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Abstract

Studies into the genetic origins of tumor cell chemoactivity pose significant challenges to bioinformatic mining efforts.
Connections between measures of gene expression and chemoactivity have the potential to identify clinical biomarkers of
compound response, cellular pathways important to efficacy and potential toxicities; all vital to anticancer drug
development. An investigation has been conducted that jointly explores tumor-cell constitutive NCI60 gene expression
profiles and small-molecule NCI60 growth inhibition chemoactivity profiles, viewed from novel applications of self-
organizing maps (SOMs) and pathway-centric analyses of gene expressions, to identify subsets of over- and under-
expressed pathway genes that discriminate chemo-sensitive and chemo-insensitive tumor cell types. Linear Discriminant
Analysis (LDA) is used to quantify the accuracy of discriminating genes to predict tumor cell chemoactivity. LDA results find
15% higher prediction accuracies, using ,30% fewer genes, for pathway-derived discriminating genes when compared to
genes derived using conventional gene expression-chemoactivity correlations. The proposed pathway-centric data mining
procedure was used to derive discriminating genes for ten well-known compounds. Discriminating genes were further
evaluated using gene set enrichment analysis (GSEA) to reveal a cellular genetic landscape, comprised of small numbers of
key over and under expressed on- and off-target pathway genes, as important for a compound’s tumor cell chemoactivity.
Literature-based validations are provided as support for chemo-important pathways derived from this procedure.
Qualitatively similar results are found when using gene expression measurements derived from different microarray
platforms. The data used in this analysis is available at http://pubchem.ncbi.nlm.nih.gov/and http://www.ncbi.nlm.nih.gov/
projects/geo (GPL96, GSE32474).
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Introduction

Anticancer drug discovery continues to be a task of paramount

importance [1] and enormous scientific challenge [2]. Faced with

clinical findings that the expected promise of on-target therapies

remains only partially fulfilled [3], strategies for improvement have

motivated the emergence of considerable publicly accessible,

information-rich data [4,5] and data mining strategies [6]. Clinical

and basic science findings also suggest that therapeutic efficacy

may arise from multiple factors [7] such as gene expression levels,

mutation status and single nucleotide polymorphisms, each of

which may potentially involve numerous, on-target and off-target

molecules [8]. While the importance of these diverse factors on

compound efficacy continues to be actively pursued [9], the

challenge of linking measures of on- and off-target gene

expressions to small molecule screening chemoactivity continues

to hold promise for identifying cellular pathways important to

efficacy [10], clinical biomarkers of compound response [11,12]

and potential toxicities [13,14]; all vital to anticancer drug

discovery.

Chemoactivity studies have fostered publically available screen-

ing databases such as PubChem [4,13,14] and ToxRefDB [15,16].

The PubChem database includes results from the National Cancer

Institute’s in vitro tumor cell screen (referred to as the NCI60 [17])

for potential anticancer agents. Historically, NCI60 screening

measurements of growth inhibition (referred to as GI50 measures)

have yielded valuable insights into a compound’s cellular

mechanism of action [18–20], as well as inspiring the development

and validation of computational and statistical data mining tools

[21–24]. Cell-based assays extend on-target, molecular screening

results by also including roles for off-target effectors in a cellular

response. Oftentimes cellular screening efforts are accompanied by

baseline gene expression measurements. Prior correlative studies of

chemoactivity and gene expressions have, however, found

relatively few meaningful correlations [21,25], and inspired the

proposal of more elaborate computational means of identifying

compound-target associations [26]. A specific limitation of direct

correlative means to identify a putative target appears in Nakatsu

et al. [18] where a panel of 45 human tumor cell lines was used to

identify genes important for the chemoactivity of 53 anticancer

drugs. While gene profile clustering was able to identify

compounds sharing a common putative mode of action, explicit

correlation of chemoactivity with gene expressions did not identify

putative targets. Their study found that slightly more than two

dozen gene expressions were positively correlated with cellular

growth inhibition from the camptothecin (CPT) analog, SN-38.

None of these genes included the CPT target topoisomerase I.

This observation was repeated for the tubulin targeting agent

paclitaxel, where its set of 22 chemosensitive correlated gene
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expressions excluded members of the tubulin family. These results

serve to underscore the potential limitations of using chemoactiv-

ity-gene expression correlations, directly, to identify chemo-

important genes.

A promising complement to studying relationships between

cellular chemoactivity and gene expressions utilizes annotations of

genes into pathways. Pathways, while often incompletely estab-

lished, offer an opportunity to explore cassettes of genes within

annotated pathways for the influence of their gene expressions on

biological responses. Currently large numbers of pathway anno-

tations, comprised, typically, of tens to hundreds of genes, are

available for gene-based studies of public cellular chemoactivity

databases. Supporting these pathway annotations are software

tools for analyzing pathway genes (IPA(IngenuityR Systems www.

ingenuity.com), GSEA [27,28] and DAVID [29]). At first glance,

in silico mining strategies for associating pathways and their

component gene expressions to cellular chemoactivity appear to

represent an additional complication to the already challenging

issues resulting from the roles of on-target and off-target effectors.

Alternatively, pathway-centric approaches have been used previ-

ously in conjunction with cellular screening data to explore

correlations between gene products and pathways for purposes of

identifying interesting cancer targets [23]. Their pathway-centric

approach found a general tendency for gene expression to become

less coherent in tumor versus normal tissues, especially for

signaling pathways, with pathways containing known cancer genes

(i.e., ‘‘cancer pathways’’) amongst the least coherent pathways; a

result not apparent from direct examinations of individual gene

expressions [23,30]. These results suggest that pathway-centric

data mining strategies may provide a new alternative to that of

exploring direct associations between pathway gene expressions

and cellular chemoactivity.

The analysis presented here represents a novel data mining

strategy, developed from a pathway-centric viewpoint, to examine

relationships between cellular gene expressions and cellular

chemoactivity. The results of applying this method to the NCI60

databases will establish the existence of complex genetic

landscapes, comprised of on- and off- target pathway genes as

important to cellular chemoactivity.

Methods

A previously published method [23,30], which uses conven-

tional correlative chemoactivity-gene expression measures, has

been modified to determine compound specific pathway scores (H-

scores as described below) for a small set of test compounds. The

best H-scores for each test compound identify important pathways

and ‘discriminating’ genes from these pathways can be used for

further analysis. This pathway-centric approach tends to favor

instances where many pathway genes are coherently either over or

under expressed, versus the conventional method that typically

explores only the strongest correlations between gene expressions

and cellular chemoactivity.

The analytic workflow begins by establishing a globally defined

reference database for chemoactivity (referred to hereafter as the

SOM GI50 reference database), followed by generation of

pathway scores (H-scores) assigned to this reference database.

The SOM GI50 reference database and its associated assignment

of pathway H-scores provides a global perspective for viewing all

available chemoactivity to pathway gene associations, and for

selecting gene subsets that discriminate chemo-sensitive from

chemo-insensitive tumor cell responses. As will be shown in the

RESULTS, the conventional method of selecting only the most

extreme pairwise gene expression-chemoactivity correlations

typically yields discriminating genes different from this pathway-

centric approach.

A summary of the analytic work flow involves:

a. Creation of a reference database of NCI60 chemoactivity

measures for screened small molecules

b. Creation of a reference database of NCI60 gene expression

profiles

c. Assignment of pathway scores (H-scores) to the NCI60

chemoactivity reference database

d. Selection of discriminating genes for each test compound

e. Using Gene Set Enrichment Analysis (GSEA) of discriminat-

ing genes to provide statistical measures of pathway

importance.

f. Providing literature-based support for GSEA pathways, their

associated gene expressions and chemoactivity for each test

compound. These associations will be referred to as ‘pathway-

gene chemoactivity’ associations.

The following sections will provide details related to this analytic

workflow.

Creation of a Reference Database of NCI60 Chemoactivity
Measures for Screened Small Molecules

NCI60 GI50 values are used to define in vitro tumor cell

chemoactivity for compounds screened by the Developmental

Therapeutics Program (DTP). The complete GI50 data set is

available in the PubChem repository [4]. Data filtering selects only

GI50 profiles where more than 40 tumor cell lines reported values

and excludes profiles with a coefficient of variation of less than

0.05 (i.e. minimal differential sensitivity, usually due to a

compound’s insensitivity or pan cytotoxicity). GI50 records for

over 60 k compounds remained after this filtering step. These

GI50 records were normalized, first across tumor cell type, to

remove any systematic biases due to individual tumor cell

sensitivity, then within each record, to generate a GI50 z-score

for each compound. These filtered and normalized records define

a compound’s NCI60 GI50 profile. Each of these chemoactivity

profiles can be used for correlative studies against gene expres-

sions. Rather than develop a strategy utilizing all ,60 k

chemoactivity profiles, SOMs (Self-Organizing Maps [31]) were

used to organize the filtered GI50 profiles into 1998 clusters (SOM

map dimensions of 54X37). A more detailed description of SOMs

applied to the NCI60 data can be found in Rabow et al. [24].

