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Enantioselective access to chiral aliphatic amines
and alcohols via Ni-catalyzed hydroalkylations
Shan Wang1, Jian-Xin Zhang1, Tian-Yi Zhang1, Huan Meng1, Bi-Hong Chen1 & Wei Shu 1✉

Chiral aliphatic amine and alcohol derivatives are ubiquitous in pharmaceuticals, pesticides,

natural products and fine chemicals, yet difficult to access due to the challenge to differ-

entiate between the spatially and electronically similar alkyl groups. Herein, we report a

nickel-catalyzed enantioselective hydroalkylation of acyl enamines and enol esters with alkyl

halides to afford enantioenriched α-branched aliphatic acyl amines and esters in good yields

with excellent levels of enantioselectivity. The operationally simple protocol provides

a straightforward access to chiral secondary alkyl-substituted amine and secondary

alkyl-substituted alcohol derivatives from simple starting materials with great functional

group tolerance.
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Chiral aliphatic amines and alcohols are widespread sub-
structures in pharmaceutical molecules, natural products
and organic materials, and serve as common chiral

building blocks for other functional groups and value-added
molecule synthesis1–3. Additionally, over half of small-molecule
drugs are the derivatives of chiral aliphatic amines and alcohols
among the top 200 best-selling drugs (Fig. 1a)4. Thus, the
enantioselective synthesis of pure aliphatic amines and alcohols
has been recognized as a long-term interest in chemistry com-
munity. Over the past decades, significant progress has been
made in this field enabled by enantioselective C–H amination/
oxygenation5–8, addition of alkyl organometallic reagents to
imines or aldehydes9–13, and hydrogenation of imines, enamines,
ketones, or enol esters14–19. However, chiral catalysts have diffi-
culty in identifying different faces of prochiral centers bearing two
alkyl groups with similar steric and electronic properties20. Thus,
these methods are typically applied to build chiral aliphatic
amines and alcohols with the stereogenic center adjacent to aryl
or carbonyl groups (Fig. 1b)14,21–24. To control the enantios-
electivity of asymmetric reactions for regular secondary alkyl-
substituted amines and alcohols still remains a formidable chal-
lenge. In 2020, Zhou group reported a breakthrough in Ir-
catalyzed asymmetric hydrogenation of dialkyl ketones to afford
chiral aliphatic alcohols with good enantioselectivity enabled by a
rationally designed bulky PNP ligand25. Buchwald developed a
seminal work on Cu–H-catalyzed hydroamination of internal
alkenes to achieve chiral dialkyl amines26,27. In 2016, Fu group
reported a pioneer work on Ni–H-catalyzed racemic hydro-
functionalizations of alkenes with aryl or alkyl halides28, which
have become a promising alternative for traditional asymmetric
C–C cross-coupling reaction to construct saturated stereogenic
carbon centers28–35. The use of readily available and bench-stable
alkenes as a masked nucleophile in the presence of silane cir-
cumvents the use of stoichiometric and often sensitive organo-
metallic reagents, which usually require time-consuming
preformation36,37. The abundance of alkene as well as the mild
conditions significantly enhanced the scope and functional group
tolerance of this strategy38–41. Fu group reported the seminal
work on the anti-Markovnikov hydroalkylation of alkenes with
activated secondary alkyl halides to build a stereogenic center

originating from alkyl halides42–45. The use of unactivated alkyl
halides to build stereogenic center originating from alkenes
remains elusive due to the reversible Ni–H insertion onto alkenes
and the propensity of chain-walking46,47. Recently, our group
developed the Ni–H-catalyzed hydroalkylation of acrylates via
anti-Markovnikov hydrometalation, giving the enantioenriched
α-tertiary amides by forging a stereogenic center originating from
acrylates48. In 2021, Hu group reported a hydroalkylation of vinyl
boronates to give chiral secondary alkyl boronates enabled by the
anchoring effect of boron49. These examples showcased the fea-
sibility of building a stereogenic carbon center originating from
alkenes via Ni-catalyzed hydroarylation36–38 and
hydroalkylation48–51 of alkenes.

As part of our continuous interest in the enantioselective
hydrofunctionalizations of alkenes, we envisioned the use of
alkene adjacent to nitrogen or oxygen to undergo enantioselective
hydroalkylation would furnish enantioenriched secondary ali-
phatic amine and alcohol derivatives (Fig. 1c). Here, we report the
Ni–H-catalyzed regio- and enantioselective hydroalkylation of
acyl enamines and enol esters with alkyl iodides to forge a ste-
reogenic carbon center next to nitrogen or oxygen originating
from alkenes in high enantioselectivity, providing a unified pro-
tocol for rapid access to chiral secondary alkyl-substituted amine
and alcohol derivatives which are difficult to access
otherwise50–52.

