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RefDNN: a reference drug based
neural network for more accurate
prediction of anticancer drug
resistance

Jonghwan Choil, Sanghyun Park'" & Jaegyoon Ahn*"

Cancer is one of the most difficult diseases to treat owing to the drug resistance of tumour cells. Recent
studies have revealed that drug responses are closely associated with genomic alterations in cancer
cells. Numerous state-of-the-art machine learning models have been developed for prediction of drug
responses using various genomic data and diverse drug molecular information, but those methods

are ineffective to predict drug response to untrained drugs and gene expression patterns, which is
known as the cold-start problem. In this study, we present a novel deep neural network model, termed
RefDNN, for improved prediction of drug resistance and identification of biomarkers related to drug
response. RefDNN exploits a collection of drugs, called reference drugs, to learn representations for a
high-dimensional gene expression vector and a molecular structure vector of a drug and predicts drug
response labels using the reference drug-based representations. These calculations come from the
observation that similar chemicals have similar effects. The proposed model not only outperformed
existing computational prediction models in most comparative experiments, but also showed more
robust prediction for untrained drugs and cancer types than traditional machine learning models.
RefDNN exploits the ElasticNet regularization to deal with high-dimensional gene expression data,
which allows identification of gene markers associated with drug resistance. Lastly, we described an
application of RefDNN in exploring a new candidate drug for liver cancer. As the proposed model can
guarantee good prediction of drug responses to untrained drugs for given gene expression patterns, it
may be of potential benefit in drug repositioning and personalized medicine.

The development of computational models that can predict effective therapeutic strategies based on the genomic
information of a cancer patient is a critical challenge in precision medicine">. Many effective anticancer drugs
have been already developed and indicated for the treatment of cancer, but some patients with the same cancer
types show different drug responses, such as drug resistance, owing to the tumour heterogeneity®. Since it has
become evident that drug responses are strongly affected by genomic alterations in cancer*, numerous studies
have been launched and have generated a large collection of drug response data for diverse cancer cell lines and
various anticancer drugs. The major two studies to date are the Cancer Cell Line Encyclopaedia (CCLE) and
Genomics of Drug Sensitivity in Cancer (GDSC) projects*®. Enormous drug response datasets for almost 250
anticancer drugs across almost 1000 cancer cell lines were generated from these projects. In addition, those data-
sets are integrated with large genomic datasets for the cell lines, allowing the development of numerous compu-
tational models for predicting drug sensitivity based on genomic features of cell lines, as well as for searching for
candidate compounds effective in drug-resistant tumours®~.

Many computational models predict drug response using gene expression profiles and drug molecular data
Wang et al. designed a machine learning model based on the observation that cell lines with similar gene expres-
sion patterns, or drugs with similar chemical properties, will exhibit similar responses'?. The researchers thus
developed a similarity-regularized matrix factorization (SRMF) method and predicted that rapamycin, an mTOR
inhibitor, could be a new therapeutic agent for non-small cell lung cancer!'. Zhang et al. proposed a graph-based
approach using three network datasets, including drug-cell line response data, drug-target interactions, and
protein-protein interactions. The authors integrated the three networks into one united network and applied an
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information-flow-based algorithm to the massive heterogeneous network for the prediction of drug responses®.
These models showed good prediction performance, but it was not easy to obtain interpretable information
related to drug mechanisms or pathways from the trained prediction model. To address this issue, Suphavilai
et al. developed a model, termed Cancer Drug Response prediction using a Recommender System (CaDRReS),
which could learn latent features for cell lines and drugs and demonstrated how to explore drug mechanisms and
drug-pathway associations using the features'’. These models showed good performance, but they are ineffective
to make predictions about untrained new drugs or inexperienced new gene expression patterns, a factor referred
to as the cold-start problem or new user/item problems'.

Deep neural networks (DNNG) are considered a powerful technology in diverse types of biological research'.
For instance, DeepVariant, a universal caller using a DNN, showed superior performance compared to traditional
genomic analysis tools', and DCell presented a novel DNN-based approach for investigation of the molecular
mechanisms underlying associations between genotype and phenotype'®. Considering these results, the appli-
cation of DNNs is expected to exhibit excellent performance in predicting therapeutic effects and investigating
relationships between genomic features and drug resistance.