Noteworthy benefits of using SOM’s include it’s a) data reduction

feature (60 k down to 2 k chemoactivity profiles, b) nonhierarchi-

cal clustering methodology, c) ability to analyze noisy data often

with missing values and d) convenience for displaying clustering

results (www.spheroid.ncifcrf.gov). In the calculations to follow,

each SOM cluster will be characterized by a GI50 profile that

most represents the growth inhibition for its cluster members.

Each SOM cluster’s representative profile (also called a codebook

vector in SOM nomenclature) will be referred to throughout the

text as the SOM GI50 profile. Gene expressions correlations will

be referenced to each SOM GI50 profile. Instances where raw

GI50 measures are used for gene correlations will be clearly

identified.

Creation of a Reference Database of NCI60 Gene
Expression Profiles

Constitutive(baseline) gene expressions for untreated NCI60

tumor cells were downloaded as GEO GPL96 [32]. These data

were generated using the Affymetrix U133A chip. Earlier NCI60

Analysis of Gene Expression and Chemoactivity
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expression data exists using the U95A Affymetrix chip. An average

correlation coefficient of 0.82+/20.21 was found when comparing

NCI60 constitutive gene expressions between the U133A and

U95A data sets. The U133A data set will be used for this analysis

because it reported more expression values than the U95A data set

and is in reasonable agreement with the U95A expression profiles.

The U133A gene expression dataset consists of 22,282 probes,

with 16,784 unique HUGO identifiers, that were reduced to 2,475

genes having a coefficient of variation greater than 0.05 and

sharing at least one other gene in a curated pathway.

The results derived from the U133A gene expressions will be

compared with those obtained from the recently released NCI60

baseline expressions measured using the U133Plus platform

(GSE32474). This dataset consists of 54,675 probes, which

represent 21,049 unique HUGO identifiers. Selection of gene

expressions with a coefficient of variation greater than 0.05

reduced this set to 5,761 genes, with 65% (n = 3,721) of these genes

appearing at least jointly in these curated pathways. Pathway

gene-chemoactivity associations determined from the U133Plus

gene expressions will be compared to those obtained when using

the U133A gene expressions. The results will show that gene

expressions from both platforms generally yield qualitatively

similar results, while also revealing additional details about

associations between gene expressions and chemoactivity that

were not indicated with the U133A gene expressions. The analysis

will report mainly on the results derived from the U133A gene

expressions. Each test compound’s descriptive narrative will,

however, include brief summaries and comparisons of the

U133A and U133Plus-derived results.

Assignment of Pathway Scores (H-scores) to the NCI60
Chemoactivity Reference Database

The procedure to assign pathway scores uses a modification to a

previously published pathway-centric approach [23,30,33]. The

details of this process are: First; NCI60 constitutive genes are

assigned to a pathway using GO, KEGG or Biocarta definitions.

Only pathways having at least two NCI60 gene expression profiles

were retained; yielding a total of 2160 pathways. Second; Assign

pathway scores (H-scores) to each reference SOM GI50 node.

This process consists of four steps; a) Generate correlations for all

gene expression profiles to all SOM GI50 profiles. This step yields

199862547 correlations. b) Rank order the correlation values

(n = 2547) for each GI50 SOM profile. c) For all pathways and

each GI50 SOM profile identify the ranking of genes contained

and excluded from a pathway. d) Apply a Kruskal-Wallis rank sum

procedure to calculate a statistic (referred to as an H-score) as a

measure of the non-random ranking of within versus excluded

pathway genes. A schematic of the steps involved in calculating H-

scores appears below in Figure 1. A more detailed description of

calculating H-scores can be found in the Data and Methods

section of Huang et al. [23]. The java code for H-score calculations

and the output files are available upon request.

The underlying distribution of correlation values for gene

expressions referenced to the test compound’s SOM GI50 profile

is normally distributed within the 5 and 95 percentile range (i.e.

linearity in a normal distribution plot, normplot in MATLAB,

across the p. = 0.05 to p, = 0.95 range). In addition, the H-

scores derived from these correlations are also normally distributed

within the 5 to 95 percentile range. The highest fitness scores

correspond to cases where the pathway gene expressions are

concordantly strongly correlated with the reference SOM GI50

profile. These pathway fitness scores and their most correlated

pathway genes occupy the tails of their respective distributions.

Correlation values for non-pathway genes are scattered through-

out the distribution of all correlations. The rank sum Kruskal-

Wallis statistic is well-suited to identify pathways with gene

expression correlations that are not randomly scattered through-

out the overall distribution.

Pathway H-scores can be projected on to the GI50 SOM for

inspecting regions of possible pathway-chemoactivity associations.

The examples in Figure 2 project H-scores for the GO:Protea-

some pathway (GO:0005839) and the GO:binding pathway

(GO:0005488). The GO:proteasome pathway finds the best H-

scores to be confined to the lower left SOM region, a region which

includes the chemoactivity profile for camptothecin (CPT). The

best H-scores for the GO:binding pathway appear as a downward

facing horseshoe at the middle left region of the SOM. Each of

these SOM regions includes screened compounds that would be

hypothesized to derive their chemoactivity from roles in each

respective pathway. It should be emphasized that the pathway H-

scores can also be derived for each of the ,60 k NCI60

chemoactivity profiles; rather than using the SOM GI50 profiles

of the cluster containing each compound. The results will find that

the topmost H-scores derived from either procedure yield similar

sets of chemo-important pathways.

H-scores provide measures of importance for each pathway on a

test compound’s chemoactivity. Since pathway H-scores are based

on correlations between chemoactivity and gene expression,

variations in pathway scores will depend on the choice of

chemoactivity profile. The options available here include the

SOM GI50 profile for the cluster containing the test compound, or

the conventional raw GI50 profile of the test compound. To

explore the overlap between H-scores derived from each choice of

chemoactivity profile, a simulation was conducted consisting of

randomly selecting 100 SOM GI50 nodes, and from each node

randomly selecting 20 raw compound chemoactivity profiles. For

each simulation, the topmost H-scores were determined using each

of these 20 raw chemoactivity profiles and compared to the

topmost H-scores obtained using the selected node’s GI50 SOM

profile. These results find a mean fractional overlap between

topmost scoring pathways derived from individual or SOM-based

chemoactivity of 0.73 with a standard deviation of 0.15. This

relatively high concordance of chemo-important pathways sup-

ports either choice of chemoactivity profile. While this choice may

depend on a variety of user-defined reasons, selecting the SOM

GI50 chemoactivity profile offers a number of advantages. Global

surveys are more easily completed when using the SOM-based

data reduction and organization features. Furthermore, each

SOM GI50 chemoactivity profile represents its cluster member’s

average cellular response, thus avoiding difficult questions about

whether subtle differences tumor cell response arise from

experimental noise or real biological differences. Finding nearly

L of the chemo-important pathways in common, when derived

from either measure of chemoactivity, suggests that the group

average response captures much of the cellular response shared by

its cluster members. The robustness of finding many common

pathways may also reflect the use of many correlation values when

calculating each H-score, which tends to average out subtle

differences between cellular responses from compounds with

similar chemoactivity profiles. Based on this result, and the earlier

cited advantages of using SOMs for data clustering, the pathway

analysis to follow will be based on using SOM GI50 chemoactivity

profiles when calculating H-scores.

