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Abstract

Background: For early-stage oral squamous cell carcinoma (OSCC), there is

no existing risk-stratification modality beyond conventional TNM staging sys-

tem to identify patients at high risk for cancer-specific mortality.

Methods: A total of 568 early-stage OSCC patients who had surgery only and

also with available 5-year clinical outcomes data were identified. Signature

microRNAs (miRNAs) were discovered using deep sequencing analysis and

validated by qRT-PCR. The final 5-plex prognostic marker panel was utilized

to generate a cancer-specific mortality risk score using the multivariate Cox

regression analyses. The prognostic markers were validated in the internal and

external validation cohorts.

Results: The risk score from the 5-plex marker panel consisting of miRNAs-

127-3p, 4736, 655-3p, TNM stage and histologic grading stratified patients into

four risk categories. Compared to the low-risk group, the high-risk group had

23-fold increased mortality risk (hazard ratio 23, 95% confidence interval
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13-42), with a median time-to-recurrence of 6 months and time-to-death of

11 months (vs >60 months for each among low-risk patient; p < .001).

Conclusion: The miRNA-based 5-plex marker panel driven mortality risk

score formula provides clinically practical and reliable measures to assess the

prognosis of patients assigned to an early-stage OSCC.
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1 | INTRODUCTION

An estimated 30 000 people in the US are diagnosed with
oral squamous cell carcinoma (OSCC) each year.1-4 OSCC
is a deadly disease, accounting for 7400 deaths each year in
the US.4,5 Of the newly diagnosed oral cancer cases, 50% are
in tumor-node-metastasis (TNM) stage I/II without
regional lymph node involvement or distant metastasis.2

While the TNM stage is considered to be the key prog-
nostic determinant in oral cancer,6-14 it is incapable of
delineating individual risk for patients within the same
TNM stage strata. For example, if 10 patients with similar
demographics present with ~3 cm OSCC of the tongue
with the depth of invasion of 4 mm, without clinical or
radiographic evidence of positive cervical lymph node or
distant metastasis, all 10 patients will be assigned to
TNM stage II. Out of these 10 patients, four will die of
cancer (28%-42% 5-year mortality rate for early-stage oral
cancer patients).7 Currently, there is no existing risk-
stratification modality beyond the conventional TNM
staging system to identify those four patients at high-risk
for cancer-specific death.

There is a critical need to stratify traditional tumor clas-
ses into subsets that behave differently from each other to
refine and improve prognostication and treatment selec-
tion.15 The TNM staging system is based on anatomic extent
of disease, and is determined by tumor size (T), affected
regional lymph nodes (N), and distant metastases (M),
which are the TNM variables.6-14 The American Joint Com-
mittee on Cancer (AJCC) revised the staging system (eighth
edition, 2017), in which the depth of invasion (DOI) was
added as a modifier for the T category (T1 = size ≤2 cm and
DOI ≤ 5 mm; T2 = size ≤ 2 cm and DOI > 0.5 but
≤ 1.0 cm, or size 2-4 cm and DOI ≤ 1.0 cm; T3 = size
> 4 cm or DOI > 1.0 cm).7-9 The AJCC 8 staging system per-
forms better in stratifying survival of OSCC patients by
stage.10,11 For early stage OSCC with clinically negative
lymph nodes, greater DOI is associated with increased risk
of occult lymph node metastasis.12,13 Such finding may be
due to increased chance of perineural invasion and close/
positive deepmargins in tumors with greater DOI, resulting

in regional metastasis.12,13 With restaging, the survival con-
cordance index improved from 0.699 to 0.704 (from seventh
to eighth edition, respectively).7

However, carcinogenesis is not solely defined by the
TNM stage the patient is in at the time of diagnosis but also
heavily influenced by the molecular (genomic and proteo-
mic) characteristics of the tumor.16,18 For this reason, con-
sideration of biological determinism reflected in altered
expression of biomarkers, in addition to anatomic extent of
disease is becoming increasingly important in personalized
medicine.17 Since biomarkers are interacting, interdepen-
dent, multipurpose parts of the biological system, the prog-
nostic model consisting of multiple markers can increase
the predictive power and capture the clinical behavior of
cancer better than a single marker.18 In concordance with
this concept, we developed a novel microRNA-based prog-
nostic model to predict the survival outcome of patients who
were already categorized into “early-stage” by the TNM sys-
tem. This five-plex marker panel considers both the ana-
tomic extent of disease, as well as the biology of the disease
itself. Subsequently, the miRNA-based marker is well suited
to sub-risk stratify early TNM stage patients and identify the
35% of high-risk patients (the 5-year survival rate for early-
stage oral cancer is ~65%) who will benefit from additional
treatments.

MicroRNAs (miRNAs) are small, 18-24 nucleotide long,
noncoding RNA molecules that regulate the expression of
targeted genes either by facilitating mRNA degradation or
by repressing translation.19,20 One miRNA is capable of
binding over 100 different mRNAs with different binding
efficiencies and plays a crucial role in their posttranscrip-
tional regulation.19-23 MicroRNAs control cell growth, apo-
ptosis and differentiation, and various types of cancer have
demonstrated distinct miRNA expression profiles.19-23 So
far, a number of miRNAs associated with clinical outcomes
have been reported for lung, breast, gastric and pancreatic
cancers, as well as OSCC/head and neck carcinomas.19-29

In this study, we assessed differential expression of
miRNAs genome-wide via deep sequencing in tumor tis-
sue samples and identified signature miRNAs that
can serve as a prognostic marker of cancer survival.
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The prognostic model consisting of promising miRNAs
and pertinent clinicodemographic covariates was sub-
jected to stringent internal and external validation for
accuracy and reliability. The mortality risk score formula
was generated with the selected prognostic signatures,
which can be clinically utilized to assign individual
cancer-specific mortality risk status.