In the present study, we developed a novel Reference Drug-based Neural Network (RefDNN) model for effec-
tive prediction of anticancer drug response and identification of biomarkers contributing to drug resistance.
RefDNN requires a pair consisting of the molecular structure data of a drug and gene expression profiles meas-
ured before exposure to the drug to predict the unknown drug response. RefDNN exploits a collection of drugs,
called reference drugs, to compute the representations of the given gene expression vector and the drug structure
data for effective prediction of drug response labels, sensitivity or resistance. These calculations, inspired by the
observation that similar chemicals have similar effects, enable us to robustly predict untrained pairs of drugs
and gene expression patterns. RefDNN consists of numerous ElasticNet models for computing representations
of high-dimensional gene expression data and a DNN classifier for predicting drug response labels based on the
representations. The proposed model is trained by two optimization algorithms, Follow-The-Regularized-Leader
(FTRL)" and Adam!$, to effectively manage high-dimensional gene expression data and to investigate biomarkers
for drug resistance. In addition, the Bayesian optimization approach is applied for efficient model tuning®®. We
used the GDSC and CCLE datasets as benchmark sets. The prediction performance of RefDNN was evaluated via
nested cross-validation?’. The proposed DNN model outperformed other machine learning classifiers and several
state-of-the-art drug response prediction models in most comparative experiments. RefDNN also demonstrated
more robust predictions of drug resistance for untrained drugs and cancer types than other machine learning
models. After evaluating the prediction performance, we demonstrated how to identify genomic biomarkers
associated with drug resistance to nilotinib using trained weights of ElasticNets contained in RefDNN. Lastly, we
described an application of RefDNN in identifying a new candidate drug for the treatment of liver cancer.

Results

Description of benchmark datasets. In the present study, we used as benchmarks the GDSC and CCLE
datasets, which were obtained from the Genomics of Drug Sensitivity in Cancer (https://www.cancerrxgene.org)
and Cancer Cell Line Encyclopaedia websites (https://portals.broadinstitute.org/ccle), respectively. The GDSC
dataset (version 17.3) provides the half maximal inhibitory concentration (ICs,) values for 224,202 pairs that
consists of 1,065 cancer cell lines and 251 drugs. We collected a cell line for which gene expression data was avail-
able and a drug with a Compound ID (CID) that could be searched in the PubChem database®' using the drug
name. A CID was used to obtain a canonical simplified molecular-input line-entry system (SMILES) from the
PubChem database. A continuous value of ICs, is converted to a binary value to deal with the task of drug resist-
ance prediction as a binary classification problem?. Specifically, a pair with an ICs, value larger than the reported
maximum screening concentration was categorized into the drug-resistance class and the others were assigned
to the drug-sensitivity class. Our benchmark dataset from GDSC thus contained 120,606 resistance pairs and
69,430 sensitivity pairs consisting of 222 drugs and 983 cell lines. For the CCLE dataset, we exploited the Legacy
Data in the website, which consists of 504 cell lines, 24 drugs, and 11,670 pairs. Since the CCLE dataset does not
include the maximum screening concentration data, we used only 12 drugs shared with the GDSC. Applying the
aforementioned procedure, we obtained 3,402 resistance pairs and 2,322 sensitivity pairs consisting of 12 drugs
and 491 cell lines from the CCLE dataset. In the following experiments, all 222 drugs and the 12 drugs were used
as reference drugs of the GDSC and CCLE datasets, respectively.

Evaluation of prediction performance. RefDNN can be superior to several machine learning models in
the task of predicting drug resistance. We compared RefDNN to five classification models, ElasticNet, Gradient
Boost (GB), K-Nearest Neighbour (KNN), Multilayer Perceptron (MLP), and Random Forest (RF) with respect
to diverse metrics. Since the performance of baseline models depends on their hyperparameters, we exploited the
nested cross-validation method that consists of an inner loop for model selection and an outer loop for model
assessment to ensure fair comparison (Supplementary Fig. S1)?°. Hyperparameter optimization in the inner
loop was conducted using the Bayesian optimization approach'®. The ranges of explored hyperparameters are
enumerated in Supplementary Table S1. The prediction performance was computed by averaging the results of
5-fold cross-validation in the outer loop. We used five metrics, accuracy, precision, recall, flscore, and area under
the receiver operating characteristic curve (AUCROC). Differences in those predictive performances between
RefDNN and each baseline model was evaluated by the Welch’s t-test. The Benjamini-Hochberg procedure were
used for multiple test correction. Figure 1 shows the results of comparative experiments conducted on the GDSC
and CCLE datasets. RefDNN significantly outperformed the three traditional machine learning models includ-
ing KNN, MLP, and ElasticNet classifiers in both datasets. In the cases of the two ensemble models GB and RE,
RefDNN did not outperform them in some metrics, but showed sufficiently high predictive accuracy. The com-
plete experimental results are shown in Supplementary Table S2.
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Figure 1. Evaluation of drug-resistance prediction performance of RefDNN on GDSC and CCLE datasets.