Selection of Discriminating Genes
Discriminating genes are derived for each test compound. The

goal is to identify a minimal set of gene expression profiles that

separate chemo-sensitive from chemo-insensitive tumor cells. The

Analysis of Gene Expression and Chemoactivity
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Figure 1. Schematic for calculating H-scores. For each pathway, P, select genes in P (ovals at left) and not in P (squares in middle). Calculate a
Pearson correlation coefficient between all gene expressions and each SOM GI50 profile (designated as ‘drug’ in the central square). Use a Kruskal-
Wallis(K-W) statistic to determine if the rankings of the pathway genes (ovals at left) versus non-pathway genes (squares in the middle) are
significantly skewed towards extreme values. The H-score for each pathway is derived from the K-W statistic. Cases where the average of correlations
associated with pathway genes is greater than the average of correlations for non-pathway genes characterize positive H-scores. Positive and
significant (p,0.05) H-scores reflect pathways with coordinated (as opposed to random) gene expression-chemoactivity correlations. H-scores for
each pathway (n = 2160) are determined for all SOM GI50 profiles (n = 1998).
doi:10.1371/journal.pone.0044631.g001

Figure 2. SOM GI50 projection of H-scores for the GO:proteasome pathway (GO:0005839, left panel) and the GO:binding pathway
(GO:0005488, right panel). The SOM GI50 is represented as a 2 dimensional map of 54 rows by 37 columns, corresponding to 1998 clusters.
Pathway H-scores are projected spectrally on the SOM GI50 (red: best H-score, blue: worst H-score). The lower left region of the leftmost GI50 SOM
has the cluster containing camptothecin (CPT). This corresponds to the node with the highest H-score for the GO:proteasome pathway. The
GO:binding pathway consists of genes associated primarily with organic acid transport, particularly into the mitochondrion. The majority of NCI60
screened compounds associated with the GO:0005488 SOM GI50 nodes having the highest H-scores contain multiple carboxylate groups.
doi:10.1371/journal.pone.0044631.g002
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process begins by collecting all H-scores referenced to the GI50

SOM node containing each test compound. Gene expression

profiles from pathways within the topmost 10th percentile of H-

scores are collected and filtered to include only gene expressions

significantly (p,0.05) correlated with the test compound’s cellular

chemoactivity. Selection of discriminating genes involves trimming

this pathway-derived starting set of genes into four response

classes:

over expressed/insensitive under expressed/sensitive

under expressed/insensitive over expressed/sensitive

Data trimming eliminates pathway genes with weak correlations

to chemoactivity and tumor cells that lack strongly differential

chemoactivity responses. A two-step iterative application of a

Student’s t-test is used for data trimming. Figure 3 provides a

sample illustration of this trimming process. The initial pathway-

derived, filtered (p,0.05), dataset is ordered from left to right

according to insensitive or sensitive chemoactivity, and top to

bottom according to correlation strength between gene expression

and chemoactivity (top most negatively correlated, bottom most

positively correlated). The top left panel displays this ordered data,

while the top right panel displays the ordered SOM GI50

chemoactivity profile, where negative and positive chemoactivity

define insensitive and sensitive tumor cells, respectively. In this test

case there were 68 pathway genes in the topmost pathway H-

scores, each significantly correlated with the reference chemoac-

tivity profile. For each iteration step a Student’s t-test is performed

between the gene expressions in the sensitive versus insensitive

tumor cells. Only genes with a significant (p,0.05) difference in

expression between these tumor cell groups are accepted. These

accepted genes are then subjected to a Student’s t-test based on

groupings determined by over or under gene expression within the

sensitive and insensitive tumor cells. Here tumor cells lacking a

significant difference between over and under expressed genes are

excluded from the next iteration. Iterations of this trimming

process are terminated when all members of each groups are

statistically separable in the row (gene expression) and column

(cellular chemoactivity) dimensions. In this example, the initial

gene set is reduced to 48 genes and 33 tumor cells (middle left

panel). The middle right and lower left panels display, respectively,

the differential in group values for chemoactivity (sensitive/

insensitive) and gene expression (over/under). The lower right

panel displays the gene-gene correlations for the final set of

discriminating genes.

The possibility of false positives might be expected when using a

nominal p-value threshold of 0.05 for the initial selection of

candidate discriminating genes. The subsequent steps to reduce

these candidate genes to discriminating genes uses a t-statistic to test

whether the sensitive/insensitive and the over/under expressed

classes are statistically different. These iterative t-tests have p-values

well below the nominal p-value, typically smaller than 10-6.

Perturbation simulations based on random shuffling of discriminat-

ing gene expression values confirms the likelihood of a false positive

event to be four to five orders of magnitude less than the initial

nominal p-value of 0.05. This result indicates that significance values

separating the four expression/sensitivity classifications are well

below the nominal threshold used for their initial selection and not

likely to suffer from false positives.

Linear Discriminant Analysis (LDA) for Predicting
Chemoactivity from Gene Expression

LDA can be used to assess how well discriminating genes

achieve the desired goal of separating chemo-sensitive from

chemo-insensitive tumor cells. A Fisher’s Linear Discriminant

Analysis (DiscriminantClassification.fit Matlab 2011b) was used to

determine chemoactivity prediction accuracy based on discrimi-

nating gene expressions. Classification accuracy is obtained by

cross-validation using the k-fold procedure, which is based on

models trained on in-fold observations to predict response for out-

of-fold observations. Here cross validation was conducted using 5

folds. In this case, every training fold uses roughly 4/5 of data and

every test fold uses roughly 1/5 of data. Model results are

successively obtained based on excluding the first, second, third,

fourth and fifth 1/5 of the dataset. In short, prediction accuracy

for each observation is computed by using the model trained

without this portion of the data. The reported accuracies represent

the consensus score for the 5-fold cross validation models. LDA

prediction accuracies will be compared between discriminating

genes derived from pathway H-scores versus derived from raw

correlations. The effects of data trimming on prediction accuracies

will also be assessed using LDA.

GSEA
An average of 32 (+/29) pathways (n = 1998 nodes) are found

in the topmost 10th percentile of H-scores for each SOM node,

with an average of 94(+/243) pathway genes significantly

correlated with each SOM NCI60 profile. GSEA is used to

identify pathways that share two or more discriminating genes, to

provide statistical measures for the likelihood of randomly finding

shared pathway genes, and to take advantage of hooks to other

databases available within the MSigDB suite of tools. A detailed

description of the geneset enrichment analysis (GSEA) [27,28] and

the MSigDB can be found at http://www.broadinstitute.org/

gsea/. The analysis performed here is restricted to only the

KEGG, Biocarta and GO genesets. These genesets will be referred

to collectively as ‘pathways’; with the caveat that the GO genesets

represent an ontology, rather than biochemical pathways, as

represented by the KEGG and BIOCARTA genesets. Test case

results will include the standard GSEA report, consisting of i) the

MSigDB pathway’s name, ii) a short description of the pathway,

iii) the number of overlapping discriminating genes in the pathway

and iv) the p value for statistical significance for the occurrence of

this overlap across all genes in the pathway. The results presented

here will include only the most statistically significant GSEA

pathways (i.e. pathways having the smallest p-values). The

assumption is that for each test compound, GSEA pathways with

two or more discriminating genes add importance to a pathway’s

role in a compound’s cell-based screening response. Furthermore,

shared pathway genes may identify potential chemo-important

targets. Comparisons will be provided between GSEA pathways

derived from discriminating and conventionally-derived gene lists.

Results

Test cases for 10 well-known compounds are used to illustrate

this pathway-centric data mining strategy. These test cases satisfy

the requirement of having structurally similar compounds (n. = 5

intra-tanimoto . = 0.7) that also appear in the same NCI60 GI50

SOM cluster. Consequently, these ten examples represent

relatively well-recognized compounds, each having distinct

chemoactivity profiles, which also display similar chemoactivity

profiles within structurally similar groups of compounds. This

design strategy is clearly chosen to avoid singletons where no

structurally similar compounds share similar chemoactivity pro-

files. The pathway-derived discriminating genes for each test

compound are analyzed through GSEA to hypothesize pathway

gene-chemoactivity associations.

The results begin by summarizing the LDA accuracy for using

discriminating genes to separate chemo-sensitive from chemo-

Analysis of Gene Expression and Chemoactivity
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insensitive tumor cells. Table 1 lists the results of comparisons

between pathway and conventionally derived discriminating

genes, with and without the data trimming steps described above.

These results represent the population average LDA prediction

accuracies and number of discriminating genes for all 1998 GI50

SOM nodes and 2000 randomly selected NCI60 compound

chemoactivity profiles. These results find that the trimmed

pathway discriminating genes yield an average overall prediction

accuracy of 97%, while the untrimmed, conventionally-derived

discriminating genes find a mean accuracy of 82%. The results of

data trimming are found to yield 3% to 4% improvements in

prediction accuracy over their untrimmed counterparts, with p-

values for these distribution differences of 3.7e-13 (pathway

derived genes) and 3.44e-23 (conventionally derived genes). These

results also indicate that pathway-derived prediction accuracies are

based on fewer numbers of discriminating genes when compared

to conventionally-derived discriminating genes (68 versus 300 in

the trimmed cases). Data trimming eliminates an average of 24

tumor cells in the pathway and 12 tumor cells in the conventional

methods.