Results
Reaction optimization. To test the feasibility of the reaction, we
set out to identify the reaction parameters using acyl enamine 1a
with 1-iodo-3-phenylpropane 2a as substrate in the presence of
silane. (Table 1 and Tables S1–13; for more details on the con-
dition optimization, please see the Supplementary information).
First, a wide range of chiral ligands were tested for this reaction
using NiBr2.glyme (10 mol%) as the nickel catalyst precursor,
trimethoxysilane (TMS) as hydride source, and potassium
phosphate monohydrate as base in diethyl ether at room
temperature (Table 1, entries 1–9 and Table S1). When pyridine-
oxazolidine ligand (L1 or L2) was used, the desired hydroalk-
ylation product 3a was obtained in 54% and 29% yields with low
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Fig. 1 Impetus for the development of the reaction. a Representative molecules containing chiral secondary alkyl-substituted amines and alcohols. b
Representative ways to access chiral secondary alkyl-substituted amines and alcohols. c Ni-catalyzed hydroalkylation of acyl enamines and enol esters.
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enantiomeric excesses (2% and 15%), respectively (Table 1,
entries 1 and 2). Ph-Box ligands (L3–L6) could catalyze the
reaction, giving 3a in low yields with low enantioselectivities
(Table 1, entries 3–6). Increasing the steric hindrance at
α-position to oxygen increased the enantioselectivity of 3a to
50% ee (Table 1, entries 5 and 6). Modifying the methyl group on
L4 to bulkier groups significantly improved the enantioselectivity
of 3a (Table 1, entries 7–9). The use of L9 delivered 3a in 20%
yield with 90% ee. Using diethoxymethylsilane (DEMS) as
hydride source slightly increased the enantioselectivity of 3a to
94% (Table 1, entry 11). Next, the solvent for the reaction
was evaluated. The use of N,N-dimethylacetamide (DMA) or
N,N-dimethylformaldehyde (DMF) dramatically increased the
efficiency of the reaction, delivering 3a in up to 99% yield with
diminished enantiomeric excess (Table 1, entries 12 and 13). The
mixing of ether with DMA or DMF could increase the enan-
tioselectivity of 3a without erasing the efficiency of the reaction

(Table 1, entries 14 and 15). Further optimization of the nickel
precursor and reaction temperature improved the yield and
enantioselectivity of 3a (Table 1, entries 16–18). The use of Ni
(COD)2 (10 mol%), L9 (12 mol%), dimethoxymethylsilane
(DMMS) (3 equiv.) in Et2O and DMF (3:1) gave 3a in 93% yield
with 92% ee (Table 1, entry 19).

Substrate scope of dialkyl amides. With the optimized condi-
tions in hand, we turned to evaluate the scope of this reaction.
First, we tested different alkyl iodides with tertiary acyl enamine
1a (Fig. 2). Then, 4-phenylbutyliodide was converted to chiral
amide 3b in 93% yield with 92% ee. 2-Phenyl-1-iodoethane and
α-branched alkyl iodides could be transformed into correspond-
ing amine derivatives (3c and 3d) in 87% and 58% yields with
89% ee. Heterocyclic compounds, such as carbazoles, indoles, and
thiophenes, worked well in the reaction, furnishing the regio- and

Table 1 Condition evaluation of the reaction.

Entry Ni cat. L* Si-H Solvent Yield (ee)a

1 NiBr2.glyme L1 TMS Et2O 54% (2%)
2 NiBr2.glyme L2 TMS Et2O 29% (15%)
3 NiBr2.glyme L3 TMS Et2O 32% (19%)
4 NiBr2.glyme L4 TMS Et2O 56% (13%)
5 NiBr2.glyme L5 TMS Et2O 29% (50%)
6 NiBr2.glyme L6 TMS Et2O 24% (16%)
7 NiBr2.glyme L7 TMS Et2O 62% (82%)
8 NiBr2.glyme L8 TMS Et2O 51% (85%)
9 NiBr2.glyme L9 TMS Et2O 20% (90%)
10 NiBr2.glyme L9 TES Et2O 14% (94%)
11 NiBr2.glyme L9 DEMS Et2O 24% (94%)
12 NiBr2.glyme L9 DEMS DMA 99% (73%)
13 NiBr2.glyme L9 DEMS DMF 56% (58%)
14 NiBr2.glyme L9 DEMS Et2Ob 98% (77%)
15 NiBr2.glyme L9 DEMS Et2Oc 99% (84%)
16 Ni(COD)2 L9 DEMS Et2Oc 99% (88%)
17d Ni(COD)2 L9 DEMS Et2Oc 94% (92%)
18d,e Ni(COD)2 L9 DEMS Et2Oc 99% (92%)
19d,e Ni(COD)2 L9 DMMS Et2Oc 93%f (92%)