2 | MATERIALS AND METHODS

2.1 | Subjects and study design

Following approval from the Institutional Review Board
(IRB), the internal subjects from Columbia University
IrvingMedical Center (CUIMC), andWeill Cornell Medical
Center (WCMC) within New York-Presbyterian Hospital
(NYPH) were identified, consisting of 306 early stage OSCC
patients, ≥18 years old, newly diagnosed with primary
OSCC and with a minimum of 5-year clinical outcomes
information. Based on the medical record, only those who
underwent surgical treatment with curative intent without
elective neck dissection and/or adjuvant chemo/radiother-
apy between 1995 and 2012 were selected. Subjects who
were found to have occult lymph node metastasis following
initial surgery were excluded. Subjects with the Eastern
Cooperative Oncology Group (ECOG) performance-status
score of 0 (no symptoms) or 1 (mild symptoms) were
included. One hundred (100) internal subjects were ran-
domly selected for the deep sequencing analysis. The deep
sequencing analysis subjects and an additional 100 subjects
randomly selected from the internal subject pool were
assigned to the internal test cohort (n = 200), and the
remaining to the internal validation cohort (n = 106). The
external subjects were from three cancer registries
(n = 262), including the National Cancer Institute (NCI)-
sponsored Residual Tissue Repository (RTR) Program at
the University of Hawaii Cancer Research Center, the Iowa
Cancer Registry at the University of Iowa, and the Eastern
Division of Cooperative Human Tissue Network (CHTN).
The cancer registry programs do not collect time-to-cancer
recurrence information. Therefore, only overall survival
(time-to-death) information was available as an outcome in
most external cases.

The following clinicodemographic information was
obtained from the electronic clinical record; age at diag-
nosis, gender, race/ethnicity (white non-Hispanic, white
Hispanic, black non-Hispanic, black Hispanic, Asian),
TNM stage (I vs II), histologic tumor grade (well vs
moderate-to-poorly differentiated), close (<5 mm) or pos-
itive surgical margins, evidence of perineural invasion,
depth of invasion, tobacco use (never/former vs current),
and alcohol abuse (4 or more drinks on any day or 8 or

more drinks per week; never/former vs current). Time of
initial surgical treatment until cancer recurrence and
cancer-specific death were also noted.

For each subject, archived formalin-fixed paraffin-
embedded (FFPE) tissue blocks were retrieved. In case the
subject had recurrent and/or second primary OSCC, the ini-
tial OSCC surgical tissue sample was utilized for the analy-
sis. Ten 10-μm sections were obtained from archived FFPE
tumor tissue samples for all subjects. For each sample, a rep-
resentative section was stained with H&E and reviewed by a
pathologist to identify regions containing >90% malignant
epithelial cells for macrodissection. Total RNA was isolated
from tissues using RNeasy FFPE kits (Qiagen Inc., Valencia,
CA) following the manufacturer's protocol, yield was quan-
titated by Nanodrop, and samples were stored at−80�C.

2.2 | Deep sequencing analysis

Targeted miRNA sequencing of the 100 OSCC internal sub-
jects was performed with the HTG EdgeSeq system using
the miRNA Whole Transcriptome Assay (HTG Molecular
Diagnostics, Inc., Tucson, AZ).30 The Study Tracker ran-
domized function was used to randomize the placement of
samples and technical replicates to reduce potential
intraplating biases. Tumor samples were processed as sin-
gletons and Human Brain RNA controls in triplicate.
Briefly, target capture was performed by adding Nuclease
Protection Probes to each sample to hybridize to the target
mRNA. The library was prepared using HTG EdgeSeq PCR
processing and quantified using HTG EdgeSeq KAPA
Library Quantification for Illumina Sequencing. The auto-
mated HTG Library Calculator was used to ensure suffi-
cient concentration of samples for library pooling and also
to determine the appropriate dilution for the library pool.
The PhiX control adaptor-ligated library was spiked in the
pooled library, which was heat denatured and loaded into
the well of the NextSeq sequencing cartridge. Sequencing
was performed on the Illumina NextSeq platform. The
sequencing data were imported into HTG EdgeSeq Parser
software to align the FASTQ files obtained from the
sequencer to miRBase v.21 sequences. Post-sequencing
quality control (QC)was performed. Ninety-one of 100 sam-
ples passed HTG post-sequencing QC metrics. The data
were deposited in the publicly available Gene Expression
Omnibus (GEO) database (GSE107830).

2.3 | MicroRNA target prediction and
pathway analysis

Network visualization and functional analysis was per-
formed using Cytoscape v3.2.0. Potential gene targets of
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the selected miRNAs were identified and the relative
strength of the functional association between the
miRNAs and the molecular pathways of those gene tar-
gets were evaluated. The pathways with log2 (p-value)
< 4.5 were selected.