Figure 3. Illustration of the steps for trimming datasets. Upper left panel: row ordered (gene expressions) and column ordered (tumor cells)
gene set derived from the topmost 10th percentile of H-scores for this test example. Upper right panel: ordered chemoactivity profile (insensitive and
sensitive tumor cells appear as + and - responses, respectively. Middle left panel: Ordered gene expressions for the trimmed set of discriminating
genes. Middle right panel: Group averaged differential in gene expressions for chemo-sensitive and chemo-insensitive tumor cells. Lower left panel:
Group averaged differential in gene expressions for over and under expressed discriminating genes. Lower right panel: Pearson correlation values
(light:positive, dark:negative) for discriminating gene expressions. Letters correspond to response classes; A: over expressed/insensitive, B: under
expressed/sensitive, C: under expressed/insensitive and D: over expressed/sensitive.
doi:10.1371/journal.pone.0044631.g003

Table 1. Average results for LDA analysis.

Test Case
LDA accuracy
(std) # genes(std)

# tumor
cells(std)

Pathway

trimmed 0.97(0.04) 68(29) 31(8)

untrimmed 0.94(0.03) 94(43) 59(0)

Conventional

trimmed 0.86(0.04) 300(138) 41(6)

untrimmed 0.82(0.05) 382(158) 59(0)

Simulations of the pathway-centric method and the conventional correlative
method were performed for all SOM GI50 nodes and 2000 randomly selected
compound chemoactivity profiles. Values represent population averages and, in
parentheses, their standard deviations. The average number of tumor cells in
the untrimmed cases represent the full complement of NCI60 cells (Currently
one cell type is no longer available for analysis), thus their standard deviation is
zero.
doi:10.1371/journal.pone.0044631.t001
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A t-test of the distribution of LDA accuracy scores between the

pathway-centric versus conventional approaches is highly signif-

icant (p,1.0e-255). A portion of this difference may be attributed

directly to their discriminating genes. For example, genes

significantly correlated with SOM GI50 profiles may be excluded

from the pathway-derived discriminating genes, partly because

their H-scores fall below the 90th percentile threshold. Conversely,

a portion of the pathway-derived genes do not appear in the

conventionally derived genes. This result is due, in part, to the role

of data trimming not finding statistical significance between the

over/under-sensitive/insensitive populations for a gene set. Note

that the iterative application of the Student’s t-test is based on

dynamically shrinking groups of genes and tumor cells. Since the

starting set of genes derived from the conventional versus pathway

methods will be different, data trimming can be expected to yield

differences in the final composition of discriminating genes. The

most striking feature in Table 1 is the number of genes derived

from each method. Clearly the small set of pathway-derived genes

yields higher LDA prediction accuracies when compared to the

conventionally derived genes. Applying Occam’s razor’s principle

of parsimony, the following GSEA analysis will be based on the

trimmed, pathway-derived discriminating genes (i.e. minimal gene

sets). The results for the 10 test cases will be summarized below.

Comparisons will be provided for GSEA evaluations based on

untrimmed, raw-correlation derived discriminating genes. The

results for an additional eighteen test cases can be found in Text
S1 and Tables S1 & S2.

Case A
The results for camptothecin (CPT) find 54 discriminating gene

expressions, derived from the U133A database, are needed to

completely distinguish sensitive from insensitive chemoactivity.

The GSEA of these discriminating genes (Table S1) find the

KEGG and Biocarta proteasome pathways (Table 2: Case A) to

be the topmost scoring pathways, while the 5th ranked pathway is

the Gene Ontology GO:0000502; proteasome complex. Eleven of

these discriminating genes are proteasomal (Table S1, shown in

bold) with their over expression corresponding to CPT insensitivity.

Studies find that CPT activation of NF-kB [34,35] involves

degradation of its binding partner, cytosolic IkB, by the ubiquitin-

proteasome pathway [36], resulting in NF-kB entry into the

nucleus and promotion of CPT-induced apoptosis (i.e. CPT

sensitivity). These events provide a pro-apoptotic stimulus, in

support of the CPT sensitivity observed here to be associated with

tumor cell lines exhibiting over expression of proteasomal genes.

The discriminating genes associated with CPT insensitivity (rows

1–16 of Table S1) include the nuclease MRE11 (ranked 4th in

Table S1), with its overexpression associated with CPT insensi-

tivity. Topoisomerases generate transient covalent phosphotyr-

osine intermediates with DNA [37]. CPT traps these intermediates

to produce DNA damage via strand breaks. Nucleases repair

topoisomerase-mediated DNA damage by removing topoisomer-

ases covalently bound to DNA [38]. MRE11 over expression, as a

means to enhance repair of CPT-induced DNA damage, could be

hypothesized for the CPT insensitive subset of tumor cell lines.

Additionally, CPT’s over expressed discriminating gene include

pro-survival genes EIF4G1 and BCL2L1, and mitogen-activated

protein kinases (including MAPK13 and MAPK14, ranked 2nd

and 14th in Table S1), each involved in cellular survival and

proliferation-inducing processes. Taken together, their over expres-

sion is consistent with the observed CPT GI50 insensitivity within

selected tumor cells. Collectively, CPT’s pathway gene-chemoac-

tivity associations provide a literature-validated rationale for

cellular CPT sensitivity as well as hypothesizing a genetic basis

for CPT insensitivity.

Analysis of the U133Plus dataset finds that overexpressed

discriminating genes associated with CPT sensitivity identify the

GSEA pathways Biocarta HER2, PDG, EGF and MAPK

signaling pathways, and the GO protein kinase inhibitor

(GO:0004860), kinase inhibitor (GO:0019210) and protein kinase

regulator activity (GO:0019887) pathways. These results are

consistent with the finding that MAPK signaling is associated

with apoptotic cell death by camptothecin [39]. The U133Plus-

derived GSEA pathways corresponding to CPT insensitivity are

associated with over expression of ATPase synthase (GO:0016469;

proton transporting two sector ATPase complex, GO:0031966;

mitochondrial membrane, GO:0005740; mitochondrial envelope,

GO:00031090; organelle membrane, GO:0005743; mitochondrial

inner membrane), with ample evidence of the ATPase synthase

being associated with drug resistance [40]. Here the proteasomal

pathways implicated from the U133A gene expressions are not

evident from the U133Plus gene expressions. A close inspection of

the origins of this difference appears to reflect true differences in

each platform’s gene expression measurements. Comparisons of

proteasomal gene expressions between the U133Plus versus

U133A platforms find them to be very poorly correlated

(rave = 0.52;std = 0.21); a result that most likely contributes to the

identification of alternative chemo-important pathways when

using the U133Plus dataset.

The GSEA results for CPT can be used to address whether

corresponding results are obtained from Ingenuity Pathway

Analysis(IPA). Using CPT’s discriminating genes, the top scoring

IPA canonical pathway is the Protein Ubiquitination Pathway,

comprised exclusively of proteasomal members. While the top

scoring IPA networks are Cell Death, Genetic Disorder and

Neurological Disease: also with a strong representation of

proteasomal members. The two top scoring IPA functions are

Developmental Disorder and Dermatological Diseases and Con-

ditions, with a sparse representation of proteasomal members.

Thus GSEA and IPA results find strong agreement with their best

scoring entries. Inspection of lower scoring results for both

methods identify many additional roles associated with CPT’s

discriminating genes. While the IPA results may lead to alternative

classes of cellular mechanisms associated with discriminating gene

lists, the current analysis will focus only on the top scoring entries

generated by GSEA.

CPT’s GSEA pathway results can also be compared to

application of conventional (i.e. nonpathway-centric) methods to

generate chemo-important genes. Using the NCI60 GI50 profile

for CPT, Pearson correlation scores and their significance values

(p-values) can be determined for all NCI60 gene expressions. The

top-most significant correlations yield 34 genes for CPT.

Consistent with the results of Nakatsu et al. [18], CPT’s known

target, topoisomerase 1, is absent from this gene set. The GSEA

results identify Chromosome (GO:0005694), Kegg Parkinsons

Disease, Kegg Notch Signalling, Kegg WNT Signaling and Kegg

Alzheimers disease as the five best scoring GSEA pathways.

Noteworthy is that increasing the correlation threshold sufficient to

yield a set of 120 discriminating genes produces GSEA pathways

that include Kegg Proteasome, Biocarta Proteasome and Protea-

some Complex among its most significant pathways; albeit at a

cost of nearly four times more discriminating genes when

compared to the pathway-derived method.

Case B
These results for 5-flurouracil (5-FU) find its SOM GI50 profile

appearing in a neighboring, yet distinct, SOM cluster from that of
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Table 2. GSEA results for test compounds.