aThe reaction was conducted using 1a (0.1 mmol) and 2a (0.2 mmol) in 1 mL of solvent under indicated conditions for 12 h unless otherwise stated. Yield was determined by GC using n-dodecane as
internal standard. The enantiomeric excess was determined by HPLC using a chiral stationary phase. L* = chiral ligand. TMS= trimethoxysilane. TES= triethoxysilane. DEMS= diethoxymethylsilane.
DMMS= dimethoxymethylsilane. bEt2O/DMA= 3:1. DMA= N,N-dimethylacetamide. cEt2O/DMF= 3:1. Et2O= diethyl ether. DMF= N,N-dimethylformaldehyde. dThe reaction was run at 0 °C. eThe
reaction was run for 24 h. fIsolated yield after flash chromatography.
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enantioselective hydroalkylation products (3e–3g) in 64–94%
yields with 91% ee. Other functional groups, such as amides,
esters, ethers were also compatible under the reaction conditions,
delivering the desired chiral amine derivatives (3h–3k) in 56–83%
yields with 89–92% ee. Moreover, silylethers and arylchlorides
were tolerated in the reaction, giving the desired products (3l and
3m) in 85% and 95% yields with 74% and 88% ee, leaving che-
mical handles for further elaboration. Benzyl bromide was suc-
cessfully converted to corresponding amide 3n in 88% yield with
moderate enantiomeric excess. Second, internal acyl enamines
were examined. Internal acyl enamines with diverse substituents
could be converted to corresponding hydroalkylated products in
good yields with excellent enantioselectivities. Acyl (E)-1-prope-
namine reacted to give corresponding dialkyl amide 3o in 74%
yield with 90% ee. Alternatively, acyl (Z)-1-propenamine gave 3o
in 80% yield with 81% ee under the same conditions. Longer alkyl
chain- and benzyl-substituted internal acyl enamines were all
good substrates for this reaction, affording corresponding amine
derivatives (3p–3r) in 68–78% yields with 88–89% ee. Bro-
moindole containing alkyl iodide could be coupled with internal
acyl enamine to deliver 3s in 63% yield with 92% ee.

Next, the scope of secondary acyl enamines was tested (Fig. 3).
A wide range of secondary acyl enamines were well-tolerated in
this reaction, forming a myriad of enantioenriched amides in
good efficiency with excellent levels of enantioselectivity in the
presence of L41. Various aromatic amides were good substrates
for this reaction (4a–4o). Electron-donating substituted aromatic
acyl enamines could be converted to corresponding hydroalky-
lated products (4a–4f) in 68–90% yields with 90–95% ee.
Electron-withdrawing substituents, such as trifluoromethyl,
cyano, ester, fluoride, were well-tolerated under the reaction
conditions, giving the desired products (4g–4j) in 74–89% yields
with 93–96% ee. Fused aromatic and heteroaromatic acyl
enamines, including naphthalene, furan, thiophene, and pyridine,
were transformed into corresponding chiral amides (4k–4o) in
49–88% yields with 89–95% ee. The structure and absolute
configuration of the product was determined by the X-ray
diffraction analysis of 4l. Aliphatic acyl enamines were also tested
(4p–4v). Linear and α-branched aliphatic acyl enamines with
acidic α-proton, such as methyl, n-propyl, isopropyl, cyclopropyl,
cyclohexyl, were all good substrates for this hydroalkylation
reaction, affording corresponding chiral amides (4p–4t) in
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51–88% yields with 90–96% ee. α-Tertiary alkyl acyl enamines
reacted to give 4u in 84% yield with 92% ee. N-methyl aliphatic
acyl enamine was converted to 4v in 79% yield with 80% ee.