2.4 | MicroRNA expression assessment
by quantitative real-time PCR

From the deep sequencing analysis, promising prognostic
miRNAs were selected and their expression levels were ver-
ified using the miScript II Rt kit (Qiagen). Briefly, 9 μL of
isolated RNA was added to the cDNA master mix, com-
posed of 5× miScript HiSpec Buffer, 10× miScript Nucleics
Mix, miScript Reverse Transcriptase Mix, and water, to a
total volume of 20 μL. The cDNA was incubated at 37�C for
60 minutes, followed by 5 minutes incubation at 95�C and
then diluted 11 times. For amplification reactions, the miS-
cript miRNA PCR Custom Array with a miScript SYBR
Green PCR kit (Qiagen) was used in a 7300 qPCR system
(Applied Biosystems, Foster City, CA), following the cycling
conditions recommended by the supplier (15 minutes at
95�C, followed by 40 cycles of 15 seconds at 94�C,
30 seconds at 55�C, and 30 seconds at 70�C). The coefficient
of variation was calculated and values <5%were considered
acceptable. Test samples were assayed in duplicate with the
laboratory blinded to survival status and with 5% duplica-
tion after relabeling. Data was analyzed to determine the
threshold cycle (Ct). The endogenous control RNU6-6p was
used to normalize the relative expression of target miRNAs
(ΔCt). The samples with undetermined Ct value for the
control (RNU6-6p) were excluded from analysis (nine sam-
ples from internal test cohort, four from internal validation
cohort, and three from external validation cohort). Those
with an undetermined Ct for specific miRNAs were
assigned a value of 39.99.

2.5 | Statistical analysis

Association between categorical patient characteristics and
binary patient survival outcomes [poor outcome (cancer-
specific death within 5-years) vs favorable outcome (5-year
survival)] were analyzed using Fisher's exact test, Pearson's
chi-squared test and the Cohchran-Armtage trend test.
From deep sequencing analysis, the differential expression
of miRNAs was assessed using the edgeR analysis pipeline,
which assumes a negative binomial distribution of the read
counts.31,32 We calculated the log2-fold change of normal-
ized expression levels of miRNAs in patients with poor
prognosis vs those with favorable prognosis. The p-value
testing the differential expression levels of miRNAs

between two prognostic groupswas adjusted into a false dis-
covery rate (FDR) following Benjamin and Hochberg
method.33 All miRNAs with an absolute log2-fold change
>1.1 and FDR ≤ 0.05 were selected. The differential expres-
sion of the top miRNAs was assessed by qRT-PCR, and the
fold change of expression levels between two prognostic
groups was evaluated using the 2−ΔΔCt method.34

In the internal test cohort, the univariate analysis was
performed for all covariates including age, gender, race,
TNM stage, depth of invasion, close/positive surgical mar-
gins, perineural invasion, histologic grade, and the expres-
sion levels of selected miRNAs. To develop the best
prognostic model, we repeated the cross-validation proce-
dure 1000 times by randomly segregating data into ~70%
training set and ~30% testing set.We further considered vari-
ables that were included in the backward-stepwise selection
Cox model on time-to-death with p-value ≤ 0.1 more than
10% of the times out of the 1000 cross-validations. Different
Cox models with different sets of selected variables were
constructed and the c-indexes calculated. The model with
the best performance (highest c-index) was selected as the
final prognostic model. Using the multiple logistic regres-
sion model, we further constructed a receiver-operating
characteristic (ROC) curve and calculated the area under
the curve (AUC) for the internal test cohort using the same
set of variables in the final prognostic model.

Using the final prognostic model derived from the
internal test cohort, we generated the AUC for the inter-
nal and external validation cohorts. We also calculated
the mortality risk score for every patient in the internal
test and internal and external validation cohorts by sum-
ming the expression values of the selected miRNAs and
covariates weighted by the regression coefficients
obtained from the multivariate Cox regression analyses
as previously described.35 Based on the individual mortal-
ity risk score, the patients were first stratified into higher
vs lower mortality risk groups, and then further stratified
into high vs moderately-high vs moderately-low vs low
risk groups. Kaplan-Meier curves were generated for the
four mortality risk groups for the time-to-disease related
death. Statistical analyses were conducted using R and
p < .05 was considered statistically significant.

3 | RESULTS

3.1 | Subject characteristics

The demographic and clinicopathologic characteristics of
the internal test and validation cohorts, as well as exter-
nal validation cohorts are shown in Table 1 (total
n = 551, 17 subjects excluded due to undetermined Ct
value of the RNU6-6p control in the qRT-PCR analysis).
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TABLE 1 Clinical and pathologic characteristics of the patients included in this study

Deep sequencing
(n = 91)a

Internal test
cohort (n = 191)a

Internal validation
cohort (n = 101)

External validation
cohort (n = 259)

Deathb Survivalc Death Survival Death Survival Death Survival

Patients n = 21 n = 70 n = 50 n = 141 n = 21 n = 80 n = 77 n = 182

Age P = .236 P = .106 P = .672 P < .001*

Mean (range) 70 (46-89) 66 (33-89) 68 (43-89) 64 (41-89) 69 (43-88) 67 (33-88) 72 (30-97) 64 (25-94)

