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Abstract

Behavior provides important insights into neuronal processes. For example, analysis of

reaching movements can give a reliable indication of the degree of impairment in neurologi-

cal disorders such as stroke, Parkinson disease, or Huntington disease. The analysis of

such movement abnormalities is notoriously difficult and requires a trained evaluator. Here,

we show that a deep neural network is able to score behavioral impairments with expert

accuracy in rodent models of stroke. The same network was also trained to successfully

score movements in a variety of other behavioral tasks. The neural network also uncovered

novel movement alterations related to stroke, which had higher predictive power of stroke

volume than the movement components defined by human experts. Moreover, when the

regression network was trained only on categorical information (control = 0; stroke = 1), it

generated predictions with intermediate values between 0 and 1 that matched the human

expert scores of stroke severity. The network thus offers a new data-driven approach to

automatically derive ratings of motor impairments. Altogether, this network can provide a

reliable neurological assessment and can assist the design of behavioral indices to diag-

nose and monitor neurological disorders.

Introduction

Classification and quantification of behavior is central to understanding normal brain function

and changes associated with neurological conditions [1,2]. Investigations of neurological dis-

orders are aided by preclinical animal analogues that include laboratory rodents such as rats

and mice. Whereas hand use is important to most human activities, rodents also use their

hands for building nests, digging, walking, running, climbing, pulling strings, grooming, car-

ing for young, and for feeding—essentially, for much of their behavior. A number of labora-

tory tests have been developed to assess skilled hand use in rodents, including having an

animal reach into a tube or through a window to retrieve a food pellet or having an animal

operate a manipulandum or pull on a string to obtain food [3–11]. In addition, skilled walking

tasks assess rodent fore- and hind limb placement on a narrow beam or while crossing a
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horizontal ladder with regularly or irregularly spaced rungs [12–17]. Most of the tests for

rodents have been developed as analogues that assess human neurological disorders. For

example, a test of skilled reaching for a single food item is used as a motor assessment of

rodents and nonhuman primates as well as for the human neurological conditions of stroke

[18,19], Parkinson disease [20–22], and Huntington disease [23].

There are many ways of assessing forelimb reaching movements, including end-point mea-

sures that give a score for success or failure, kinematic procedures that trace the Cartesian tra-

jectory of a limb segment, and notational scores that describe the relative contributions of

different body segments to a movement. Here, scoring of animal and human reaching was

done based on the Eshkol-Wachman movement notational system, which treats the body as a

number of segments. Each movement is scored in terms of those body segments that contrib-

ute to the movement [24,25]. For example, a normal act of reaching for food by a rat or human

can be divided into several movement elements: hand lifting, hand advancing, pronating,

grasping, etc. [9,22,26]. If a brain injury impairs the movement of the limb, a subject may still

successfully reach; however, the features of reaching may significantly differ from a normal

reach. For instance, the angle of the hand during advancing to reach a food item may signifi-

cantly differ in stroke versus control animals. The notational scoring system captures and

quantifies these changes [3,19,27,28].

Primary disadvantages of using descriptive notational analysis are that a scorer needs to

acquire expertise with the system, the procedure is time-intensive and so limits the analysis to

sampling, and scoring is subject to human bias and so usually requires more than one scorer

to obtain interrater reliability. A solution to these problems is the development of automated

methods for movement analyses that can replace or complement manual scoring. Recent

advancements in deep neural networks have achieved impressive accuracy in many image rec-

ognition tasks (e.g., [29–32]) and offer a promising approach for automated behavioral analy-

ses [33–35].

Here, we demonstrate that deep neural networks can provide fully automatic scoring for

fine motoric behaviors, such as skilled reaching, with human expert accuracy. The neural net-

work presented here was also successful in scoring other behavioral tasks. The main contribu-

tion of the present study is to demonstrate a method for extracting knowledge from deep

neural networks in order to identify movement elements that are most informative for distin-

guishing normal and impaired movement. This procedure offers a data-driven method for dis-

covering the most-predictive movement components of neurological deficits, which, in turn,

can guide development of more-sensitive behavioral tests for the detection and monitoring of

neurological disorders.

Results

Design of a deep neural network to automatize and to achieve

reproducibility of behavioral analyses

Our network was composed of two parts. The first consisted of a convolutional network (Con-

vNet), Inception-V3 [36] (Methods). The function of the ConvNet was to convert each video

frame (300 × 300 pixels) to a set of 2,048 features to reduce the dimensionality of the data. By

analogy, this could be thought of as transforming an image from the retina into neuronal rep-

resentations in higher-order visual areas that represent complex features of the original image

[37]. Next, the features from 125 video frames from a single video clip (sampled at 30 frames/

second) were combined and passed to a recurrent neural network (RNN) that analyzed the

temporal information in the movements of an animal or human participant (Fig 1). The net-

work was then trained to assign a movement deficit score for each video clip that matched the
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score from a human expert (Methods). After the network was trained, we applied recently

developed methods for knowledge extraction [38,39] (Methods) to identify which movement

features were most informative to the network in discriminating control from stroke animals.

With the same methodology, the parts of each video frame that were most informative for the

network decision were identified (Fig 1).

Comparison of movement deficits scores between expert and the network

To study motor deficits in stroke rats, we used a single-pellet reaching task (SPRT). Rats were

individually placed in a Plexiglas chamber as previously described [3,40] and were trained to

reach through an opening to retrieve sucrose pellets (45 mg) located in an indentation on a

shelf attached to the front of the chamber (Fig 2A). A rat uses a single limb to reach through

the opening and grasp a food item for eating, and behavior is video recorded from a frontal

view. For each video clip, an expert scored the reaching movements using a standard scoring

procedure to assess seven separate forelimb movement elements that compose a reach (Fig

2A). Each movement element (e.g., hand lift, aim, grasp) was scored using a scale: abnormal (1

point), partially abnormal (0.5 point), or within normal range (0 points) (Methods). Each

movement element was scored independently, and the sum of those scores provides the behav-

ioral measure of stroke severity [3]. The network was trained to reproduce the cumulative

expert score for each reaching trial. For all predictions, we used “leave-one-rat-out” cross-vali-

dation, in which the predicted animal was excluded from the training dataset (Methods). The

correlation between the average network score for each rat and the expert score was r = 0.71

(p = 0.002; Fig 2B), showing that the network can reproduce the expert score.

