methods
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interaction network dataset. Each node in the network represents an individual vole. An edge is added between 
two nodes if those individuals were caught in the same trap at any point during the primary trapping sessions. 
Tortoise 59 is structured to map the interactions among tortoises based on their shared use of burrows. Each 
node in the network represents an individual tortoise. An edge is established between two tortoise nodes if they 
share the same burrow.

Metrics of interest
The aim of the proposed approach is to maximize network disruption with a limited number of node removals. 
To evaluate its effectiveness, five key performance indicators are used to assess the extent of network destruction 
following node removal by both the proposed method and other baseline approaches.

Edge quantity: In the context of complex networks, the edge quantity refers to the total number of edges (or 
connections) in a network. Each edge represents a connection or link between two nodes in the network. This 
metric is crucial in understanding the structure and connectivity of the network, as it indicates how many pairs 
of nodes are directly connected to each other. A lower edge count in the remaining networks indicates that an 
approach is more effective in disrupting the network, thereby making it more challenging for a virus to spread.

Count of network components: In a complex network, the count of network components refers to the 
number of distinct sub-networks or clusters within the entire network that are not connected to each other. 
Each component is a subset of nodes and edges, where every node in a component is connected directly or 
indirectly to every other node in the same component, but there are no connections between nodes in different 
components. This concept is key to understanding the network’s structure, as it reveals how the network is 
partitioned or fragmented. A larger number of components in the residual networks suggests that a method is 
more efficient in fragmenting the network, consequently enhancing the network’s ability to impede the spread 
of a virus. To ensure consistency in the result display, we use the reciprocal of the number of components as the 
measurement, such that a smaller reciprocal indicates a greater capability of the network in hindering pathogen 
propagation.

Size of the largest component: The size of the largest component refers to the number of nodes in the largest 
sub-network within the entire network. This largest component, also known as the giant component, is the 
biggest group of nodes that are interconnected either directly or indirectly through a series of edges. The size of 
this component is a key metric in network analysis, as it reflects the extent of connectivity and can indicate the 
robustness or vulnerability of the network, especially in the context of processes like information dissemination 
or disease spread. A smaller size of the largest component in the remaining networks implies that a approach is 
more effective in breaking down the network.

Epidemic threshold 60: Two key factors influencing a pathogen’s spread through a network are its spreading 
rate and the network’s epidemic threshold. The spreading rate is influenced by the pathogen’s biological traits, 
while the epidemic threshold represents the network’s ability to withstand such a spreading. An epidemic occurs 
when the pathogen’s spreading rate surpasses the network’s epidemic threshold; otherwise, the pathogen’s 
spread diminishes. We assess the impact on the network’s epidemic threshold following node removal using the 
proposed approach and other baseline methods. Prior research 60 suggested that in an SIS (Susceptible-Infected-
Susceptible) model, a network’s epidemic threshold, denoted as τ , is determined by the equation

Network Type Nodes Edges Average degree Max-degree Clustering Diameter

SYN-SF-100 Synthetic 100 291 5.8 29 0.14 5

SYN-SF-500 Synthetic 500 1491 6.0 85 0.07 5

SYN-SF-1000 Synthetic 1000 2991 6.0 111 0.04 6

SYN-ER-100 Synthetic 100 309 6.2 14 0.04 5

SYN-ER-500 Synthetic 500 1504 6.0 14 0.01 8

SYN-ER-1000 Synthetic 1000 2990 6.0 14 0.01 8

SYN-SW-100 Synthetic 100 200 4.0 6 0.40 10

SYN-SW-500 Synthetic 500 1000 4.0 7 0.37 16

SYN-SW-1000 Synthetic 1000 2000 4.0 7 0.37 17

SYN-SF-Community-100 Synthetic 100 273 5.5 17 0.26 7

SYN-SF-Community-500 Synthetic 500 1218 4.9 24 0.03 11

SYN-SF-Community-1000 Synthetic 1000 2924 5.8 38 0.02 10

SYN-ER-Community-100 Synthetic 100 238 4.8 12 0.06 6

SYN-ER-Community-500 Synthetic 500 1077 4.3 11 0.01 9

SYN-ER-Community-1000 Synthetic 1000 2149 4.3 11 0.00 10

N-netscience Real-world 379 914 4.8 34 0.74 17

N-weaver Real-world 64 177 5.5 21 0.60 6

N-mammalia Real-world 171 363 4.2 12 0.74 23

N-tortoise Real-world 283 418 3.0 11 0.43 8

Table 2.  Properties of network datasets
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τ = 1

λmax
,� (6)

where λmax represents the largest eigenvalue of the network’s adjacency matrix. This equation is used to compute 
the epidemic thresholds for networks.

Average node connectivity 61: The definition of average node connectivity in a complex network is the average, 
over all pairs of vertices, of the maximum number of internally disjoint paths connecting these vertices 61. It can 
be calculated as

	

κ̄(G) =
∑

u,v
κG(u, v)(
n
2

) ,� (7)

where κG(u, v) is defined to be the maximum value of k for which node u and node v are k-connected, and n 
is the size of graph G. Average node connectivity in a network refers to the expected number of nodes that need 
to be removed to disconnect a pair of non-adjacent nodes. This concept is crucial for assessing the network’s 
resilience. It also focuses on the maximum number of distinct paths that can be formed between any two nodes, 
offering a deep insight into the network’s overall interconnectedness and robustness.

SIR simulation
The Susceptible-Infected-Recovered (SIR) epidemic model is utilized to evaluate the influence of particular 
nodes on network spread. This model categorizes a population of N individuals into three distinct stages: 

	1.	� Susceptible (S): These individuals have not yet contracted the infection and are vulnerable to catching it.
	2.	� Infected (I): Individuals in this category have caught the disease and are capable of transmitting it to the 

susceptible ones.
	3.	� Recovered (R): Once individuals have gone through the infection phase, they are deemed removed from the 

cycle of the disease, meaning they can neither contract nor spread the infection again.Initially, all nodes are 
classified as susceptible (S), except for the specific node being scrutinized for its spreading efficiency, which 
is classified as infected (I). During each time step t, each node in the infected state (I) has a probability β 
(infection rate) of infecting adjacent susceptible nodes. Subsequently, these infected nodes have a probability 
γ (recovery rate) of moving to the recovered state (R).

This approach allows for a detailed understanding of how specific nodes affect the spread within a network, 
underlining the dynamics of disease or information propagation in a structured population. The parameters β 
and γ are crucial in determining the speed and extent of spread within the network. The SIR model is extensively 
employed in various fields for its effectiveness in simulating the spread of infectious diseases and behavioral 
patterns in social and information networks.

Data availability
Datasets of Netscience, Weaver, Mammalia, and Tortoise 62 are available in ​h​t​t​​​​p​s​:​​/​​/​g​i​t​​h​u​​b​.​​c​o​​m​/​z​​h​i​h​a​o​d​/​G​N​N​R​
L​/​t​r​e​e​/​m​a​i​n​/​r​e​a​l​d​a​t​a​s​e​t​​​​​.​​

Code availability
The code accompanying this work is publicly available on the Github repository ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​z​h​i​h​a​o​d​/​G​
N​N​R​L​​​​​.​​
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