Gender P = .455 P = 1 P = .472 P = .855

Female 11 (52%) 29 (41%) 22 (44%) 63 (44%) 8 (38%) 38 (47%) 27 (35%) 60 (32%)

Male 10 (47%) 41 (58%) 28 (56%) 78 (55%) 13 (61%) 42 (52%) 50 (64%) 122 (67%)

Race/Ethnicity P = .002* P < .001* P = .008* P = .383

White non-Hispanic 11 (52%) 46 (65%) 24 (48%) 94 (66%) 8 (38%) 51 (63%) 60 (78%) 146 (83%)

White Hispanic 3 (14%) 19 (27%) 12 (24%) 37 (26%) 8 (38%) 20 (25%) 0 (0%) 3 (1%)

Black non-Hispanic 3 (14%) 2 (2%) 10 (20%) 3 (2%) 5 (23%) 3 (3%) 0 (0%) 1 (0.5%)

Black Hispanic 4 (19%) 0 (0%) 4 (8%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (0.5%)

Asian 0 (0%) 3 (4%) 0 (0%) 7 (4%) 0 (0%) 6 (7%) 16 (21%) 23 (13%)

TNM Stage P = .188 P = <.001* P = .007* P = .138

Stage I 14 (67%) 60 (86%) 27 (54%) 114 (80%) 9 (42%) 60 (75%) 60 (78%) 158 (87%)

Stage II 7 (33%) 10 (14%) 23 (46%) 27 (19%) 12 (57%) 20 (25%) 17 (22%) 24 (13%)

Depth of Invasion P = .549 P = 1.00 P = .059 P = .569

<5 mm 20 (95%) 68 (97%) 49 (98%) 137 (97%) 18 (86%) 78 (97%) 1 (25%) 6 (55%)

>5-10 mm 9 (5%) 2 (3%) 1 (2%) 4 (3%) 3 (14%) 2 (3%) 3 (75%) 5 (45%)

Close marginsd P = .573 P = .026 P = .339 P = .516e

Not present 17 (81%) 50 (71%) 45 (90%) 105 (74%) 16 (76%) 68 (85%) 2 (50%) 9 (82%)

Present 4 (19%) 21 (29%) 5 (10%) 36 (26%) 5 (24%) 12 (15%) 2 (50%) 2 (18%)

Perineural Invasion P = .111 P = 1.00 P = .026 P = .569e

Not Present 21 (100%) 61 (87%) 45 (90%) 126 (89%) 15 (71%) 73 (91%) 1 (25%) 6 (55%)

Present 0 (0%) 9 (13%) 5 (10%) 15 (11%) 6 (29%) 7 (9%) 3 (75%) 5 (45%)

Histologic grading P = .311 P < .001* P < .001* P = .139e

Well-differentiated 10 (48%) 44 (63%) 18 (36%) 91 (65%) 4 (19%) 47 (59%) 33 (43%) 98 (54%)

Moderately/poorly-differentiated 11 (52%) 26 (37.14%) 32 (64%) 50 (35%) 17 (81%) 33 (41%) 44 (57%) 84 (46%)

Smoking status P = .003* P < .001* P < .001*

Never 9 (42%) 47 (68%) 18 (36%) 94 (68%) 6 (28%) 45 (56%) na na

Past 3 (14%) 15 (21%) 8 (16%) 29 (21%) 3 (14%) 32 (40%) na na

Current 9 (42%) 7 (10%) 24 (48%) 15 (10%) 12 (57%) 3 (3%) na na

Alcohol Abuse P = .014* P < .001* P < .001*

Never 13 (61%) 57 (82%) 26 (52%) 109 (78%) 8 (38%) 58 (72%) na na

Past 0 (0%) 4 (5%) 6 (12%) 14 (10%) 2 (9%) 10 (12%) na na

Current 8 (38%) 8 (11%) 18 (36%) 15 (10%) 11 (52%) 12 (15%) na na

Note: *Statistically significant difference (p < .05).
aPatients with deep sequencing data consists of 100 subjects from the internal subject pool; nine cases that did not pass the quality control were removed from
the analysis.
bPatients who had cancer-specific death in the 5-year period following initial treatment.
cPatients who survived the first 5 years following initial treatment.
dClose (<5 mm) or positive surgical margins.
eDepth of invasion, close margins, and perineural invasion for external validation cohort was available for 15 subjects only.
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Our study consists of patients diagnosed with OSCC
between 1995 and 2012, who were clinically staged prior
to the AJCC eighth modification. We restaged all internal
patients with available pathology information using the
AJCC 8 staging criteria. Approximately 1% of patients in
the internal test cohort and internal validation cohorts
were upstaged from pathologic stage I to II. There were
no subjects upstaged from pathologic stage II to III. Our
results are less than that reported by Cramer et al,7 in
which 8% of pathologic stage I patients changed to stage
II and 5% changed to stage III in 39 361 OSCC patients
using the new staging system. Our study only included
patients who underwent surgery with curative intent
without elective neck dissection and/or adjuvant chemo/
radiotherapy. Decision for surgical treatment alone is
made partially based on favorable histologic findings (ie,
lesser extent of tumor invasion of the underlying tissues),
which may explain the lower proportion of patients
upstaged using the AJCC 8 staging criteria.