To determine whether the network scoring was within the variability range of human scor-

ers, three other researchers (trained by the expert) independently rescored all the videos. The

expert was IQW, with decades of expertise in behavior analyses, who developed this scoring

Fig 1. Network architecture. Each frame is first passed through a ConvNet, called Inception V3 (“Incept. V3”), that reduces dimensionality by extracting high-level

image features [36]. The features from 125 successive video frames are then given as an input to an RNN. The RNN is composed of LSTM units with the capacity to

analyze temporal information across frames. The RNN outputs the movement deficit score for each video. After the network is trained, information is extracted from the

network weights in order to identify image features and the parts of each video frame that were most predictive of the network score (red arrows). Network code is

available at github.com/hardeepsryait/behaviour_net, and weights of trained model are available at http://people.uleth.ca/~luczak/BehavNet/g04-features.hdf5. See

Methods for details. ConvNet, convolutional network; LSTM, long short-term memory; RNN, recurrent neural network.

https://doi.org/10.1371/journal.pbio.3000516.g001
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system. His scoring was compared to scoring of three researchers: #1 (JF), a researcher with

over 10 years of experience with behavioral scoring; #2 (HR), a researcher with 1 year of behav-

ioral scoring experience; and #3 (SL), an undergraduate student with two semesters of scoring

experience. For each rat, we measured the absolute value of the difference between the average

scores of the expert and one of each researcher. The average difference across rats between the

expert and other researcher scores was as follows: researcher #1 = 0.63 ± 0.09 SEM; researcher

#2 = 0.77 ± 0.17 SEM; researcher #3 = 0.51 ± 0.1 SEM (S1 Fig). For comparison, the difference

between the expert and network scores was 0.49 ± 0.08 SEM. Using the paired t test, we found

that the discrepancy between expert and network scores was not statistically different from the

discrepancy between expert and other researcher scores (S1 Fig). This shows that our network

scores were within the variability range of trained humans.

Fig 2. Automated scoring of movement deficits in the SPRT. (A) Video frames showing selected movement elements in the task. (B) Scatterplot of corresponding

network and expert scores. Each circle denotes averaged score for a single rat. Note that stroke (red) versus control (black) could be separated along the network score (y-

axis) but not along x-axis corresponding to the expert scores. (C) Scatterplot of stroke volume and corresponding scores by the network (blue) and human expert

(yellow). The distribution of blue points closer to the identity line (dashed) indicates that network scores are more strongly correlated with stroke lesion volume than

were the expert scores. Inset shows a representative histological image from a rat with a lesion (infarct area outlined; extent of M1 and M2 is denoted by lines in the intact

hemisphere). Lesion volume and movement scores were normalized between 0 and 1 in order to directly compare both scores. Each dot represents the average score for

one rat, and solid lines show linear regressions (blue: network score; yellow: expert score). The distribution of blue dots closer to the identity line (dashed) shows that the

network scores better predict lesion volume in this dataset. The sample network and data on which this figure is based are available at github.com/hardeepsryait/

behaviour_net. M1, primary motor area; M2, secondary motor area; SPRT, single-pellet reaching task.

https://doi.org/10.1371/journal.pbio.3000516.g002
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Interestingly, our network scores were more correlated with the experimental group cate-

gory (control versus stroke) than were the expert scores, although group information was not

given to the network (r Network-Group = 0.78, p = 0.0003; r Expert-Group = 0.6, p = 0.015; see separa-

tion of red and black circles only along the y-axis in Fig 2B). Moreover, the network scores

were better correlated with lesion volume than were the expert scores (r Network-Lesion vol = 0.67,

p = 0.004; r Expert-Lesion vol = 0.5; p = 0.05; Fig 2C). To examine whether the network scores

were significantly better than the expert scores in estimating lesion volume, we normalized the

network and expert scores between 0 and 1 and compared them to lesion volumes, which were

also normalized between 0 and 1. The network scores were significantly closer to the normal-

ized lesion volume than were the expert scores (Wilcoxon signed rank test p = 0.0013, S2 Fig).

The use of z-score normalization instead of 0–1 normalization resulted in the same conclusion.

These results suggest that although the network was trained only to reproduce the expert

scores, it did so by finding additional movement features that provided information about the

stroke impairment (see following sections for further evidence).

The network was also able to accurately reproduce changes in movement deficit scores

across days. For each rat, we calculated the average expert score on each recording day, and we

correlated that score with the network score (the average correlation between the network and

expert scores across days was r = 0.67). S3 Fig shows how the movement deficit score changed

across days for each individual rat. The distribution of correlation coefficients (insert in S3

Fig) shows that for the majority of rats, the network tracked individual changes across days

accurately (i.e., correlation coefficients approaching 1).

To test how the network’s performance depended on particular model parameters, we

modified the network by changing the number of neurons and layers in the RNN, and we

repeated the training and testing on the same data (S1 Table). The modified networks pro-

duced results consistent with those of the original network (average correlation coefficient

between scores of original and modified networks: r = 0.93; every p< 0.0001; S4 Fig). The net-

work also showed robustness to experimental variability of the video recording. Although on

each video recording day, the camera, cage, and lighting were manually set in a predefined

configuration, there were still noticeable variations in recording conditions across days (e.g.,

subtle differences in recording angle, distance, lighting, etc.). Training the network on videos

only from 4 experimental days and predicting the rats’ scores on the remaining day confirmed

that the network was generating reliable scores (average correlation coefficient between the

expert score and the network score: r = 0.68, p< 0.01). Altogether, these results show that the

network generalizes well to new rats and the variation in experimental conditions.

Single-movement-element analyses

Next, we investigated which movement elements were most informative for constructing the

network’s movement deficit score. To estimate this, we correlated the network score with the

expert score for each individual movement component (Fig 3A). Network scores were signifi-

cantly correlated with all analyzed movement elements except for supination (r Lift = 0.67,

p = 0.005; r Aim = 0.53, p = 0.03; r Pron = 0.83, p = 0.0001; r Grasp = 0.73, p = 0.001; r Sup = −0.12,

p = 0.66). To understand why supination did not correlate with network scores, we more

closely examined our dataset, which revealed that two control rats had poor supination scores.