(a) Results on GDSC dataset and (b) Results on CCLE dataset. The predictive power is computed by 5 metrics,
accuracy, AUCROC, precision, recall, and Flscore. A value on each bar is the average of accuracy values in

the nested 5-fold cross-validation. An error bar represents the standard deviation in the cross validation. The
significance of predictive performance differences between RefDNN and others was calculated using the Welch’s
t-test and Benjamini-Hochberg procedure. Single and double asterisk symbols mean p < 0.05 and p < 0.01,
respectively.

We also compared RefDNN to four state-of-the-art drug response prediction models, SRMF!!, Heterogeneous
Network-based Method for Drug-Response Prediction (HNMDRP)?, and CaRDDeS' on the GDSC and CCLE
datasets by means of the AUCROC and the area under the precision recall curve (AUCPR). On the GDSC dataset,
the AUCROC and AUCPR values of RefDNN were 0.891 and 0.932, respectively (Fig. 2a,c). Those accuracies
were significantly higher than that of those state-of-the-art prediction models up to 0.246 and 0.135, respectively
(p <0.01). The p-values were calculated via Welch's t-test and corrected with the Benjamini-Hochberg procedure.
We also confirmed that the AUCROC and AUCPR of RefDNN were higher than the others (0.071-0.287 and
0.042-0.260) on the CCLE dataset (Fig. 2b,d). As we expected, the proposed DNN model could achieve superior
prediction accuracy to existing drug response prediction models not utilizing DNNs.

Robust prediction for untrained drugs and cancer types. RefDNN is a model that overcomes the new
item problem and can robustly predict labels of response for drugs and cancer types on which the model was not
previously trained. We evaluated the robustness through two experiments, leave-one-drug-out cross-validation
(LODOCYV) and leave-one-cancer-type-out cross-validation (LOCOCYV) (Supplementary Fig. S2). In LODOCY,
one drug and corresponding drug-cell line pairs to the drug are used as a test set and the remainder pairs are used
as a training set. In a similar way, in LOCOCYV, one cancer type and corresponding pairs are used for evaluation
and the others are used for training a model. AUCROC and AUCPR values of RefDNN and the previously com-
pared machine learning models are shown in Fig. 3. The complete results from the LODOCV and LOCOCYV are
provided in Supplementary Tables S3 and S4, respectively. We calculated the significance of performance differ-
ences using the Wilcoxon signed-rank test and the Bonferroni correction. RefDNN showed significantly higher
AUCROC and AUCPR values than other machine learning models in most cases (Fig. 3). Although a significant
difference was not observed between RefDNN and KNN in LODOCY, our model showed a high AUCROC value
of over 70% on average. In LOCOCYV, the performance gaps between RefDNN and RF were not statistically sig-
nificant, but RefDNN was a good enough model to show accuracy of 0.85 or higher (Fig. 3¢,d).

RefDNN showed robust predictive performance regardless of the type of cancer (Fig. 3¢,d), but the devi-
ation was large depending on the drug (Fig. 3a,b). To determine which type of drugs the RefDNN was strong
and weak for, we grouped drugs by their target pathways and calculated the average accuracy of each group
(Supplementary Table S5). The top five target pathways for which RefDNN showed an AUCPR of 0.85 or higher
were ABL signalling, RTK signalling, cytoskeleton, hormone-related, and genome integrity pathways. On the
other hand, RefDNN seems to be weak for drugs targeting apoptosis regulation (AUCROC of 0.725) and metab-
olism (AUCROC of 0.7).