Clinicodemographic variates known to be associated
with poor prognosis include older age, male gender,
and African-American ethnicity.4-6,14,16,36-41 Tobacco
and alcohol use are etiologic factors of oral cancer.4-6

TNM stage (includes the size of the lesion and the
depth of invasion), histologic grading, close (<5 mm),
or positive margins and the presence of perineural inva-
sion are currently utilized as clinical measures to assess
prognosis.4-6,14,16,36-41

In the internal test cohort, TNM stage II and moder-
ate to poorly differentiated histologic grades were signifi-
cantly associated with a higher risk for cancer-specific
mortality (Table 1). However, the depth of invasion, a
new T-classification modifier, was not prognostically sig-
nificant by itself. Similarly, close margin (tumor within
0-5 mm of the margin) and the presence of perineural
invasion were not significantly associated survival out-
come. While African-American race/ethnicity showed an
association with poor prognosis, due to the small number
(only 22 Black non-Hispanic out of 551 subjects), race/
ethnicity was not included in further analysis. Informa-
tion on tobacco and alcohol use was available only for
the internal subjects. Statistical significance was observed
for both the internal test and the validation cohorts with
poor prognosis, in which patients who are current
smokers were 7.5 times more likely (p < .001) to die of
disease and those who abuse alcohol (4 or more drinks
on any day or 8 or more drinks per week) were 4.6 times
more likely (p < .001) to have cancer-specific death
within 5-years of the initial cancer treatment. For those
who are current smokers and also abuse alcohol, the odds
ratio of cancer-specific death within 5 years increased to
13.7 (p < .001).

3.2 | Signature microRNA discovery

Deep sequencing was performed on the 100 internal sub-
jects using the EdgeSeq WT-miRNA assay that targets
2083 miRNAs. The number of reads of each miRNA
detected in the samples ranged from 0 to 1 306 955.
When comparing between subjects with cancer-specific
death/recurrence (poor prognosis) vs those who survived
5 years (favorable prognosis), 365 miRNAs had signifi-
cant log2-fold change between two prognostic groups.
Volcano plot of over and underexpressed miRNAs is
shown in Figure 1A. Of these, 13 miRNAs had an abso-
lute log2-fold change >1.1 (ranging from 1.1 to 1.9) and
FDR ≤ 0.05. Nine out of 13 miRNAs (miRNA-127-3p,
4736, 655-3p, 6073, 3182, 381-3p, 375, 378, and let-7a-3p)
had commercially available miRNA probes and were fur-
ther tested using qRT-PCR in all 200 internal test sub-
jects. Two miRNAs (miRNA-381-3p and 378b) had
undetermined Ct-values (>40 cycles) in more than half of
the internal test cases and were excluded from further
analysis. This is most likely due to the higher sensitivity
of the deep sequencing analysis compared to that of qRT-
PCR. Nine cases with undetermined Ct value for the con-
trol RNU6-6p were also excluded (n = 191). The potential
prognostic roles of the selected seven miRNAs were
investigated through a literature search. A boxplot dem-
onstrating differential expression of the top seven
miRNAs between the poor vs favorable prognostic groups
obtained from deep sequencing analysis is shown in
Figure 1B.

3.3 | Prognostic model construction

The univariate analysis was performed on all clinico-
demographic covariates and the top seven miRNAs
selected from the deep sequencing in the internal test
cohort. Those variables with “correct” directional change
(ie, older age with positive univariate coefficient, etc.)
were selected and subjected to the 1000 cross-validations.
The top six covariates selected over 100 times are shown
in Table 2. Stepwise Cox models on time-to-death were
constructed with the six covariates and the c-index calcu-
lated (Table 3). The highest c-index was observed in the
model consisting of the top five covariates (c-index of
0.816 with a SD of 0.046) and selected as the final prog-
nostic model. The top five covariates include three
miRNAs (miRNA-127-3p, 4736, 655-3p) and two clinical
variable (TNM stage and histologic grading). The normal-
ized mean Ct-values of three selected miRNAs and the
fold change between the two prognostic groups is shown
in Table 4.
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Cox proportional hazards regression analysis of the
top five prognostic variables was performed (Table 5),
and the logistic regression analysis was conducted to

FIGURE 1 Deep

sequencing analysis.

(A) Volcano plot demonstrating

over and underexpressed

miRNAs between the poor

prognosis group (cancer-specific

mortality) vs favorable prognosis

group (5-year survival following

the initial treatment).

(B) Boxplot representing the

average expression (post-

normalization) of top seven

microRNAs that demonstrate

significant differential

expression between poor vs

favorable prognostic groups

TABLE 2 The 1000 cross-validations to identify prognostically

important variables

Variables Times selected

miRNA-127-3p 996

miRNA-655-3p 930

TNM Stage 846

miRNA-4736 441

Histologic grading 221

Let-7a-3p 104

Note: Those that were selected over 100 times were considered for further
analysis.