Thus, the network correctly learned to “ignore” supination movement to derive the stroke dis-

ability score, because supination was not a consistent predictor for control rats (in behavioral

analysis, experts often designate such scores as outliers). Therefore, our results should be taken

as indication not that supination is not important for stroke evaluation but rather that it

reflects the particular properties of the training dataset. Altogether, this suggests that the
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network, similarly to the expert, combined information from multiple movement elements to

derive its scoring system.

To explicitly test whether the network could properly score individual movement elements,

we trained the network to predict the expert scores of each movement element. For this, we

added output neurons to the RNN that represented each individual movement element. The

correlation between the expert and network scores for individual movement elements was

r = 0.77, p< 0.001 (S5A Fig). This shows that the network is able to detect deficits in individual

movement elements. Moreover, we tested how well the stroke volume could be predicted from

Fig 3. The network can learn to detect individual movement components with human-level accuracy. (A) The relation between network scores and expert scores

for individual movement components. Each dot represents the average score for one rat, and dashed lines show linear regression. Network scores were significantly

correlated with expert scores for almost all movement elements. (B, C) To directly test whether the network could learn to discriminate movement components in

action clips, we retrained the network on video segments with labeled movement elements. Panels B and C show the probability (“prob.”) of detecting a particular

movement element in a video clip. For visualization, video segments are aligned with respect to the beginning of a reaching movement. The high similarity between

timing of movements defined by the expert (B) and the network (C) shows that the network can be used for automated segmentation of behavioral videos to identify

specific movements. The sample network and data on which this figure is based are available at github.com/hardeepsryait/behaviour_net. Pron., pronation; Sup.,

supination.

https://doi.org/10.1371/journal.pbio.3000516.g003
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the weighted combination of individual movement scores, rather than from the simple sum of

individual movements’ scores. Multivariate linear regression showed that stroke volume was

again better predicted from network scores than from expert scores (r Network = 0.74, p< 0.01;

r Expert = 0.62, p< 0.01; (S5B Fig).

Automatically detecting instances of specific movement elements or postures can be highly

useful for detailed behavioral analyses. Therefore, we asked whether the network could be

trained to correctly classify different movement components in continuous videos. For this,

we retrained the last layers of the network (RNN part in Fig 1) on video clips corresponding to

separated movement components (each clip consisted of seven consecutive frames; Methods).

Next, we tested the network on videos that were divided into video segments of seven frames.

The correlation between the probability distribution of human and network labeling of move-

ment classes was r = 0.89, p< 0.001 (i.e., correlation between Fig 3B and 3C). The average

accuracy when comparing human and network classification in each individual video segment

was 80.2% (S5 Fig). This demonstrates that the same network architecture can be used for

automated segmentation of behavioral videos and for detecting specific movement compo-

nents with human-level accuracy.

Extracting information from the network

Considering that the network scores produced a higher correlation with stroke lesion volume

than did expert scores (Fig 2B and 2C), we investigated which movement features were the

most informative for the network scoring. For this, we applied recently developed tools for

knowledge extraction from deep neural networks [38,39]. First, we identified which features

extracted from video frames were contributing most to the score by the RNN (features marked

in red in the middle part of Fig 1; Methods). Out of the 2,048 features, we selected about 200

with the highest contribution and then performed principal component analysis (PCA) on

those selected features. Thus, each original video frame was transformed to a low-dimensional

PCA space of the most-informative features. For example, Fig 4A shows points in PCA space

corresponding to video frames recorded before and after the stroke for a single rat. The dispar-

ity between clusters corresponding to different days shows that there are a large number of

frames with features specific only to the normal or to the stroke condition. For instance,

frames showing rats eating with both hands were only present before stroke (Fig 4Aa), and

frames showing rats trying to reach for food with the mouth instead of the hand were only

present after the stroke (Fig 4Ab). We further asked the network to identify the parts of each

frame that were used for the network decision (Methods). For example, for the video frames

shown in Fig 4Aa and 4Ab, this confirmed that the network was mainly using hand and

mouth features in those frames to calculate the motor-disability score (Fig 4Ac and 4Ad). The

differences found by the network in reaching behavior pre- versus poststroke were consistent

across rats. This is illustrated in Fig 4B, in which each ellipse outlines the distribution for pre-

and poststroke day for each rat. Thus, by using the network representation, we could identify

which features of the behavior that were the most indicative of cortical stroke.

Discovering movement elements based on the internal network

representation

To better understand the relationship between the internal network representation and the

movement components, we divided points in the network feature space into disjoined clusters

(Fig 5 top insert). We used data from a day before and a day after the stroke and applied an

unsupervised k-means clustering to divide it into 40 subclusters (changing the number of sub-

clusters between 20 and 60 did not affect the presented conclusions; S6 Fig). After closer

Data-driven analyses of behavior
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Fig 4. Extracting knowledge from the network to identify the movement elements most predictive of stroke severity.

(A) Representation of video frames transformed into the internal feature space of the network (see Methods). Each point

represents a single video fame. Blue points represent video frames from a single rat during trials obtained on the day

before stroke. Red points represent video frames from trials obtained after stroke for the same rat. Blue and red ellipses

outline distributions of points before and after the stroke, respectively. Note the disparity between distributions. For

example, eating with both hands (Aa) was only observed before the stroke, whereas reaching for the food pellet with the

mouth (Ab) was only observed after the stroke. Panels Ac and Ad illustrate the parts of frames in Aa and Ab that the

network evaluated as being most important for its scoring decision. (B) Ellipses outline the distribution of points before

the stroke (blue) and on day after the stroke (red) for each rat. Close overlap of the red ellipses indicates that features

predictive of stroke found by the network were consistent across rats. The sample network and data on which this figure is

based are available at github.com/hardeepsryait/behaviour_net. PC, principal component.

https://doi.org/10.1371/journal.pbio.3000516.g004
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Fig 5. The clustering of the network feature space revealed movement elements specific only to the stroke or the control condition. (Top insert) Blue and red

ellipses outline the distribution of points in feature space of the network before and after the stroke, respectively (the same as in Fig 4A). Black ellipses outline

subclusters corresponding to individual movement subcomponents. For visualization clarity, only 10 subclusters out of 40 are shown. Dashed ellipses indicate clusters