Geneset name Description # overlap genes P value

Case A: Camptothecin

Kegg proteasome Proteasome 10 5.64E-14

Biocarta proteasome pathway Proteasome Complex 5 4.48E-08

Macromolecular complex GO:0032991 17 4.26E-06

Biocarta keratinocyte pathway Keratinocyte differentiation 5 4.72E-06

Proteasome complex GO:0000502 4 6.59E-06

Case B: 5-fluorouracil

Biocarta glycolysis pathway Glycolysis pathway 3 4.43E-06

Small nuclear ribonucleoprotein complex GO:0030532. 3 4.11E-05

Kegg glycolysis gluconeogenesis Glycolysis/Gluconeogenesis 4 5.71E-05

Tricarboxylic acid intermediate metabolic process GO:0006100. 2 6.23E-04

Case C: Colchicine

Oxidoreductase activity GO:0016491 12 4.71E-07

Electron carrier activity GO:0009055. 5 1.82E-04

Kegg regulation of actin cytoskeleton Regulation of actin cytoskeleton 7 7.50E-04

Case C: Combretastatin

Biocarta chemical pathway Apoptotic signaling in response to DNA damage 3 1.29E-04

Biocarta BAD pathway Regulation of BAD phosphorylation 3 2.15E-04

Kegg apoptosis Apoptosis 4 6.68E-04

Case D: Taxol

Kegg neurotrophin signalling pathway Neurotrophin signaling pathway 7 3.53E-07

Biocarta HCMV MAPKinase pathway Human cytomegalovirus and map kinase pathways 3 3.19E-05

Biocarta Ras pathway Ras signaling pathway 3 8.19E-05

Case E: Pimozide/Terfenadine/Verapamil

Kegg citrate cycle TCA cycle Citrate cycle (TCA cycle) 5 4.03E-07

Kegg epithelial cell signaling in helicobacter pylori infection Epithelial cell signaling in Helicobacter pylori infection 6 8.41E-07

Biocarta IGF1R pathway Multiple antiapoptotic pathways involving BAD phosphorylation 4 4.10E-06

Biocarta Ras pathway Ras signaling pathway 4 4.10E-06

Case F: Purvalanol

Pore complex GO:0046930 7 7.05E-10

Nuclear envelope GO:0005635. 8 5.38E-09

Nuclear pore GO:0005643. 6 1.22E-08

Nuclear membrane part GO:0044453 6 9.41E-08

Nuclear membrane GO:0031965. 6 2.90E-07

Envelope GO:0031975 9 3.75E-07

Case G: Dasatinib

Cell cycle GO:0007049 GO:0007049. 17 2.64E-11

Cytoskeletal part GO:0044430. 13 6.68E-09

Kegg cell cycle Cell cycle 10 1.96E-08

Kinesin complex GO:0005871. 5 2.98E-08

Microtubule associated complex GO:0005875. 7 3.36E-08

Regulation of cell cycle GO:0051726. 11 3.96E-08

Microtubule motor activity GO:0003777. 5 6.42E-08

Mitotic cell cycle GO:0000278. 10 7.88E-08

Cytoskeleton GO:0005856. 14 1.82E-07

Cell cycle process GO:0022402. 10 7.37E-07

The GSEA results for each test compound include; column one: geneset name as it appears in MSigDB, column two: pathway description, column three: number of
discriminating genes that are shared in each respective pathway, column four: statistical significance for the occurrence of these overlapping genes for each geneset.
Test cases appear in the order presented in the Results. These results are based on analysis of the U133A dataset.
doi:10.1371/journal.pone.0044631.t002
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CPT. 5-FU’s discriminating genes find pathways involved in

glycolysis as the 1st, 3rd and 4th most significant GSEA hits

(Table 2: Case B). The role of glycolysis in 5-FU efficacy finds

the sensitivity of gastric cancer to 5-FU treatment to be related to

the rate of glucose transport [41]. Two of 5-FU’s discriminating

genes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and

phosphoglycerate kinase 1 (PKG1), appear as the most over

expressed genes for cells sensitive to 5-FU, while over expression of

discriminating genes for mitogen activated protein kinases

(MAPK13 and MAPK14) and eukaryotic translation initiation

factor genes (EIF1AP1 and EIF4A2) correspond to 5-FU

insensitivity; leading to the hypothesis that efficacy of 5-FU may

depend on over expression of glycolytic genes and under

expression of proliferation-related genes.

In distinct contrast to the U133A-derived results, the U133Plus

gene expressions find nine of 5-FU’s topmost scoring GSEA

pathways to be associated with the plasma membrane. In support

of this finding, a nearly 2-order of magnitude difference is found

between IC50 values of 5-FU versus FuDR and FUR [42]. This

difference has been associated with the greater capacity to

transport 5-FU across the plasma membrane of tumor cells, and

has led to the proposal that inhibitors of membrane transport may

enhance 5-FU efficacy [43,44]. Thus the GSEA glycolytic

pathways identified with the U133A gene expression data are no

longer in the topmost scoring pathways determined from the

U133Plus dataset. Glycolytic pathways are necessarily dependent

on plasma membrane transport of glucose, thus the role of the

plasma membrane is implicated from both gene expression

datasets as a component of 5-FU chemoactivity. Although the

origins of these differences may reflect, at a minimum, biological

variation, they are also an indication that methodologies such as

proposed here can benefit from the analysis of greater numbers of

high quality gene expression measurements.

Using conventional gene expression-GI50 Pearson correlations

finds 242 genes in the top 10th percentile. The top ten GSEA

pathways for these genes find no overlap with those listed for

Table 2: Case B. However, the 6th ranked GSEA pathway is

GO:0006007: Glucose Catabolic Processes, based on the presence

of phosphogluconate dehydrogenase (PGD) in its correlated gene

list. Thus conventional analysis also suggests a role for glucose

metabolic pathways in 5-FU chemoactivity.

Case C
Case C consists of compounds known to target tubulin. One

example from this group is colchicine, where its top scoring GSEA

pathways are related to oxidation-reduction (Table 2: Case C
Colchicine). Literature validation of this result finds the functions

of actin and tubulin to be redox-regulated [45,46]. The sulfhydryl

groups in tubulin affect assembly and are under control of

thioredoxin or glutaredoxin systems. siRNA knockouts of glutar-

edoxin exhibit hampered actin assembly [47]. The results reported

here find two of cholchicine’s discriminating genes, thioredoxin

interacting protein (TXNIP) and thioredoxin reductase

1(TXNR1), to be most positively correlated with the SOM GI50

profile containing colchicine. Additional positively correlated

discriminating genes include malate dehydrogenase (MDH1),

isocitrate dehydrogenase (IDH1) and cytochrome c oxidase

subunit VIIb (COX7B), all genes within the Oxidoreductase

Activity pathway (GO:0016491). The 4th ranked GSEA pathway is

KEGG regulation of actin cytoskeleton, also consistent with the

role of oxidation-reduction on actin assembly. These U133plus

gene expressions support this finding by identifying oxidoreductase

pathways within its topmost GSEA results. Here, as with the cases

to follow for taxol and combrestatin, the baseline expression of

colchicine’s putative target, tubulin, appears to play a less

important role in chemoactivity when compared to redox-related

cellular processes.

Interestingly, combretastatin occupies a colchicine-neighboring

SOM cluster, yet yields a different set of GSEA pathways. Its top

scoring GSEA pathway (Table 2: Case C Combretastatin) is

the Biocarta Chemical Pathway: apoptotic signaling in response to

DNA damage. Literature validation of this result finds that

proliferating human endothelial cells exhibit internucleosomal

DNA fragmentation when incubated with combretastatin A-4

[48]. Combretastatin’s 2nd ranked GSEA pathway involves

regulation of BAD phosphorylation. Included in the 15 over

regulated discriminating gene expressions associated with com-

bretastatin sensitivity are BAD, IkBkB (inhibitor of kappa light

polypeptide gene enhancer in B-cells, kinase beta) and

CDC2L1(cell division control like 1), all of which are involved in

signaling events associated with BAD phosphorylation.