TABLE 3 Final prognostic model selection with the

prognostic variables selected from the 1000 cross-validations using

the c-index calculation (mean and SD)

Models
c-Index
mean (SD)

[1] = c(miRNA-127-3p) 0.715 (0.056)

[2] = c(miRNA-127-3p, miRNA-655-3p) 0.739 (0.052)

[3] = c(miRNA-127-3p, miRNA-655-3p, TNM
Stage)

0.792 (0.046)

[4] = c(miRNA-127-3p, miRNA-655-3p, TNM
Stage, miRNA-4736)

0.809 (0.049)

[5] = c(miRNA-127-3p, miRNA-655-3p, TNM
Stage, miRNA-4736, Histologic grading)

0.816 (0.047)

[6] = c(miRNA-127-3p, miRNA-655-3p, TNM
Stage, miRNA-4736, Histologic grading, let-
7a-3p)

0.809 (0.502)
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construct an ROC curve and calculate the AUC in the
internal test cohort (Figure 2). The AUC of the ROC
curve with the miRNA-based 5-plex marker panel was
0.83 (95% CI: 0.76, 0.90; p < .001). The clinical prognostic
indicators alone, including TNM stage and histologic
grading, had an AUC of 0.67 (p < .001), demonstrating
that the 5-plex prognostic marker combining the signa-
ture miRNAs together with the existing clinical predictive
modality significantly increase the prognostic power. The
depth of invasion and perineural invasion had an AUC
slightly higher than 0.50, although not significant. The
close (<5 mm) or positive surgical margin showed some
prognostic value (AUC of 0.58, p = .007).

Network visualization and functional analysis was
performed as shown in Figure 3. MicroRNA-655-3p has
a putative tumor suppressor role and downregulation of
its expression level is observed in the poor prognosis
group. On the other hand, miRNAs-127-3p and 4736
promote tumor progression and metastasis; higher levels
are associated with increased risk for cancer-specific
mortality. Combined, these three miRNAs are involved
in Ras activation, which is an important component of
the signal transduction pathways to initiate cell growth
and differentiation.42 These miRNAs also modulate toll-
like receptor (TLR) signaling pathways.43 TLRs play a
crucial role in adaptive immune response and dys-
regulation of the pathway can lead to aberrant TLR acti-
vation, which in turn triggers NF-κB signaling

activation and overexpression of inflammatory cyto-
kines such as IL-1β, TNFα, and IL-6, resulting in tumor
cell proliferation and invasion.43

3.4 | Mortality risk score calculation

The final prognostic model consisted of miRNAs-127-3p,
4736, 655-3p, TNM stage, and histologic grade. Using this
model, a prognostic risk score was calculated, which
included the five covariates, each weighed by relative
contribution: Mortality risk score = (−0.7 × expression
value of miRNA-127-3p) + (−0.3 × expression value of
miRNA-4736) + (0.1 × expression value of miRNA-
655-3p) + (0.9 × 0 for TNM stage I; 1 for TNM stage II)
+ (0.4 × 0 for well-differentiated; 1 for moderately/poorly
differentiated), in which miRNA expression level is the
ΔCT value of each miRNA. The prognostic score was cal-
culated for each patient in the internal test cohort and
the patients were stratified into high vs low-risk based on
the score. The mortality risk score ranged from −2.40 to
2.96 (mean = 0). A higher score was considered to be
associated with greater risk for cancer-specific mortality.
Using the mean risk score as the cutoff point, the moral-
ity risk score model was able to identify patients at
greater risk for cancer-specific mortality, with an overall
predictive accuracy of 0.72, and sensitivity and specificity
of 88% and 66%, respectively.

TABLE 4 Normalized mean expression levels of selected miRNAs obtained by qRT-PCR and the fold change between those who had

cancer-specific death vs those who survived 5-years following initial surgical treatment

Mean normalized Ct-value

miRNAs Cancer-specific mortality group 5-year survival group Fold-changea P-valueb

miRNA-127-3p 3.10 3.95 1.79 .001

miRNA-4736 7.61 8.44 1.77 .004

miRNA-655-3p 12.16 11.65 0.71 .401

aFold change calculated as 2−ΔΔCt.
bp-value is based on the two-sample t-test comparing the mean normalized Ct values.

TABLE 5 Cox proportional

hazards regression analysis “time-to-

death” for five covariates

Regression coefficient Hazard ratio SE P-value

TNM Stage 0.897 2.452 0.327 .006*

Histologic Grade 0.385 1.469 0.345 .265

miRNA-127-3p −0.738 0.478 0.187 .00008*

miRNA-655-3p 0.122 1.129 0.043 .0049*

miR-4736 −0.265 0.767 0.141 .060

*Statistically significant difference (p < .05).
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3.5 | Internal and external validation

Using the final model driven from the internal test
cohort, an ROC curve was generated for the internal vali-
dation cohort (n = 101). The AUC of the internal valida-
tion cohort (0.87, p < .0001) was slightly higher than that
of the internal test cohort (0.83 for the internal test
cohort, p < .0001). For the external validation cohort
(n = 259), the AUC was 0.81 (p < .0001). The ROCs for
the internal and external validation cohorts are shown in

Figure 2. In the internal validation cohort, the mortality
risk score ranged from −3.1 to 2.6, and in the external
validation cohort, the mortality risk score ranged from
−4.5 to 3.4. Using 0 as the cutoff, the risk score formula
was able to correctly stratify 76% of patients who died of
cancer as higher risk (16 out of 21) in the internal valida-
tion cohort, with predictive accuracy of 0.73. In the exter-
nal validation cohort, 65% of patients who died of the
disease were classified as higher risk (50 out of 77), with
a predictive accuracy of 0.81. Overall, for all three cohorts

FIGURE 2 The ROC of the 5-plex miRNA-based prognostic marker panel, compared to clinical prognostic indicators alone and

miRNAs alone. MicroRNAs include miRNAs-127-3p, 4736 and 655-3p. The clinical prognostic factors include TNM stage I vs II and

histologic grading, well vs moderately/poorly differentiated. The dashed lines in A represent some of clinically utilized prognostic factors

including depth of invasion, close (>5 mm) or positive margins and perineural invasion. (A) Internal test cohort, (B) internal validation

cohort, and (C) external validation cohort

YOON ET AL. 1707



combined, the miRNA-based marker panel had a predic-
tive accuracy of 0.76 with a sensitivity of 74% and a
specificity of 77% in identifying those at high-risk for
cancer-specific death.