Data-driven analyses of behavior

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000516 November 21, 2019 9 / 30

https://doi.org/10.1371/journal.pbio.3000516


examination of the resulting subclusters, we found that most subclusters could be clearly

assigned to one of the movement categories: lift, aim and advance, pronation, grasp, supina-

tion, sniffing, reaching for food pellet with a mouth, and eating with both hands. Thus, for

each subcluster, we assigned one of the above categories based on the examination of eight

frames closest to the subcluster center, which was evaluated by two researchers. If four or

more frames were judged to be in the same category, then that category was assigned to the

subcluster. Otherwise, we assigned a “not clear” category, meaning that this subcluster con-

tained frames from a variety of movement elements. There were also off-task frames (e.g., rear-

ing or a rat walking away), but these types of frames did not form consistent subclusters and

were thus assigned to the “not clear” category. For example, the dashed ellipses in Fig 5 outline

subclusters corresponding to movement components described in Fig 4Aa and 4Ab, which

were characteristic for control and stroke conditions, respectively.

To quantify the selectivity of the clusters for the stroke versus control group, we counted in

each subcluster the number of frames from each treatment group. Specifically, we devised a

cluster selectivity index as (# of stroke frames − # of control frames)/(# of stroke frames + # of

control frames), which has values bound between −1 and 1. For example, a cluster selectivity

index = 1 means that this subcluster contains only frames from videos of stroke rats. The clus-

ter selectivity index = 0 means that a subcluster has equal number of frames form videos of

stroke rats and control rats. The category assignments for all subclusters, sorted by the cluster

selectivity index, is shown in Fig 5. Most movement elements—for example, “lift”—had multi-

ple subclusters, with some subclusters containing mostly control frames and other subclusters

containing mostly frames from the stroke group. This could be interpreted as a difference in

how that movement element is executed in controls versus stroke rats, which is consistent with

the main premise behind an expert scoring system [3]. However, consistent with observations

shown in Fig 4, we also found two distinct movement elements: eating with both hands and

reaching for a food pellet with the mouth, which almost exclusively had frames only from

control or stroke rats, respectively. To quantify these observations, we calculated the average

cluster selectivity index for each movement category: lift = 0.03 ± 0.67 SD, aim and advance =

0.46 ± 0.37 SD, pronation = 0.34 ± 0.45, grasp = −0.29 ± 0.48, supination = 0.39 ± 0.17 SD,

sniff = 0.06 ± 0.88, not clear = −0.31 ± 0.65, reaching with mouth = 0.92 ± 0.07 SD, eating with

hands = −0.95 ± 0.02 SD (see bottom insert in Fig 5). This shows how our data-driven

approach can help to discover the most-informative movement elements. Those movement

elements then can be used as the basis for designing improved behavioral scoring systems for

neurological disorders.

Changes in individual movement elements during stroke rehabilitation

Plotting video frames in principal component (PC) space of the network representation

revealed that in the days following stroke, movement components started returning to pre-

stroke values (Fig 6A and 6B). Interestingly, data clustering, described above (Fig 5), allowed

us to analyze poststroke changes for each separate movement element. For this, we calculated

the number of video frames within each cluster separately for each experimental day (the num-

ber of frames in each cluster was normalized by the number of frames recorded that day; thus,

most selective for the stroke and the control categories and arrows point to sample frames from those clusters. Note that clustering was done using the first seven PCs of

the network features; thus, subclusters appear to overlap in this 2D projection. (Main panel) Each point represents cluster selectivity by expressing the fraction of

frames from stroke versus control rats in each subcluster (see Results). Labels below denote the movement category assigned to subclusters, and images above show

representative frames from corresponding subclusters. Points in black denote a “not clear” clusters category. The bottom insert shows the average cluster selectivity

index (“avr clust select. index”) for each movement category. Error bars denote standard deviation. The sample network and data on which this figure is based are

available at github.com/hardeepsryait/behaviour_net. adv, advance; PC, principal component; pron, pronation; sup, supination.

https://doi.org/10.1371/journal.pbio.3000516.g005
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it is expressed as a probability: p). For instance, Fig 6Ba shows that before stroke, it was

unlikely that a rat would try to reach for a food pellet with its mouth. After stroke, the probabil-

ity of that movement increased and then reverted toward the control level as rehabilitation

progressed. For the subcluster corresponding to a rat eating with both hands, this movement

almost completely disappeared immediately following stroke, and it shows very little recovery

in the following days (Fig 6Bb). Changes across days during stroke recovery for all subclusters

are summarized in S7 Fig. Importantly, these analyses allowed us to quantify stroke recovery

(the return of normal or movement elements, e.g., Fig 6Bb) versus compensation (the appear-

ance of new movements, e.g., Fig 6Ba), which can be important for improving monitoring the

effects of rehabilitation.

Fig 6. Quantifying changes in individual movement components during stroke recovery using the internal network

representation. (A) Representation of video frames in the internal feature space of the network, as in Fig 4A, but with

added points from day 15 after stroke (light blue). Note that points on day 15 shift toward prestroke (dark blue) values,

indicating movement recovery. (B) Ellipses outlining the distribution of points before stroke and for all filming days after

stroke. Note the gradual shift of the poststroke distributions toward prestroke space. Dashed ellipses illustrate sample

subclusters representing single movement components. (Ba and Bb) Probability of points falling within a given subcluster

across days. For example, the high red bar in Ba shows that this movement component was mostly present on day 1

poststroke. The sample network and data on which this figure is based are available at github.com/hardeepsryait/

behaviour_net. Movement comp. prob., movement component probability; PC, principal component.

https://doi.org/10.1371/journal.pbio.3000516.g006
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Illustrating complex movement trajectories using the internal network

representation

Typically, movement trajectories represent the sequential positions of a single body part in

three spatial dimensions as a function of time. In contrast, the trajectory in the PCA space of

internal network representation (Fig 7A) represents combinations of multiple body features

that were the most informative in indicating stroke-related abnormalities of movement. This

representation shows that after stroke, the behavioral trajectory becomes more variable. For

quantification, we calculated cross-correlograms between pairs of trajectories (S8 Fig). We

found that before stroke, there were significantly more highly reproducible trajectories

(p< 0.001, t test; Fig 7B). Moreover, the variability of the trajectories within a single session

(consisting of 20 reaching trials) was significantly correlated with the overall movement deficit

score (r = −0.41, p< 0.001).