While the U133Plus results for combretastatin did not identify

the Biocarta Chemical Pathway as found with the U133A dataset,

‘chemical biosynthetic processes’ are indicated within 8 of its 10

top most scoring GSEA pathways, most of which relate to

biosynthetic processes involving the formation of cytokines. Recent

studies find that the induction of vessel narrowing, hypoxia, and

hemorrhagic necrosis in murine mammary tumors by vascular

disrupting agents, such as combretastatin A4, is accompanied by

elevated tumor levels of the chemokine CXCL12 and tumor cell

repopulation [49]. In this instance, the additional gene expression

data provided in the U133Plus platform yielded chemical reaction

pathways involved in combretastatin chemoactivity that place a

higher priority on processes involved in chemokine production

rather than chemical pathways related to DNA damage. Both

results find support within the literature. Consistent with the

results to follow for taxol, although combretastatin also targets

tubulin, its cellular sensitivity appears to be consistent with the

expression of non-tubulin related genes.

The conventional analysis finds 240 genes in the upper 10th

percentile of correlations for colchicine and combretastatin A4.

GSEA of these colchicine genes yields KEGG Bladder Cancer,

Membrane Organization and Biogenesis (GO:0016044), Biocarta

Defragmentation Pathway, Cell_Cortex (GO:0005938) and Mito-

chondrial Membrane Organization and Biogenesis (GO:0007006)

as its topmost pathways. Here evidence for membrane organiza-

tion is indicated, rather than redox related processes listed in

Table 2: Case C. GSEA analysis of the combretstatin A4

correlated genes finds the top five pathways to include KEGG

Thyroid Cancer, Nuclear Pore (GO:0005643), Pore Complex

(GO:0046930), KEGG Adherens Pathway and Induction of

Apoptosis by Intracellular Signalling (0008629). These results

point to distinctly different cellular mechanisms from those listed

in Table 2: Case C. Noteworthy for designing experiments in

support of these conventional-based pathways is the existence of

an order of magnitude more genes to be studied when compared

to the pathway-centric approach.

Case D
The next test compound is taxol. The neurotrophin signaling

pathway (Table 2: Case D) ranks at the top of the GSEA

pathways for taxol, with 7 (AKT1, MAP2K1, IRS1, IRAK1,

RPS6KA3, CSK and PSEN1) of its 34 discriminating genes

appearing in this pathway. Neurotoxicity is a well-known

complication of taxol therapy [50] and up-regulation of all of

these seven genes is associated with taxol sensitivity; with the

KEGG Neurotrophin signaling pathway at the top of the list. In

addition, taxol-induced apoptosis depends on MAP kinase
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pathways [51]. The 2nd ranked pathway, Human Cytomegalovirus

and Map Kinase Pathways, is particularly interesting in light of the

observed reversal of taxol resistance due to involvement of the PI-3

kinase-AKT 1 pathway [52]. Whereas the 3rd ranked pathway,

Biocarta Ras pathway, finds sensitivity associated with over

expression of AKT1 (v-akt murine thymoma viral oncogene

homolog 1), MAP2K1 (mitogen-activated protein kinase kinase 1)

and CASP9 (caspase 9, apoptosis-related cysteine peptidase), also

involved in the PI-3 kinase-AKT 1 pathway. The pathway gene-

chemoactivity results point directly to the importance of taxol-

related neurotoxicity, also validated in literature reports.

The pathway results for taxol using the U133Plus gene

expressions appears, initially, to not support the U133A-derived

results. The GSEA results for the U133Plus gene expressions

identify six GSEA pathways associated with the cell cycle: Biocarta

G2 Pathway; cell cycle, GO:0000082; G1-S transition of mitotic

cell cycle, GO:0051329; interphase of mitotic cell cycle,

GO:0000278; mitotic cell cycle, GO: 0022403, cell cycle phase,

GO:0051325, interphase) and five GSEA pathways associated

with amino acid metabolism (GO:0015171; amino acid trans-

membrane transporter activity, GO:00022804; active transmem-

brane transporter activity, GO:0005275; amine transmembrane

transporter activity, GO:0046943; carboxylic acid transmembrane

transporter, GO:0005342; organic acid transmembrane transport-

er activity). Taxol’s role in mitotic blockage was reported very

shortly after its discovery [53]. In addition, the activities of selected

amino acid transporters have been recently proposed as biomark-

ers for assessing the response to taxol treatment [54]. While the

U133A dataset identified neurotrophin signaling as an important,

and well-published, component of taxol chemoactivity, the

U133Plus dataset finds additional roles for multiple pathways

involved in the mitotic cell cycle and amino acid metabolism. Both

results are an important component of taxol’s chemoactivity-

pathway gene associations. As with the two previously discussed

agents that target tubulin, non-tubulin related gene expressions

and their associated pathways appear to contribute to the overall

cellular response. The genes generated using conventional

chemoactivity-gene expression correlations do not find Neurotro-

phin Signalling or Cell Cycle in their top 50 GSEA pathways.

Taxol’s discriminating genes can be examined for associations

between gene over and under expression and chemoactivity. The

top panel in Figure 4 displays Taxol’s reference chemoactivity for

the subset of 25 tumor cells used to establish its discriminating

gene set. The sensitive(+) and insensitive(2) cellular responses are

grouped at the right and left, respectively. The middle panel

displays the relative expressions (light:over dark:under) for taxol’s

discriminating genes across these same 25 tumor cells. The

correspondence between expression and chemoactivity is evident

with over expressed genes (rows 1–11) and taxol insensitive tumor

cells (columns 1–11) appearing in the upper left quadrant, while

over expressed genes (rows 12–34) and taxol chemo-sensitive

tumor cells (columns 12–25) appearing in the lower right

quadrant. The lower panel emphasizes these differences in gene

expressions by displaying the Pearson correlation values (positive:-

light negative:dark) for these 34 discriminating gene expressions.

Clearly, expressions for discriminating genes 1–11and 12–34

represent distinguishable patterns. These gene expressions differ-

ences may serve as potential biomarkers of taxol chemoactivity.

Case E
The antiproliferative actions of pimozide, terfenadine and

verapamil are attributed to the initiation of apoptotic cell death

pathways [55] resulting from their effects on Ca2+channels. The

GSEA analysis (Table 2: Case E) for these agents identifies the

TCA-cycle as an important pathway. Mitochondrial calcium ions

promote a number of events that sustain ATP levels in the cell.

The well-known Warburg effect identifies a switch from aerobic

and anaerobic sources of ATP production [56]. Specifically, in the

absence of calcium transfer cells use autophagy to sustain survival,

while cells performing under aerobic metabolism utilize the TCA

cycle as their primary source of ATP. Cells exhibiting over

expression of TCA-related metabolism genes would be quite

sensitive to calcium perturbations. Consistent with this premise,

tumor cells most sensitive to these agents exhibit over expression of

TCA-related discriminating genes, IDH3A, IDH1, IDH3G,

ACO2 and ACLY. The observation of cells insensitive to these

agents and having under expression of these TCA-related genes

may reflect the role of autophagy in their survival.

The U133A and U133Plus gene expressions for pimozide offer

complementary hypotheses about the role of calcium flux on

glucose metabolism. The U133Plus results find MAPK signaling as

its topmost scoring GSEA pathways. Studies have shown that

glucose metabolism is controlled by a combination of allosteric

activators and inhibitors that provide a variety of potential targets

for MAPK regulation [57]. For example, glucose uptake and

glycolysis is dependent on ERK signaling within MAPK pathways,

providing a point of coordinated control on glucose metabolism

[58]. Taken together, the U133A and U133Plus results hypoth-

esize a role for MAPK signaling in aerobic glycolysis, and

implicate agents that affect calcium flux as influencing this process.

The top scoring GSEA pathways derived from conventional gene

lists are Biocarta Rho pathway, Biocarta integrin pathway,

electron carrier activity (GO:0009055), Biocarta gleevec activity

and Biocarta ECM pathway. Again, sharing no overlay with the

pathways listed in Table 2: Case E. However, the role of calcium

in these pathways would be an indication for further study.

Case F
Cyclin-dependent kinases (CDKs) control cell cycle progression

[59,60] and have become attractive targets in the search for small

molecular weight inhibitors of the cell cycle. p42/p44 MAPKs are

intracellular targets of the CDK inhibitor purvalanol [61]. The

GSEA results for purvalanol (Table 2: Case F) point to the

nuclear pore and pore complex as important pathways. The

number of nuclear pore complexes (NPCs) nearly doubles during

interphase in dividing cells. Although the coordination of this

event within the cell cycle is poorly understood, it appears that

CDKs, especially Cdk1 and Cdk2, promote interphase NPC

formation in human dividing cells [62]. Consistent with this

literature report, CDK inhibition disturbed proper expression and

localization of some nucleoporins, which trigger post-mitotic NPC

assembly. The discriminating genes for purvalanol include

RANBP2 (RAN binding protein 2), IPO7 (importin 7), NUTF2

(nuclear transport factor 2), KPNA3 (karyopherin alpha 3

(importin alpha 4)), NUP153(nucleoporin 153kDa), NUP88 and

BAX (BCL2-associated X protein), with their under expression

correlating with purvalanol sensitivity. Here the role of CDK

inhibition apparently manifests itself by inhibiting the formation of

NPCs necessary to satisfy the requirements for successful passage

through interphase. The U133Plus-derived results also implicate

MAPK pathway members as targets, by finding the KEGG

MAPK Signaling pathway as purvalanol’s topmost scoring GSEA

pathway, at a remarkably low p-value of 5.83610212. This result is

due mostly to having 26 MAPK pathway genes included within

purvalanol’s discriminating genes. Clearly, both gene expressions

find pathways implicating a role of purvalanol in CDK inhibition.