Effect of the number of reference drugs. The prediction power of RefDNN depends on the number of
reference drugs because the number is an important hyperparameter for drug and cell line representations. We
formed hypotheses that the higher the number of reference drugs, or the greater the difference in the molecular
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Figure 2. Comparison of the prediction performance of RefDNN with the state-of-the-art prediction models.
(a) Receiver operating characteristic (ROC) curves of 5-fold cross-validation on GDSC dataset, (b) ROC
curves on CCLE dataset, (¢) Precision-Recall curve on GDSC dataset, and (d) Precision-Recall curve on CCLE
dataset. The mean and standard deviation of accuracy of each model are shown in the plot legend. All p-values
computed by Welch’s t-test were less than 0.05.

structures of reference drugs, the richer the representation spaces for drugs and cell lines would be. To vali-
date the relationship between the predictive ability and the number of reference drugs, we conducted 5-fold
cross-validation over the various numbers of references (50, 100, 150, and 200) (Supplementary Fig. S3). For each
number of reference drugs, we selected 100 subsets of drugs randomly as reference drugs and evaluated three
metrics, accuracy, AUCROC, and AUCPR based on the 100 reference drug sets. As we thought, as the number
increased, the performance increased proportionally. The expected accuracy of RefDNN was confirmed to be
80% when the number of reference drugs was at least 150. To verify the second hypothesis, for each number, we
explored the special subset in which drugs had maximally different molecular structures from each other among
100 subsets and checked the performance of that subset. We found that these maximally different subsets were
able to ensure higher than average accuracy. Based on these results, it appears to be necessary to have at least 150
reference drugs with different molecular structures to guarantee good performance of RefDNN.

Identification of biomarkers for drug resistance. RefDNN can be utilized to identify a biomarker gene
related to drug resistance owing to its unique neural network architecture combined with ElasticNet. RefDNN has
multiple ElasticNet classifiers for computing representations of a high-dimensional gene expression vector. Each
ElasticNet classifier is trained to learn drug resistance labels of each reference drug one-to-one and to reduce the
prediction error of RefDNN. The trained ElasticNet models can prioritize genes depending on the degree to which
genes are important in predicting drug resistance to corresponding reference drugs by 11 and 12 regularization®
(Fig. 4a). Unlike using the loss of ElasticNet alone, RefDNN updates the coeflicients of ElasticNet using not only
ElasticNet loss but also DNN loss. We expect that these multiple losses force ElasticNet models into identifying more
effective biomarkers associated with drug resistance using the additional information backpropagated from DNN
loss. To verify the power of biomarker identification of RefDNN, we collected the top 10 genes for each reference
drug with the large absolute values of coefficients in corresponding ElasticNet model trained on the GDSC dataset
as biomarker candidates (Supplementary Table S6) and investigated the 10 candidate genes associated with drug
resistance to nilotinib, which is one of the shared drugs between the GDSC and CCLE datasets. Figure 4b shows the
top 10 genes and their differentially expressed patterns between the groups resistant and sensitive to nilotinib in the
GDSC datasets. Among the 10 candidates for drug resistance biomarkers, we identified 8 significantly differentially
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Figure 3. Prediction performance of RefDNN for untrained drugs and cancer types. (a) Box plots for
AUCROC values of RefDNN and baseline models in LODOCYV; (b) Box plots of AUCPR values in LODOCYV;
(c) Box plots for AUCROC values in LOCOCYV; (d) Box plots of AUCPR values in LOCOCYV. Differences

in predictive performances between RefDNN and other machine learning models were assessed using the
Wilcoxon signed-rank test and the Bonferroni correction. Single and double asterisk symbols mean p < 0.05
and p <0.01, respectively.

expressed genes (DEGs) between different nilotinib responses using the Mann-Whitney U test. To validate the utility
of those 8 DEGs to determine drug resistance to nilotinib, we conducted additional differential expression analysis
using the CCLE dataset. We divided CCLE samples into high and low expression groups by means of each DEG and
evaluated the differences of natural logarithm values of ICs, between groups using the Mann-Whitney U test and the
Benjamini-Hochberg procedure (Fig. 4c). Our results identified 6 genes, MYOE, UBC, NQO1, RACK1, LGALS3,
and RPS23 that showed consistent differentially expressed patterns with GDSC in the CCLE dataset. Based on these
results, high expression patterns of MYOE, UBC, NQO1, and LGALS3 and low expression patterns of RACK1 and
RPS23 may be related to the causes of nilotinib resistance.