Then the scope for alkyl iodide for secondary acyl enamines
was examined (Fig. 4). Secondary acyl enamines gave better
enantioselectivity using the analogue ligand L41. Then, 5-(2-
Iodoethyl)-2,3-dihydrobenzofuran was successfully hydroalky-
lated to give 5a in 84% yield with 96% ee. The structure and
absolute configuration of 5a was further determined by the X-ray
diffraction analysis. It is noteworthy that the minimal structurally
different secondary alkyl-substituted amine derivative 5b was
obtained by this protocol in 65% yield with 94% ee. Other 1-
iodoalkanes were also successfully converted to corresponding
amine derivatives (5c–5e) in 63–80% yields with 93–98% ee.
Chiral aminoalcohol and aminoester derivatives (5f–5h) were
obtained in 62–72% yields with 92–94% ee. Cyclic secondary alkyl
iodides were also reactive under the reaction conditions to furnish
the desired products 5i and 5j in 66% and 61% yields with 98%
and 92% ee. To demonstrate the robustness and usefulness of this
protocol, we applied this reaction to late-stage functionalization
of natural product derivatives. (+)-Borneol, L-menthol, choles-
terol, and vitamin E derived acyl enamines could be transformed
to give corresponding chiral amides (5k–5n) in 45–87% yields
with 97:3 to 98:2 dr.

Substrate scope of dialkyl esters. Next, enol esters were tested
under the reaction conditions. To our delight, various enol esters
could be tolerated and a wide range of chiral aliphatic alcohol
derivatives were obtained in high enantioselectivity, which are
difficult to access otherwise (Fig. 5). Aromatic or aliphatic acid-
derived enol esters were all good substrates for this reaction,
furnishing corresponding chiral esters (6a–6c) in 53–73% yields
with 80–92% ee. Alkyl iodides containing ester, ether, thiophene,
amide could be transformed to corresponding chiral alcohol
derivatives (6d–6g) in 51–80% yields with 90–95% ee. Notably,
1-iodohexane and 1-iodobutane were successfully involved in
the reaction to give octan-2-ol (6h) and hexan-2-ol (6i) deri-
vatives in 77% and 54% yields with 90% and 96% ee, respec-
tively. Secondary alkyl iodide was tolerated in the reaction,
furnishing the desired product (6j) in synthetic useful yields
with 97% ee. Moreover, internal enol esters were well-tolerated
in the reaction. Long-chain alkyl-substituted internal enol esters
were successfully converted to corresponding chiral esters
(6k–6m) in 58–70% yields with 91–94% ee. Chloro-containing
alkyl-substituted internal enol ester underwent the desired
hydroalkylation reaction to give 6n in 68% yield with 94% ee.
The absolute configuration of the chiral ester was confirmed to
be R by comparison to literature53–55. Furthermore, literature
procedures proved unprotected chiral aliphatic amines and
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alcohols could be obtained via hydrolysis without erosion of
enantioselectivities53,54, which further enhanced the synthetic
utility of this method.

Mechanistic consideration. Then, we carried out the reaction
using deuterated silane (Ph2SiD2)32 under otherwise identical to
standard conditions (Fig. 6). The reaction of terminal acyl
enamine with 3-phenyl-1-iodopropane in the presence of
Ph2SiD2 afforded deuterated hydroalkylation product 7 in 61%
yield with 93% ee (Fig. 6a). Only one deuterium incorporation
(>95% D) was exclusively delivered to β-position to nitrogen of
amide 7. No deuterium incorporation was found at α-position to
nitrogen of 7. Next, the reactions of internal acyl enamine of both
configurations were tested (Fig. 6b). The reaction of (E)-acyl
enamine was slightly slower and delivered a lower yield and
higher enantioselectivity of 9 in comparison to the generation of 8
from (Z)-acyl enamine50,51. These results indicated that Ni–H
insertion onto acyl enamines to form alkyl-Ni species might be
irreversible and enantio-determining.

Based on the mechanistic results and literature
precedence28–34,42–45,48,49, two tentative mechanistic pathways
are proposed and depicted in Fig. 7. In one possibility (Fig. 7a),
nickel hydride species could be generated from ligated Ni(I)
precursor in the presence of a silane and a base. Ni–H would
coordinate with acyl enamines or enol esters (1) to give M1,
which could undergo regio- and enantioselective hydrometalation
to generate alkyl nickel intermediate M2. This M2 could oxidize
an alkyl iodide (2) to form Ni(III) intermediate M3, which could
undergo reductive elimination to give the final product 3 and
regenerate Ni(I) catalyst. In the other possibility (Fig. 7b), ligated
Ni(I) precursor undergoes single electron transfer with an alkyl

iodide (2) to give an alkyl radical and Ni(II) intermediate. The
latter could generate Ni(II)-H in the presence of a silane and a
base, which could coordinate with 1 with the assistance of
carbonyl group to form M1ʹ. With regio- and enantioselective
hydrometalation, M1ʹ generates alkyl nickel intermediate M2ʹ,
which could rebound with the alkyl radical to form Ni(III)
intermediate M3ʹ. M3ʹ undergoes reductive elimination to deliver
the final product 3 and regenerate Ni(I) species.