The network can derive expert-like scores from only categorical data

(stroke = 1, control = 0)

Creating a dataset with expert scores to train the network can be time consuming. For exam-

ple, to score 692 reaching trials used here, it took about 60 hours for one trained person

(approximately 5 minutes per trial). To eliminate such a laborious human scoring require-

ment, we provided the network only with the class information (stroke versus control) for

each trial. The aim was to determine whether our regression network, if trained only on cate-

gorical labels (stroke = 1; control = 0), could then estimate the level of stroke impairment. The

network had two output neurons (n0 and n1) corresponding to stroke and control class. How-

ever, when presented with the test example, neurons n0 and n1 usually had values between 0

and 1, reflecting how “certain” the network was that a presented trial belonged to stroke or

control category respectively. Therefore, we defined the network score to be the average vote

of both neurons: Nsc = [n0 + (1 − n1)]/2. The network learned to discriminate the stroke

Fig 7. Movement trajectories encoded by the internal network representation are more variable after stroke. (A) Movement

trajectories for the three most similar trials before stroke (blue shades) and the three most similar trials after stroke (red shades)

for the same rat. Coordinates correspond to the first three PCs of the internal network representation. (B) Distribution of

correlation coefficients (“corr coef”) between pairs of trajectories for the day before stroke (blue) and the day after stroke (red).

The sample network and data on which this figure is based are available at github.com/hardeepsryait/behaviour_net. PC,

principal component.

https://doi.org/10.1371/journal.pbio.3000516.g007
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versus control groups with 100% accuracy (Fig 8A). Network scores were also well correlated

with the expert scores (r = 0.61; p = 0.012). The discrepancy between the network and the expert

scores (1.04 ± 0.16 SEM) was not statistically distinguishable from the discrepancy between the

expert and other trained researchers (presearcher#1 = 0.03, presearcher#2 = 0.15, presearcher#3 = 0.04),

showing that training with only categorical information can produce movement scoring at or

close to human accuracy. The network scores were also highly correlated with stroke size

(r = 0.73, p = 0.0014; Fig 8C), which provides additional support for the effectiveness of this

approach. Altogether, these results show that training the network only on a stroke versus con-

trol category can produce movement scoring similar to the scoring developed by human

experts. This provides proof of concept that the presented approach can provide easy-to-imple-

ment, data-driven behavioral scoring when expert scoring is unavailable or impractical.

Training the network on stroke size data converges to a similar solution as

training on expert scores

Stroke size calculated from brain slices provides an anatomical measure of stroke severity.

However, this measure may not perfectly correlate with behavioral deficits [41]. This is because

strokes of similar size and location may result in a different degree of impairment among ani-

mals, because of variability between brains and its vasculature. Nevertheless, lesion size is a

highly relevant measure of stroke severity. Accordingly, we trained our network to predict

stroke size from the same videos of rats performing the reaching task. The correlation between

stroke size and network predictions was r = 0.86, p< 0.001 (Fig 9A). Scores generated by this

network were also highly correlated with scores of the first network trained to reproduce

expert scores (r = 0.73, p = 0.0013). This suggests that networks trained to predict stroke size

and those trained to predict expert scoring converged to similar solutions.

To investigate which features were the most important for network predictions, we used

the analyses described previously (Fig 1). For all our networks, we used exactly the same

Fig 8. A network trained only to classify videos as stroke versus control derived a continuous expert-like score. (A) Neural network scores

versus group category used for the training. Each circle denotes averaged score for a single rat (stroke [“Str”] = red, control [“Contr”] = black).

(B) Relation between that network scores and the expert scores. The regression line is shown in yellow. (C) Network scores were also predictive

of stroke volume, even though this information and human-based scores were made available to the network. Stroke volume and movement

scores were normalized between 0 and 1 in order to directly compare both scores. The sample network and data on which this figure is based are

available at github.com/hardeepsryait/behaviour_net.

https://doi.org/10.1371/journal.pbio.3000516.g008
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ConvNet part, and only the RNN part was modified. Therefore, we analyzed which output fea-

tures of ConvNet were the most important for each RNN network. Using �-layer-wise rele-

vance propagation (eLRP) algorithm (Methods), we calculated the importance of each of the

2,048 features and averaged them across all videos. We found that the most informative fea-

tures for the network’s prediction of stroke size were also the most important features for the

network trained to reproduce expert scores (Fig 9B). The correlation coefficient between fea-

ture importance for two networks was rNetStrokeSize-NetExpertScores = 0.62, p< 0.0001 (values of

feature importance varied over orders of magnitude; thus, all values were log transformed

before calculating a correlation coefficient). Similarly, comparing feature importance between

all pairs of the networks presented here (trained to predict expert scores, stroke versus control,

stroke size, movement element impairments) also resulted in highly significant correlations

(all p< 0.0001; average r = 0.61 ± 0.05 SEM). This shows that regardless of exact task, all net-

works picked similar features for stroke-related predictions.

To further investigate similarities between movement features used by our networks, we

again applied PCA analyses to features that were the most informative for network predictions

of stroke size. Consistent with analyses in Fig 4A, we selected the 200 features that had the

highest contribution to the network decision. Plotting the results in PCA space again revealed

differences between the video frames from rats before and after stroke (Fig 9C). To check

whether the positions of clusters corresponding to individual movement elements were also

similar between networks, we marked (in green) points corresponding to frames classified

before as belonging to the subcluster “eating with both hands.” Similarly, we marked in black

points belonging to the “eating with mouth” subcluster, as defined by the k-means algorithm

described in the previous section (compare Fig 9C with top insert in Fig 5). This shows that

Fig 9. A network trained to predict stroke size discovered the same most informative movement features as the network trained to predict expert scores. (A)