Genes selected by conventional analysis find no GSEA pathways

related to nuclear pore formation or MAPK signaling.
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Case G
Dasatinib, a potent inhibitor of SRC (SaRComa) family kinases,

is currently under development against a variety of tumor types

[63]. SRC is a member of the tyrosine kinase family of proteins

that function to transfer a phosphate group from ATP to the

tyrosine residue of a protein. Phosphorylation of proteins by

kinases is important to cellular communication and regulation of

cellular activities such as cell division. The GSEA results for

dasatinib (Table 2: Case G) find cell cycle in five of the ten most

statistically significant GSEA pathways, with cytoskeletal/kinesin/

microtubule related pathways comprising the remainder of the list.

These results are consistent with the role of SRC inhibition by

dasatinib on the cell cycle. The existence of pathways involving

motor elements is also consistent with cellular events, such as

movement along a microtubule, that are coupled to the hydrolysis

of ATP. Included in the discriminating genes that are positively

associated with dasatinib sensitivity are PTK2, RAF1 and PLK4.

PTK2, is a member of the focal adhesion kinase (FAK) subfamily

of protein tyrosine kinases, and is a known target of dasatinib [64].

RAF1 and PLK4 are members of the serine/threonine family of

protein kinases which also function in the cell cycle. Dasatinib

treatment has been found to inhibit other serine/threonine kinases

including AKT and ERK1/ERK2 [65]. Interestingly over-

expression of the tyrosine kinase c-SRC (also known as CSK) is

associated with dasatinib insensitivity. c-SRC is capable of

phosphosphorylating a negative regulatory site on tyrosine kinase

family members. The observation that dasatinib is also known to

target c-SRC raises the possibility that inhibition of a key negative

regulatory element of SRC proteins may be responsible for the

lack of dasatinib sensitivity to tumor cells over expressing c-SRC.

In support of this possibility is the finding that mutated c-SRC is

not capable of SRC suppression [66].

Analysis using the U133Plus gene expressions expands this

result by including JUN (JUN oncogene), MAPK8 (mitogen

activated protein kinase 8), SRC (v-SRC sarcoma) and FYN (FYN

oncogene related to SRC) as protein kinases within dasatinib’s

discriminating genes. The topmost GSEA pathways now include

the Biocarta Integrin pathway, Biocarta AT1R pathway, KEGG

adherens pathway and Biocarta Cell2Cell pathway, all containing

c-SRC and the known target of dasatinib, v-SRC. In addition, the

U133A-derived role of the cytoskeleton in dasatinib’s activity, via

coupling to ATP hydrolysis, is further reinforced by finding

U133Plus-derived GSEA pathways that modulate ATP hydrolysis

by proteins from pathways involved in oxidoreductase activity.

Conventional analysis of U133A gene expressions correlated with

dasatinib chemoactivity find KEGG Huningtons Disease, KEGG

Parkinsons Disease, KEGG Oxidative Phosphorylation, KEGG

Alzheimers Disease and Organelle Inner Membrane

(GO:0019866) as the top scoring GSEA pathways. Here the lack

of cell-cycle pathways would not be consistent with the literature

supported pathways described from the pathway-centric analysis.

The pathway-centric speculations regarding the gene expres-

sions involved in the chemoactivity of dasatinib can serve as a basis

for proposing further experimental testing. Figure 5 displays bar

Figure 4. Illustrations of Taxol’s discriminating genes. Top panel displays Taxol’s chemoactivity profile (+:sensitive 2::insensitive) for its 25
discriminating genes, derived from the U133A dataset. The middle panel displays the relative gene expressions (light:over dark:under) for these same
tumor cells. The lower panel displays the Pearson correlation scores (positive:light negative:dark) for taxol’s discriminating genes.
doi:10.1371/journal.pone.0044631.g004
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graphs for discriminating gene expressions of a dasatinib

insensitive (MALME-3) and sensitive (SN12C) tumor cells. Here

dasatinib’s 65 discriminating gene expressions fall into two

populations; a group of 15 genes, at the left, and a group of 50

genes, at the right. Over expression in the smaller group and under

expression in the larger group appears to be consistent with

dasatinib insensitivity in the MALME-3 cell line, while expressions

in the opposite directions for these groups appears to be consistent

with sensitivity for the SN12C cell line. These indirectly-derived

results can be independently tested in other tumor cell lines by

examining their differential in gene expressions between these sets

of 15 and 45 genes. The task of finding other tumor cells that are

concordantly similarly expressed within each group and concor-

dantly oppositely expressed amongst others may prove difficult.

Alternatively, gene knock-outs/2ins may be employed on the

existing cells to modulate the extent of differential in gene

expression. Results from each of these strategies may also prove

difficult to interpret due to the complex roles of multiple genes in

higher order cellular networks. A third alternative strategy would

attempt to determine a direct interaction between dasatinib and

one of these discriminating genes (or gene products) using x-ray

crystallographic and NMR methods [67], affinity chromatography

[68,69] or protein microarrays [70].

Supplementary Test Compounds
The Supplementary Test Compounds section in Text S1 and

Table S2, includes results for an additional 18 test compounds, the

GSEA pathways identified by their discriminating gene and

supporting literature validations. In principal, each SOM node

can yield a set of discriminating genes that can be associated with

its cluster members. Selecting an appropriate SOM node will

depend, in part, on special interest in a set of compounds or a set

of discriminating genes.

Discussion

The method presented here represents a pathway-centric

perspective for assigning the functional relevance of constitutive

gene expressions from untreated tumor cells to mechanisms

important for in vitro chemical inhibition of tumor cell growth.

Publicly available databases obtained from the NCI60 and a

pathway-centric means to identify discriminating genes as input to

GSEA were used to formulate hypotheses about a compound’s

pathway gene-chemoactivity associations. The results, reported for

a set of well-known compounds screened in the NCI60, typically

yield a small set of statistically significant GSEA pathways (usually

on the order of 5 pathways) associated with each compound’s

literature-supported pathway targets. In a few cases, actinomycin

D:TOPO2A (supplementary test case, Table S2) and dasati-

Figure 5. Discriminating gene expressions for MALME-3 (top panel) and SN12C (bottom panel). Over and under expressed genes
correspond to upward and downward directed bars, respectively. Genes are divided from left to right into groups of 15 and 50 genes, respectively.
An average over expression of genes in the first group and under expression of genes in the second group corresponds to MALME-3 chemo-
insensitivity. The convers holds for SN12C, where an average under expression of genes in the first group and over expression of genes in the second
group correspond to chemo-sensitivity.
doi:10.1371/journal.pone.0044631.g005
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nib:PTK2, extremes in gene expression for a compound’s putative

molecular target were found. The more common finding reveals

an important role for over and under expression of small groups of

discriminating, off-target genes in a compound’s cellular response,

inclusive of intended effects as well as side effects. These results

emphasize the importance of comprehensive examinations into

constitutive gene expressions and their associated cellular path-

ways for roles in in vitro chemoactivity. The methods are general

and can be applied to analyze preclinical databases similar in

design to the NCI60.

Further support for applying data mining efforts that use

multiple chemoactivity versus individual chemoactivity-gene ex-

pression correlations can be found in Lee et al.’s [71] examination

of correlations between NCI60 chemoactivity and gene expression

[72,73]. Their analysis finds that single-event correlations, as in a

distinctly high correlation value for only one chemoactivity-gene

expression profile, may be due to experimental noise. Alternative-

ly, families, typically of ,25 compounds, are correlatively

associated with a single gene’s expression profile. Following their

strategy, but reversing the question, finds (unpublished by author)

that around 15 gene expressions are significantly correlated with a

chemoactivity profile. This finding favors a strategy that examines

groups of gene expressions, as is done here with the pathway-

centric approach, rather than the more conventional single-event

method. Nonetheless, the conventional and pathway-centric

approaches should be considered for these types of analysis.