Application for drug repositioning. RefDNN showed good predictive performance for untrained drugs in
LODOCYV experiments (Fig. 3a,b). Using RefDNN trained on the GDSC dataset, it is possible to explore a new
candidate anticancer drug that was not tested in the GDSC project. Hepatocellular carcinoma (HCC) is one of the
most prevalent cancers in the world and sorafenib, a multi-targeted kinase inhibitor, is the only currently approved
chemotherapeutic agent for HCC?. Since sorafenib has only a modest effect, identifying an alternative drug for
HCC remains a challenging task?. To address this issue, we collected data for 89 target-based drugs approved by
the US Food and Drug Administration (FDA) from the study of Sun et al.* and analysed the drug sensitivity of
37 agents that were not tested in the GDSC project (Supplementary Tables S7). In this experiment, we considered
a drug to which a cell line is not resistant as a sensitive and effective drug to the cell line. Using the dataset of solid
cancer cell lines in the GDSC, we predicted whether the 37 anticancer drugs could be effective in 17 HCC cell lines
of the GDSC. Figure 5 shows 16 target-based drugs that were predicted to be sensitive in at least one HCC cell line.
Among the identified drugs, 8 drugs (azacitidine?, carfilzomib®, everolimus®, fulvestrant®, goserelin®!, lanreo-
tide*?, romidepsin®, and temsirolimus®) have been studied for treatment of HCC. An in vitro study reported that
azacitidine, a nucleoside metabolic inhibitor, induced cell death in HuH?7 cell lines and the cytotoxicity could be
increased by drug combination with alendronate”. A recent study found that carfilzomib, a proteasome inhibitor
indicated for treatment of multiple myeloma, could induce apoptosis in Hep3B cell lines and improve the drug
sensitivity to sorafenib in HCC?. Romidepsin is a histone deacetylase inhibitor indicated for treatment of refractory
peripheral cutaneous T-cell lymphoma. An in vivo study observed that romidepsin was involved in G2/M phase cell
cycle arrest and promoted apoptosis in HuH?7 cell lines**. These experimental results support our claim that RefDNN
can be useful in drug repositioning and the other 8 drugs (abarelix, anastrozole, decitabine, estramustine, fuloxyme-
sterone, hydroxyurea, methyltestosterone, porfimer) may be novel therapeutic agents for liver cancer.

Discussion

In the present study, we propose a novel DNN model, termed RefDNN, for the accurate prediction of anticancer
drug responses based on gene expression profiles and chemical structure information. The proposed prediction
model showed higher predictive accuracy, equal or greater than that of the existing computational models (Figs. 1
and 2). We also confirmed that RefDNN was able to predict drug resistance robustly for untrained drugs and
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Figure 4. Identification and validation of biomarkers related to drug resistance. (a) Procedure of identification
of biomarker candidates using RefDNN; (b) Top 10 candidate genes associated with nilotinib resistance and
their expression patterns in cell lines resistant (red) and sensitive (blue) to nilotinib in GDSC dataset; (c)
Validation of the relationship between ICs, of nilotinib and 8 differentially expressed candidate genes (MYOF,
UBC, GNAS, NQO1, RACK1, FAU, LGALS3, and RPS23) in GDSC dataset using CCLE dataset. For each gene,
a set of cell lines in CCLE dataset was divided into high and low expression groups by means of gene expression
levels; All p-values were computed using the Mann-Whitney U test and corrected by the Benjamini-Hochberg
procedure. Single and double asterisk symbols mean p < 0.05 and p < 0.01, respectively.

cancer types (Fig. 3). Our DNN model has a special architecture containing multiple ElasticNet classifiers, which
allows us to identify genomic biomarkers contributing to drug resistance (Fig. 4). These results taken together
suggest that the proposed model can be useful in numerous areas of therapeutic research, such as drug reposi-
tioning and personalized medicine.