Network predictions of stroke lesion volume (normalized [“Norm.”] between 0 and 1). The line shows linear regression. (B) Importance of movement features as

determined by the network trained on stroke size (y-axis) and the network trained on expert scores (x-axis). Each point represents one of 2,048 features from the output

of the ConvNet (Fig 1). (C) Representation of video frames in internal feature space of the network trained to predict stroke volume (see Fig 4A for description). Green

and black points correspond to frames identified in previous analyses (see Fig 5) as belonging to reaching with the mouth and eating with both hands (outlined with

dashed ellipses). The similar location of those clusters to the corresponding ones in Fig 5 exemplifies the discovery of similar feature importance by both networks. The

sample network and data on which this figure is based are available at github.com/hardeepsryait/behaviour_net. ConvNet, convolutional network; PC, principal

component.

https://doi.org/10.1371/journal.pbio.3000516.g009
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the subclusters most discriminative between stroke and control groups for the network trained

to reproduce expert scores were in similar disjoined parts of the feature space for the network

trained to predict stroke size. We suggest the following analogy: To predict the age of trees, a

network may discover that width and height are the most predictive features. Similarly, if a

network is trained on a classification problem to discriminate old versus young trees, it would

discover that the same features are the most predictive (width and height), resulting in similar

PCA projections. Moreover, scores generated by the network trained on stroke size also signif-

icantly correlated with expert scoring (r = 0.51, p = 0.043). Altogether, these results demon-

strate that networks trained on different tasks related to stroke scoring find consistent

movement features predictive of stroke severity. This is important because it shows that the

network does not need to be trained with expert scores to discover movement features that are

the most predictive of stroke impairments.

Comparisons of our approach to other methods used for behavioral

analyses

Considering that some movement elements can significantly differ between stroke and control

conditions, it may be expected that simpler methods than deep neural networks could also pre-

dict expert scores and stroke severity. To test this, we applied PCA to all combined video

frames. We took the first 20 PCs to represent each frame (explaining 71% of variance; S9A

Fig), and we applied least-squares regression to predict expert scores (all frames in the same

video clip corresponding to a single trial were assigned the same score to predict). Using this

simple linear approach, the correlation between expert scores and predicted scores was not sig-

nificant (r = −0.1 p = 0.69). To investigate this further, we used t-distributed stochastic neigh-

bor embedding (t-SNE) [42] to visualize all 20 PCA components in 2D space (S9B Fig). We

found that small changes in video procedures—e.g., camera angle—caused a large change in

PCA scores. For example, subtle shifts of the camera during a filming day caused large variabil-

ity in the PCA space (S9B Fig). In contrast to the ConvNet, which can extract features invariant

to spatial shifts, PCA features cannot be used to easily examine differences between stroke and

control rats without careful realignment and rescaling of all frames.

To test more directly how informative PCA features are as compared to ConvNet features,

we took 2,048 PCs as a description of each frame (99.3% explained variance). Next, we com-

bined all frames from a single trial in an array, and we used the RNN network instead of the

least squares for predicting expert scores. Thus, we replaced ConvNet features in our network

(Fig 1) with PCA features. This resulted in improved predictions of expert scores over the

least-squares method (r = 0.48, p = 0.06); however, using PCA was still markedly worse than

using ConvNet (compare S9C Fig to Fig 2B).

Recently, other methods based on deep neural networks have been developed for auto-

mated analyses of animal behavior [43,44]. However, those methods are designed to track

body parts rather than directly predict movement deficits. Specifically, these methods pro-

vide x- and y-coordinates of selected body parts, which then need to be interpreted; i.e., to

predict motor deficits, additional analyses are required. Thus, our method offers an alterna-

tive to those approaches, as our network can directly extract disease-related movement

features.

To test whether x- and y-coordinates could provide better features than the ConvNet for

predicting expert scores, we used DeepLabCut [44] to track the position of the nose and of two

fingers and the wrist on each forepaw (S10A Fig). As a result, each video frame was repre-

sented by x- and y-position values of seven marked body parts and by seven additional values

representing the DeepLabCut confidence of estimates of each point. All points corresponding
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to frames from one trial were combined as one input to the RNN (similarly as ConvNet feature

in Fig 1). The correlation between predicted and actual expert scores was r = 0.53, p = 0.036

(S10B Fig). This suggests that ConvNet features, selected in a data-driven way, can outperform

human-selected features (marks on body parts) to predict motor deficits. Different selection of

body parts may result in improved performance; however, note that reliably identifying joints

on a furry animal with pliable skin is sometimes difficult. Therefore, the advantage of our net-

work is that it can directly predict movement deficits from raw videos and does not require

human selection of body parts to predict movement scores.

Network performance on other behavioral tasks

The same network can also be trained to score and analyze a whole spectrum of different

behavioral tasks (S11 Fig). As an example, we trained our network to reproduce expert scoring

for rats performing the parallel-beam-walking task (Fig 10A). Here, fine inaccuracies in paw

placement and paw slips were counted to provide a measure of movement impairment after

stroke [13–17] (Methods). The network scoring significantly correlated with the expert score

(r = 0.74, p = 0.0001; Fig 10B), showing that the network successfully learned to score this task.

To identify which movement features the network was using to score deficits, we repeated the

same analyses as presented in Fig 4. Briefly: first, we used the eLRP method [38] to identify

which features extracted by ConvNet contributed the most to the RNN output score. Those

features were than projected to 2D space (Fig 10C). Here, to find PCs, we used partial least

squares [45]. This method is similar to PCA, but its components are chosen to explain most

variance between stroke versus control groups, thus allowing us to more easily identify distinc-

tive frames for each group. For example, in Fig 10C, most points on the left side correspond to

the control animals, and most points on the right side represent frames from stroke animals.

Representative frames for each group are marked with arrows. For each video frame, we also

extracted information about which parts of a frame were used for the network decision (see

Fig 4 and Methods for details). Loosely speaking, this illustrates where the network is paying

most “attention” in solving the scoring task. For control animals, the network mostly focused

on the center of rat. This suggests that the network may be using a simple speed or posture dis-

crimination rather than details of foot placements, which are used by the human expert scor-

ing system. For example, we noted that posture is different between stroke and control rats.

Stroke animals tend to have a lower center of mass and hug the beam (similar to an elderly per-

son who walks with a bent back and prefers to be close to the railing so as to better hold it).