Discussion
In summary, a unified protocol for Ni-catalyzed hydroalkylation
of acyl enamines and enol esters with alkyl iodides under mild
conditions was developed. The use of chiral BOX-based ligand
enables the direct access of chiral secondary alkyl-substituted
amine and alcohol derivatives in good yields with excellent levels
of enantioselectivity, providing a straightforward alternative to
pure aliphatic amine and alcohol derivatives which are tradi-
tionally challenging to access.

Methods
General procedure for hydroalkylation of tertiary acyl enamines. In a nitrogen-
filled glovebox, Ni(COD)2 (5.5mg, 0.02mmol, 10mol%) and L9 (21.8mg, 0.024
mmol, 12mol%) were dissolved in solvent (2mL, Et2O: DMF= 3:1) in a Schlenk tube
with screw-cap equipped with a magnetic stirrer. The mixture was stirred at room
temperature for 10min, then alkyl halide (0.4mmol), tertiary acyl enamine (0.2
mmol), and K3PO4·H2O (0.6mmol) were added sequentially. The mixture was cooled
to 0 °C before DMMS (74 μL, 0.6mmol, 3 equiv.) was added dropwise. The resulting
mixture was stirred at 0 °C for 12–24 h (for 3o–s, stirred at 45 °C). After completion of
the reaction, the mixture was filtered through a pad of silica gel and washed with ethyl
acetate (3 × 15mL). The filtrate was washed with water (15mL). The organic phase
was dried over Na2SO4, filtered, concentrated under reduced pressure, purified by flash
chromatography with silica gel to give the pure product.
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General procedure for hydroalkylation of secondary acyl enamines. In a
nitrogen-filled glovebox, Ni(COD)2 (5.5mg, 0.02mmol, 10mol%) and L41 (8.4mg,
0.024mmol, 12mol%) were dissolved in solvent (2mL, Et2O: DMF= 3:1) in a Schlenk
tube with screw-cap equipped with a magnetic stirrer. The mixture was stirred at room
temperature for 10min, then alkyl halide (0.4mmol), acyl enamine (0.2mmol), and
K3PO4·H2O (0.6mmol) were added sequentially. The mixture was stirred at room
temperature for another 5min before DEMS (98 μL, 0.6mmol, 3 equiv.) was added
dropwise. The resulting mixture was stirred at room temperature for 12–24 h. After
completion of the reaction, the mixture was filtered through a pad of silica gel and
washed with ethyl acetate (3 × 15mL). The filtrate was washed with water (15mL).
The organic phase was dried over Na2SO4, filtered, concentrated under reduced
pressure, purified by flash chromatography with silica gel to give the pure product.

General procedure for hydroalkylation of enol esters. In a nitrogen-filled glo-
vebox, Ni(COD)2 (5.5 mg, 0.02 mmol, 10 mol%) and L41 (8.4 mg, 0.024 mmol, 12
mol%) were dissolved in solvent (2 mL, Et2O: DMF= 3:1) in a Schlenk tube with
screw-cap equipped with a magnetic stirrer. The mixture was stirred at room
temperature for 10 min, then alkyl halide (0.4 mmol) was added and the mixture
was stirred for another 5 min, followed by the sequential addition of enol esters
(0.2 mmol) and K3PO4·H2O (0.6 mmol). The mixture was stirred at room tem-
perature for 5 min before DEMS (98 μL, 0.6 mmol) was added dropwise. The
resulting mixture was stirred at room temperature for 16–20 h. After completion of
the reaction, the mixture was filtered through a pad of silica gel and washed with
ethyl acetate (3 × 15 mL). The filtrate was washed with water (15 mL). The organic
phase was dried over Na2SO4, filtered, concentrated under reduced pressure, and
purified by flash chromatography with silica gel to give the pure product.

Data availability
The authors declare that all other data supporting the findings of this study are available
within the article and Supplementary information files, and also are available from the
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