RefDNN has five hyperparameters affecting prediction performance (Supplementary Tables S1), and these
can be automatically tuned using the Bayesian optimization method. However, the optimization method does
not always find desired optimal values, because the surrogate model of Bayesian optimization is sensitive to its
parameters, such as the acquisition functions and the restricted range of each hyperparameter. In the present
study, the configurations of the surrogate model were determined heuristically. A hyperparameter tuning job
should be performed with a sufficiently large number of experiments for elevating the performance of RefDNN.

We demonstrated that the proposed model was able to overcome the cold-start problem and make good
predictions for new drug and new cancer type data using reference drug-based representation method. Owing
to its distinguishing features from existing models, RefDNN can be useful in a variety of tasks for the devel-
opment of new target therapies. However, the proposed model has a limitation that it cannot be used for
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Figure 5. Prediction of drug sensitivity to FDA-approved anticancer agents of HCC cell lines. Rows and
columns are anticancer drugs and HCC cell lines, respectively. The probability of sensitivity is computed by
1-probability of resistance. A score higher than 0.5 means that the corresponding row drug may be a novel
repositioned drug for treatment of the corresponding column cell line.

predicting protein-based therapies such as immunotherapy because their canonical SMILES are too long to com-
pute finger-prints using PaDEL. In the future, we therefore plan to develop an upgraded model that can also
predict the responses of those macromolecular drugs.

Methods

Pre-processing of gene expression data. Gene expression data from both the GDSC and CCLE were
normalized using Robust Multi-array Average® and the probe IDs were mapped to Entrez Gene IDs* via map-
ping files GPL13667 and GPL15308 downloaded from the Gene Expression Omnibus database, resulting in
17,780 and 18,926 genes from the GDSC and CCLE, respectively.

Drug molecular structure similarity profile. RefDNN exploits structure similarity profiles (SSPs) based
on user-defined reference drugs, instead of plain molecular fingerprints data, to reflect the fact that similar drugs
have similar drug responses'?. An SSP is a vector containing a number of Tanimoto coefficient values computed
through comparison with binary fingerprints of reference drugs. In this study, a fingerprint of a drug was defined
as a binary vector of length 3,072 consisting of Fingerprinter, ExtendedFingerprinter, and GraphOnlyFingerPrinter
computed by PaDEL descriptor (version 2.21)%. For M reference drugs, the SSP vector s; ofi-th drug is computed
by:

s = (Tc(d, 1), Tc(d, 1), ..., Te(d, ry)) )

In Eq. (1), d, is the fingerprint of i-th drug, r, is the fingerprint of j-th reference drug, and Tc is the Tanimoto coef-
ficient quantifying the ratio of the number of features shared by two drugs to the number of their unique features
in their molecular fingerprints®. Since the Tanimoto value lies on the closed unit interval of the real line
(0 < Te(d;, r;) < 1), an SSP vector is used for weighting information from reference drugs for a target drug.

RefDNN. RefDNN consists of one deep feedforward neural network (DNN) classifier and numerous
ElasticNet logistic regressors (Fig. 6). For a given cell line, each ElasticNet model first predicts whether the cell
line is resistant to each reference drug or not. A DNN classifier integrates the results of those ElasticNet models
using an SSP vector of a target drug and then decides whether the cell line is resistant to the target drug or not.
This architecture is based on an idea derived from the observation that structurally similar drugs tend to exhibit
similar drug responses.
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Figure 6. Overview of RefDNN. RefDNN consists of multiple ElasticNet classifiers trained by predicting

the drug resistance labels of an input cell line to M reference drugs for generating a representation of gene
expression data and a deep feedforward neural network classifier trained by taking two data representations of
drug fingerprint data and cell line’s gene expression data and predicting the resistance of an input drug in the
cell line. The drug representation is a drug structure similarity profile computed by the Tanimoto coeflicient
between fingerprints of an input and reference drugs. Whole weights of ElasticNet and DNN classifiers in
RefDNN are updated by the gradient of total loss defined by the sum of ElasticNet loss and DNN loss.

To describe mathematically the proposed model, we define some notations. Let D = {(x;, d,, yi)}fi | beatrain-
ing dataset where x;, d;, and y are a gene expression vector of an input cell-line, a fingerprint of a target drug, and
binary response label for the i-th tuple. For M reference drugs, a collection of ElasticNet classifiers computes a
probability vector z; with M lengths.

z, = (o(w'x), o(wlx), ..., o(wx,)

()

In Eq. (2), w; is the probability of the input cell line represented by x; is resistant to the j-th reference drug and o(x)
is the sigmoid function1/(1 + e™*). A bias term is omitted for the convenience of description.