Consequently, the control rat had a more normal convex back, whereas the stroke rat often

displayed a concave (lordosis) posture. Thus, the network appears to have discovered that pos-

ture can help to score stroke deficits. Nevertheless, when the rat’s foot slipped, the network

was clearly detecting that by using the part of image with the forepaw for its decision (Fig 10C

right side). Thus, similar to the SPRT, the network identified movement components (micro

symptoms) used by experts to score behavioral deficits (food slips), but it also used indices of

whole body action (mega symptoms) to make decisions.

Discussion

Here, we describe a neural network that is trained to score the skilled reaching movements in

control rats and in rats with a motor cortex stroke. The scores produced by the network and

the scores produced by human evaluators were highly correlated. Both the network and the

evaluators found that movement scores correlated with stroke size, but the network was more

successful in predicting stroke size. Both the network and the experts found that performance

was severely impaired on the first day after the lesion, and both found that scores improved
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but did not fully recover over 15 days of rehabilitation. The network also examined the spatial

trajectories of the movements and found that the trajectories were more variable poststroke

than prestroke. An analysis of how the network made decisions found that the network classi-

fied movements in a way that was similar to that of the evaluators and also used features of the

movements that were not part of the expert scoring system.

We chose the SPRT to evaluate the network, because over the past 30 years, this task proved

to be a sensitive behavioral test for identifying reaching impairments in animal models of

stroke Huntington disease, Parkinson disease, and spinal injury and in patients with these con-

ditions (for reviews, see [3,6,27,46–50]). Interestingly, the knowledge extraction from the net-

work revealed that the standard movement components scored in this test (e.g., arm lift,

pronation, grasp, etc.) were not the only ones informative of neurological deficits. The network

additionally identified behaviors not included in this scale, including eating with both hands at

the end of trial, reaching for pellet with the mouth, and postural differences that were different

in control and stroke rats. This suggests that the network is able to use a wider range of infor-

mation than that included by experts in a behavioral scoring system.

Fig 10. Network validation on different behavioral tasks. (A) Sample frame showing a rat on the parallel-beam-walking task. Note the mirror below the rat is

showing an additional view of paw placement. (B) Relationship between expert and network scoring. Each dot represents the average score for a single rat. (C)

Representation of video frames transformed into the internal feature space of the network. Each point represents a single video fame. Blue points represent video

frames from control rats and red points from stroke rats. For picture clarity, only 20% of randomly selected points are shown. Long arrows point to sample video

frames from control and stroke groups. Short arrows point to “attention” maps superimposed on frames: parts of frames most informative for network decision

(marked in lighter colors). It indicates that similar to experts, the network uses foot slips to score stroke deficits (micro symptoms), but it also discovered that body

posture and/or speed (macro symptoms) improves scoring. The sample network on which this figure is based is available at github.com/hardeepsryait/behaviour_net. a.

u., arbitrary units; PC, principal component.

https://doi.org/10.1371/journal.pbio.3000516.g010
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Similarly, differences in scoring strategy may be a reason for better correlation of network

scores with stroke volume. Rating scales used to assess behavior are heuristic, designed to sim-

plify diagnosis. The network, however, is not so constrained and thus may ignore single move-

ment inaccuracies that are not predictive of stroke but attend to others that are. Moreover,

human scores are designed to evaluate separate movement elements, whereas the network can

additionally use temporal combinations of movement features (micro and macro symptom

analyses), which may provide a better stroke predictor.

The neural network described here offers a state-of-the-art method for an automated scoring

of complex behaviors. Such automated analyses provide multiple benefits: they can reduce time

and personnel needed for scoring, which in turn can allow for more detailed and frequent behav-

ioral testing. Moreover, they can improve scoring validity and reliability by eliminating interrater

biases [51]. Usually, to automatically analyze behavior, tracking systems are used for which mark-

ers are attached to body parts (for review, see [52]). Interestingly, a deep neural network has

recently been shown to successfully track “virtual” markers, wherein the virtual marker position

is specified only on a subset of the video frames (training), and the network predicts the position

of those markers in the rest of the video [44]. Moreover, computer science advancements allow

for automated video analyses of variety of behaviors [53–64], which could be used to correlate

changes in behavior with health deficits [63,65]. Nevertheless, an important point to note is that

most of these methods rely on a human-defined selection of a subset of features (e.g., number

and location of body markers, definition of behavioral states, etc.). Here, we demonstrate that a

neural network can forego such assumptions and rather use a data-driven approach (e.g., training

on categories or lesion volume). A similar data-driven approach is used by MotionMapper [62]

and MoSeq [63] methods, which also do not require human-defined selection of features. How-

ever, those methods do require image preprocessing and proper image alignment. Moreover,

after projecting videos to feature space using those methods, other methods must be applied to

classify normal versus mutant animals. A key advantage of our methods is that by using ConvNet,

it can work with raw images without need of preprocessing and without the sometimes difficult

task of image alignment. This may prove useful for analysis of videos conducted outside of a labo-

ratory and by nonexperts, such as home video recording of neurological symptoms. Furthermore,

the RNN part of the network provides a powerful module for classifying spatiotemporal patterns

to score behavior, thus offering a one-step solution for feature selection and predictions.

This method can have important implications for diagnostics. For example, clinicians pres-

ently score behavioral deficits in neurological patients using rating scales, which have acknowl-

edged validity and reliability limitations [66]. Our results suggest that the reliability of clinical

diagnostic procedures could be improved and simplified by using deep network scoring of

patients’ movements. In principle, the approach presented here suggests that movement could

be recorded using a phone camera and immediately scored by using an appropriate neural net-

work application. This method would aid to standardize diagnosis and monitoring of neuro-

logical disorders and could be used by patients at home for daily symptoms monitoring.

Methods

Ethics statement

All animal experiments have been approved by the University of Lethbridge Animal Welfare

Committee (protocol# 0907) in accordance with the Canadian Council on Animal Care.

Deep neural network model

The general network architecture is shown in Fig 1. First, a deep convolutional neural network

(ConvNet) is used to extract 2,048 high-level features from each frame. Here, we used a
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pretrained network called Inception-V3 [36]. Although this network was originally trained on

the ImageNet dataset (images from 1,000 different classes like "dog," "car," "make-up," etc.),

this network performed surprisingly well on our datasets (retraining top layers of this network

specifically on our videos did not improve network performance). Next, features extracted by

ConvNet from each video clip were combined (2,048 feature × 125 frames) and used as inputs

to a RNN. This allowed the RNN to use sequences of movements to score neurological deficits.