3.6 | Prognostication based on the risk
scores

Since the goal of the study is to accurately identify
patients at high-risk for cancer-specific mortality among
those assigned to early TNM stage, and also to provide

practical guidance for the clinicians to assess prognosis,
we further stratified patients into four risk categories
based on the risk score as shown in Table 6. When the
three cohorts were combined, a risk score of 2 or higher
was associated with a significantly high-risk for cancer-
specific mortality and recurrence, in which 94% of sub-
jects in this score range died of the disease with a median
survival time of 11 months (HR of high-risk compared to
low-risk = 23, p < .001). In comparison, those with a risk
score of less than 0 were considered to be low-risk with
11% of subjects dying of the disease with a median sur-
vival time ≥ 60 months. The Kaplan-Meier curves for the

FIGURE 3 Network visualization and functional analysis. (A) Interaction networks of the prognostic miRNAs (miRNA-127-3p, 4736,

and 655-3p), the target genes and their involved pathways in the early-stage oral cancer patients who died of disease within 5 years following

initial treatment (poor-prognosis group). The SKI proto-oncogene, Rac family small GTPase 1 (RAC1) and CREBRF were identified as the

network hubs. (B) Selected KEGG and (C) Reactome pathway analysis of the gene targets of selected miRNAs. Dysregulation of cancer-

related pathways involving RHO GTPases, Wnt/β-cantenin, Ras, and toll-like receptor (TLR) was identified in association with the miRNAs
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high, moderately-high, moderately-low and low-risk
groups stratified based on the risk scores are shown in
Table 6.

4 | DISCUSSION

Currently, there is no clinical modality to identify
patients at high-risk for cancer-specific death among

those assigned to early-stage OSCC (TNM stages I and
II). Because 50% of oral cancer patients are in early-stage
at the time of diagnosis,2 a window of opportunity exists
in which proper prognostication and subsequent deci-
sions for additional treatment can dramatically improve
the 5-year survival of patients with this deadly disease.

We have previously identified two prognostic
miRNAs (miRNA-375 and 214-3p) in patients who had
surgery with or without neck dissection in a smaller

TABLE 6 Four risk categories (high vs moderately-high vs moderately-low vs low) based on the cancer-specific mortality risk score and

the Kaplan-Meier curve [Color table can be viewed at wileyonlinelibrary.com]

Risk
scores

Median time
to deatha

Median time to
recurrencea

Cancer
death (%)

5-year
survival (%) HRb

Internal test cohort ≥2 11 2 89 11 44*

1 to <2 38 13 62 38 16*

0 to <1 ≥60 ≥60 35 65 7*

<0 ≥60 ≥60 6 94 1

Internal validation cohort ≥2 12 1 100 0 26*

1 to <2 14 7 67 33 15*

0 to <1 ≥60 ≥60 22 78 3

<0 ≥60 ≥60 8 92 1

External validation cohortc ≥2 27 27 100 0 16*

1 to <2 22 22 88 12 13*

0 to <1 36 36 59 41 6*

<0 ≥60 ≥60 15 85 1

All three cohorts combined

Risk categories

High risk ≥2 11 6 94 6 23*

Moderately-high risk 1 to <2 22 14 71 29 11*

Moderately-low risk 0 to <1 ≥60 46 42 58 5*

Low risk <0 ≥60 ≥60 11 89 1

Note: *P < .00001.
aMedian time-to-death and time-to recurrence in months.
bHR: hazard ratio of cancer-specific death of each risk category compared to the low-risk group (risk scores<0 as the reference group).
cMedian time-to-recurrence for the external cohort based on 82 subjects with recurrence information obtained during the review of pathology reports.
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subject pool (n = 100).35 The two miRNA markers with
age and gender was able to identify patients at high-risk
for cancer-specific death vs those who will have cancer-
free 5-year survival. Here, we designed a new study with
568 early-stage oral cancer patients who had surgery
alone as the treatment. The miRNAs-127-3p, 4736,
655-3p, together with the AJCC 8 TNM staging system,
and histologic grade demonstrated significant prognostic
power. Our miRNA-based 5-plex marker panel is opti-
mized to differentiate between those who develop recur-
rence and die of cancer vs those who survive despite
loco-regional recurrence, in addition to discriminating
between those who have cancer-specific death vs those
who have 5-year cancer-free survival.