The probability vector z; is weighted by an SSP vector s; of a target drug d; and used as an input vector of a
DNN classifier that makes a final decision whether the input cell-line x; is resistant to the target drug d,. The
weighted probability vector Z; is computed by the element-wise vector multiplication, called the Hadamard
product.

2, =2z,0s = (U(wjrxl-) x Te(d,, rj))jil (3)

A feedforward neural network of RefDNN consists of three layers including two hidden layers k", h® and
one output layer . The two hidden layers contain equal numbers of units and perform a linear transformation,
batch normalization BN, and nonlinear activation sequentially. Since the number of hidden units is one of the
hyperparameters of RefDNN, an optimal value will be chosen automatically by the Bayesian optimization
algorithm.

Y = o(BN(W/2) (4)

h® = o(BN(W/hV)) (5)

The final output layer j has linear transformation and nonlinear activation and calculates the probability of
drug resistance.
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A loss of RefDNN is defined by the sum of losses of multiple ElasticNet models and loss of DNN classifier. A
loss of DNN is defined by binary cross entropy and is always larger than zero.

N

Loss = - L(yi,)?i)
DNN ; 7

In the Eq. (7), L(y, §) = y logj + (1 — y)log(1 — 7)is a binary cross entropy.

On the other hands, a loss of ElasticNet can be zero depending on a given target drug d,. If a target drug is one
of M reference drugs, then a loss of ElasticNet is computed in the ElasticNet model for the reference drug by
binary cross entropy. If a target drug is not any of the reference drugs, then a loss of ElasticNet will be zero.

N M
LOSSElasticNet = _Zzld,:ij(yi’ Z‘j)
i=1j=1 (8)

In the Eq. (8), z; = a(ijxi) defined in the Eq. (2) and 1, _, is an indicator function that has 1 if a target drug d;
i=Tj

is equal to the j-th reference drug r; otherwise 0.

Training the ElasticNet and DNN classifiers is performed by two gradient-based optimization algorithms,
FTRL and Adam optimizers. As a general gradient-based optimizer fails to produce a zero coeflicient for weights,
the FTRL optimizer was developed to overcome it'”. Using the FTRL optimization, we can deal with the
high-dimensional gene expression data and investigate the association between gene expression levels and drug
resistance. Weight vectors of M ElasticNet classifiers {wj}j.w: | are optimized by FTRL and weight matrices of DNN
classifier W, W;, and w,,, ., are updated via the Adam optimizer for rapid convergence'®.

All weights in RefDNN are initialized by Glorot uniform initializer®’. To prevent overfitting, we apportion a
training set into training and validation sets with an 80-20 split and utilize early stopping*'.

RefDNN is implemented by Python3 and Tensorflow1.12. The source code is freely available on GitHub at
https://github.com/mathcom/RefDNN.

Bayesian optimization and nested cross-validation. RefDNN has five hyperparameters includ-
ing numbers of units of hidden layers of the DNN classifier, learning rates for the FTRL and Adam optimizers,
and 11 and 12 regularization strength of the FTRL optimizer. To search the optimal values of these parameters,
we exploited the Bayesian optimization implemented in scikit-optimize (https://scikit-optimize.github.io/).
We defined an objective function for hyperparameter optimization by the prediction accuracy of 3-fold
cross-validation and specified the range of each hyperparameter in Supplementary Table S1. In our hyperparam-
eter tuning job, the acquisition and covariance functions were set as Expected Improvement (EI) with £ =0.01
and Matern 5/2 kernel, respectively'®#2,

We allowed the Bayesian search algorithm to explore 20 combinations of the five hyperparameters of RefDNN
and to select the best combination through the nested k-fold cross-validation. The nested k-fold cross-validation
consists of two cross-validation loops, an outer loop for model assessment and an inner loop for model param-
eter selection. The nested k-fold cross validation splits the whole dataset into training and test sets via k-fold
cross-validation for evaluating test accuracy, and another k-fold cross-validation was applied to the training data-
set to evaluate validation accuracy and determine optimal parameter values (Supplementary Fig. S1).
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