Clearly, resolving whether one approach might be favored over

another will require extensive experimental testing.

The pathway-centric method proposed here bears conceptual

similarities to the Connectivity Map (CM) method proposed Lamb

et al. [11,12], and with the work by Sirota et al. [10]; representing,

respectively, procedures that use gene expression-chemoactivity

associations to relate existing preclinical small molecules to their

cellular mechanism of action, or to their potential therapeutic use

against alternative diseases. The CM analysis uses measures of

over 7000 gene expressions and chemoactivity responses for tumor

cells exposed to 1309 agents (CM build 02); with a strong overlap

in cell types and compounds with the NCI60. ‘Signature’ genes

proposed for CM analysis represent instances of large expression

shifts following drug exposure to tumor cells. The CM chemoac-

tivity and gene expression databases are scanned for the

occurrence of compounds and genes that also possess extreme

values for the test set of ‘signature’ genes. The procedure of Sirota

et al. [10] also utilizes CM’s compound database, however,

‘signature’ genes are scanned across Gene Expression Omnibus

[32,74] gene expressions associated with 100 diseases (cancer and

non-cancer). In contrast, the method proposed here is based on

baseline gene expressions measured from 60 untreated cancer-only

diseases and a compound database of over 60k agents. While the

methods of Lamb et al. [11,12] and Sirota et al. [10] and the

pathway-centric approach proposed here share the goal of

identifying associations between gene expressions and chemosen-

sitivity, they differ primarily in the derivation of ‘signature’ genes

versus ‘discriminating’ genes, in the use of gene expressions from

untreated tumor cells, and in the application of pathway

information into the data analysis.

Summary Comments
The use cultured tumor cells for explorations into the genetic

basis of drug activity represent one preclinical strategy for

exploring various aspects of cancer biology, despite their limited

ability to reflect responses in the human body [75]. Computational

strategies, such as presented here, must be viewed with a high

degree of skepticism until further validations become available

using alternative preclinical models. Unfortunately, the existence

of potentially many off-target effectors as important to chemoac-

tivity will present considerable experimental challenges for

hypothesis testing. In lieu of these studies, additional confidence

in these data mining results may be gained by examining

consistency. Once again, the CPT example is used for illustration.

Compounds with GI50 profiles inversely correlated with CPT

chemoactivity can be examined to assess whether their results also

point to pathways consistent with those found for CPT. The most

negatively correlated SOM GI50 profile to that containing CPT is

the SOM GI50 profile containing parthenolide (PN). The GSEA

pathways for both CPT and PN (see Supplemental Test
Compounds, Text S1 and Table S2, for the PN GSEA

results) find important roles for the proteasome (PSM). However,

examination of PN’s discriminating genes finds that over

expression of PSM genes corresponds to CPT sensitivity and PN

insensitivity. Gupta et al. [76] found that p53 can protect cells

against CPT-induced cytotoxicity, leading to their rationale for the

selectivity of CPT towards tumors with p53 mutations. PN has

been found to promote ubiquitination of MDM2 and activation of

p53 cellular functions [77]. MDM2 is ubiquitin ligase that

promotes proteasomal degradation of numerous proteins, includ-

ing itself. p53, a substrate of MDM2, functions as part of a

regulatory feedback loop involved in cancer-related pathways,

notably tumor suppression. Levels of p53 are tightly regulated by

MDM2, whereby elevated levels of p53 activate MDM2 expres-

sion, which in turn sequesters p53, ubiquinates it and marks it for

proteasomal degradation. Thus PN’s role in activating p53 cellular

functions can be hypothesized to reduce CPT sensitivity, an effect

consistent with the inverse correlations between CPT and PN

chemoactivity profiles. This line of reasoning can be taken one step

further. Recall that the role of PSM genes in CPT’s sensitivity was

found, via GSEA analysis, to involve NF-kB. Recently it has been

shown that activation of NF-kB by chemotherapeutic agents was

found to protect cells from apoptosis. Sharma et al. [78] tested the

hypothesis that inhibition of NF-kB-mediated gene transcription

may sensitize tumor cells to chemotherapeutic agents. They find

that an imidazoline NF-kB inhibitor sensitizes leukemic T cells to

CPT. Elucidation of the potential cellular mechanism revealed

that imidazoline prevents nuclear translocation of NF-kB. These

findings are consistent with this report’s hypothesis of NF-kB

mediating CPT sensitivity. Collectively these results lend confi-

dence that the approach proposed here is yielding a consistent

picture, at least for CPT, of important causal relationships

between chemoactivity and constitutive gene expressions.

While the proposed methodology has yielded qualitatively

similar results when using gene expressions derived from two

measurement platforms, assessments of how robust these pathway-

centric results may be, regardless of the methods used to quantify

gene expressions, cannot be adequately assessed here. For the most

part, chemo-important pathway results are in general agreement

when derived from the U133A and U133Plus datasets. Cases that

differ find their origins to be due, in part, to differences in gene

expressions. A global inspection of the pairwise Pearson correla-

tions between gene expressions derived from the U133A versus

U133Plus platforms finds an average correlation value of 0.68

(std = 0.19). Thus only slightly less than half (r2 = 0.46) of the

measurement variation between platforms can be explained by a

simple correlative model. The above comparisons of results using

U133A and U133Plus measurements finds that, at least for these

test compounds, the agreement between pathway gene expressions

and chemoactivity appears to be sufficient to yield qualitatively

similar GSEA pathways. Instances, such as the failure of the

U133Plus gene expressions to identify the U133A-derived

Analysis of Gene Expression and Chemoactivity

PLOS ONE | www.plosone.org 13 October 2012 | Volume 7 | Issue 10 | e44631



proteasomeal pathways, can be assessed with respect to the effects

of noise contamination on measurement signal. Using the CPT

example and the U133A gene expressions, simulations were

conducted to determine how well the proposed methodology

tolerates poorly concordant gene expressions. Application of white

noise sufficient to degrade the U133A gene expression measure-

ments to yield an average pairwise Pearson correlation on the

order of r = 0.6 was sufficient to eliminate the GSEA proteasomal

pathways from the topmost scoring hits for CPT. The proposed

methodology, however, provides a symptomatic indicator of the

effects of data noise by finding that, again with the CPT example,

the number of discriminating genes is reduced by nearly half when

compared to the original gene set when using white-noise

perturbed expression measurements. This reduction is expected

due to a lower number of significant pathway H-scores resulting

from greater randomness in the expression data. While these

results suggest that the proposed methodology is modestly tolerant

of measurement variations across gene expression platforms, a

detailed examination using numerous publically available gene

expression datasets remains part of future studies. Based on the

above results, increased numbers of gene expression measure-

ments, as afforded by the U133Plus over the U133A datasets,

appears to provide greater numbers of GSEA pathway hits that

also share a common theme with respect to biological processes.

These redundancies in GSEA pathways reinforce support for the

importance of a proposed pathway’s gene expressions on

chemoactivity. It is important to stress that the results reported

herein for gene expression measures using either the U133A or

U133Plus platforms hypothesize GSEA pathways that are each

reasonably well supported in literature reports. Instances where

GSEA results differ according to measurement platform suggest

caution, when considering results obtained from only one set of

gene expressions, and encourage consensus assessments of results

using gene expression derived from multiple platforms. Experi-

mental testing of hypothesized pathway gene-chemoactivity

associations, regardless of the source of gene expression measure-

ments, will be a necessary step for validation.

Supporting Information

Table S1 U133A-derived genes selected to discriminate
sensitive versus insensitive tumor cell responses to CPT.
Genes are ordered from top to bottom according to correlation

strength. Top 16 genes represent discriminating genes with

expressions negatively correlated to CPT’s SOM NCI60 GI50

profile, where over expression corresponds to chemo-insensitivity.

The bottom 38 discriminating genes have expressions positively

correlated to CPT’s SOM NCI60 GI50 profile, with over

expression corresponding to CPT chemo-sensitivity. Proteasomal

genes are highlighted in bold.

(DOC)

Table S2 GSEA Results for Supplemental Test Com-
pounds.

(DOC)

Text S1 The Supplementary Test Compounds section in
Text S1 and Table S2, includes results for an additional
18 test compounds, the GSEA pathways identified by
their discriminating gene and supporting literature
validations. In principal, each SOM node can yield a set of

discriminating genes that can be associated with its cluster

members. Selecting an appropriate SOM node will depend, in

part, on special interest in a set of compounds or a set of

discriminating genes.

(DOC)
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