We discovered miRNA signatures using next-
generation sequencing, and validated the prognostic
power of miRNAs using qRT-PCR. We then built a 5-plex
prognostic model consisting of miRNAs and clinical
covariates. The mortality risk score formula was driven
from the final prognostic model to serve as a quantifiable
risk assessment modality that can be readily applied in a
clinical setting. To construct a robust prognostic marker
panel, the prognostic model and the risk score formula
driven from the internal test cohort (n = 191) were vali-
dated in an independent internal validation cohort
(n = 101) as well as an external validation cohort
(n = 259). The external validation cohort consisted of a
heterogeneous population in the Northeastern and Mid-
western US and Hawaii to ensure generalizability of our
findings across populations. The AUC of the ROC curve
with the miRNA-based 5-plex marker panel was 0.83
(p < .001), 0.87 (p < .001), and 0.81 (p < .001) in internal
test, internal validation and external validation cohorts,
respectively, demonstrating uniformly significant prog-
nostic value.

When the early-stage OSCC patients were stratified
into two risk groups, higher (≥0) vs lower (<0) risk, the
overall predictive accuracy, sensitivity, and specificity
were 0.76, 74%, 77%, respectively. To provide practical
clinical guidance, we further stratified patients into four
risk categories based on the risk scores; high (≥2) vs
moderately-high (2 to ≥1) vs moderately-low risk (1 to
≥0) vs low-risk (<0), in which the rate of cancer-specific
death changes from 94% to 71% for high and moderately-
high risk groups, and from 42% to 11% for the
moderately-low to low risk groups. High and moderately-
high risk scores were also associated with a shorter
median time-to-recurrence of 6 and 14 months, respec-
tively. The early-stage oral cancer patients with high or
moderately-high risk scores (score ≥ 1) may benefit from
active intervention, that is, neoadjuvant therapy, elective
neck dissection, irradiation, and so on, as opposed to
those with moderately-low risk scores (1 to ≥0), who may

be placed under vigilant observation for signs of recur-
rence following initial surgery.

Larger tumor size and increased depth of tumor inva-
sion (TNM stage II; size ≤ 2 cm and DOI > 0.5 but
≤1.0 cm, or size 2-4 cm and DOI ≤ 1.0 cm) and histologic
evidence of moderately/poorly differentiated cancer are
currently utilized prognostic factors to predict clinical out-
come. Indeed, these two clinical factors had some prognos-
tic value with an AUC of 0.67 (P < .001). When combined
with the three miRNAs, the 5-plex prognostic marker
panel demonstrated significantly greater prognostic power
with an AUC of 0.83. The presence of unfavorable histol-
ogy such as close (<5 mm) or positive surgical margins
and evidence of perineural invasion had marginal prog-
nostic value. Most patients included in our study had
“close margins” rather than “tumor at the margin,” which
explains the limited prognostic value of close/positive
margin. The DOI alone did not have prognostic signifi-
cance. It becomes significant only when the DOI is incor-
porated with the size of the tumor into the TNM stage.

In terms of the miRNAs included in our final model,
miRNA-127-3p functions as an oncogene and promotes the
migration and invasion of tumor cells. In glioblastoma,
miRNA-127-3p targets and inhibits SEPT7, which is a nega-
tive regulator of cell migration and invasion.44 Upregu-
lation of miRNA-127-3p was observed in tumor initiating
cells in lung carcinoma and also in circulating blood in
breast cancer patients compared to that of healthy individ-
uals.45,46 Increased expression levels of serum miRNA-4736
was observed in patients with various sarcomas. Hence,
miRNA-4736 has an oncogenic role, and a step-by-step
increase in expression levels correlates with disease severity
(lowest in healthy individuals, moderate in benign tumors,
and highest in sarcoma patients).47 miRNA-655-3p regu-
lates E-cadherin expression and inhibits β-catenin signal
pathway, thereby functioning as a tumor suppressor in
hepatocellular carcinoma.48 It also halts tumor invasion
andmetastatic dissemination in various cancer types.49

This study has a modest sample size due to strict subject
inclusion and exclusion criteria to select only those in the
early TNM stage of oral cancer who had surgery alone as
the treatment. A number of early-stage OSCC patients have
had elective neck dissection performed due to the possibil-
ity of occult lymph node metastasis and these cases were
excluded from the study. However, the sample size was ade-
quate in achieving significance in the prognostic power of
each cohort. The prognostic value is slightly lower for the
external validation cohorts compared to that of the internal
cohorts, which is bound to differ due to different geographic
locations with different clinical practices.50

In sum, we evaluated a miRNA-based risk stratifica-
tion modality for early-stage oral cancer patients. The
TNM stage and the histologic grading are readily available
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clinical information, and the miRNA expression levels can
be obtained with relative ease using qRT-PCR in the
formalin-fixed paraffin-embedded tumor biopsy tissue.
Thus, the prognostic risk score calculation can be per-
formed as a part of the pathology work-up. We have plans
to prospectively assess the prognostic value of this
miRNA-based model in a large-scale multicenter setting to
provide the highest level of evidence supporting the clini-
cal validity and usefulness of the biomarker. We also
intend to evaluate the efficacy of various treatment regi-
mens (elective neck dissection, irradiation, combination of
neck dissection, and radiotherapy in addition to surgery)
in patients stratified into high and low-risk categories
using the miRNA-based prognostic model as the next step.
The study results can then be utilized to guide decision-
making in treatment selection and make risk-adjusted
therapies possible for patients in early-stage OSCC.
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