The RNN was composed of 2,048 long short-term memory (LSTM) units in the first layer, fol-

lowed by maximum pooling, flatten and dropout layers, and then a single output neuron with

the ReLU activation function that gave the movement disability score (S1 Table). Modifying

the network architecture of our RNN and retraining it did not affect the results (S4 Fig). This

shows that our network does not require fine parameter tuning to robustly converge to a good

solution.

Code for our network and sample videos to reproduce our results are available at https://

github.com/hardeepsryait/behaviour_net. The code was developed based on the Inception-V3

ConvNet [36] and based on code for recurrent network for identifying action classes in videos

(https://github.com/harvitronix/five-video-classification-methods). A description of the main

network parameters is provided in S1 Table and S4 Fig, and all the details of the network archi-

tecture, including all parameters, are available in our GitHub repository listed above.

Knowledge extraction from neural network

Our network is composed of two separate networks: ConvNet and an RNN (Fig 1). To extract

knowledge of feature attribution, we computed how much each ConvNet output feature (out-

put unit) contributed to the RNN output (movement deficit score). Next, we found which

parts of each frame were contributing to the activity of the most informative ConvNet output

units. For this knowledge extraction from the ConvNet and RNN, we used the layer-wise rele-

vance propagation method [38]. This method uses the strength of synaptic weights and neuro-

nal activity in the previous layer to recursively calculate the contribution (relevance) of each

neuron to the output score. For this, we used the DeepExplain package, available at github.

com/marcoancona/DeepExplain, which is described elsewhere [39]. Using different knowl-

edge extraction methods like saliency maps [67] gave qualitatively similar results.

SPRT

Analyses of skilled forelimb reaching were performed as described in [68,69]. Each session

required the rats to reach for a food pellet 20 consecutive times. Baseline training was consid-

ered complete once the success rate (pellet brought to mouth) reached asymptotic levels. After

all animals were considered well trained, reaching trials were video recorded from a frontal

view. Seven reaching movement components were scored according to earlier descriptions

[3,69], based on procedures developed from the Eshkol-Wachman movement analysis [26]:

(1) Limb lift: The reaching hand is initially located on the floor and supports body weight, with

the fingers open and extended. As the arm is lifted using movements around the shoulder, the

fingers first close and then flex, and the tips of the fingers align with the midline of the body.

(2) Aim: With a movement at the shoulder, the elbow is adducted until the elbow and the fin-

gertips are both oriented along the longitudinal midline axis of the body. For the hand to

remain on the body midline, the movement involves concurrent abduction of the hand. The

dual movement, elbow-adduct and hand-abduct, is termed a fixation because the hand

remains at a fixed body-wise location. (3) Advance: The hand is advanced forward through the

slot using a movement around the shoulder and may also be associated with forward body

movement. During advance, the fingers extend. (4) Pronation: As the limb reaches maximum
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outward movement, the hand is pronated by abduction at the elbow and rotation at the wrist.

During pronation, the fingers open in the sequence finger 5 through to finger 2 in an arpeg-

gio-like movement. (5) Grasp: As the hand pronates, the fingers contact the food, following

which they flex and close around the food target. As the grasp is completed, the food is lifted

by a slight extension at the wrist. The grasp takes place with the hand in place. (6) Supination I:

As the hand holding the food is withdrawn by movement at the shoulder and a backward pos-

tural shift, the hand is supinated by about 90˚, mainly by adduction of the elbow. (7) Supina-

tion II: As the hand is brought toward the mouth, the hand supinates by a further <90˚ so that

the palm of the hand is oriented toward the mouth.

Movement elements are rated using a three-point scale: 0, 0.5, or 1. A normal movement is

given “0” score, an abnormal movement a score of “0.5,” and an absent movement a score of

“1.” The movement ratings are made by stepping through the video record frame-by-frame

and applying a score to each movement. For each reaching trial, a movement disability is cal-

culated for each movement, and a sum of scores gives an overall assessment of severity.

Sixteen male Long-Evans rats, 3 months old and weighing 300–400 g, were used in this

experiment, out of which nine rats had induced lesions in the forelimb area of primary motor

cortex by a focal photothrombosis method [70,71]. To induce photothrombotic lesions, the

skull over the motor cortex on the side contralateral to the skilled forelimb for reaching was

thinned using a fine dental burr in a rectangular shape from −1.0 to 4.0 mm (posterior–ante-

rior) to bregma and −1.0 to 4.0 mm lateral to the midline. A cold light source (Schott KL 1500,

Germany) with an aperture of the same size and shape as the partial craniotomy was posi-

tioned over the skull. The skull was illuminated at maximum light settings for 20 minutes.

During the first 2 minutes of illumination, Bengal Rose dye solution was injected through a

tail vein (20 mg/kg, 10% solution in 0.9% saline; for control rats, only saline was injected).

The videos were recorded over 5 days: a day before surgery and on days 1, 6, 11, and 15

after surgery. From 16 rats, we used 692 video clips, in which each single clip corresponds to a

single reaching trial. We used a Panasonic camera (HDC-TM900) at 60 frames per second. To

train the neural network, we reduced the size of each frame to 300 × 300 pixels, centered

roughly around the initial location of food pellet, which was held in a small indentation (Fig

1). To reduce training time, videos were also downsampled to 30 frames per second and

divided in 125-frame-long clips, each consisting of a single reaching trial. Neither using the

original sampling rate nor extending the clip length improved network performance.

Stroke analysis

Nissl-stained coronal sections (40 μm thick), cut on a freezing microtome and mounted on

microscope slides, were digitally scanned at 40× magnification (Nanozoomer, Hamamatsu

Photonics, Hamamatsu, Japan). The images were transferred to the ImageJ software (NIH,

Bethesda, MD, USA), and the lesion volumes were quantified. Volumes were measured by

tracing the lesion borders and then multiplying the lesion area by section thickness and num-

ber of sections in the series.

Parallel-beam-walking task

The parallel-beam task (PBT), in which animals walk across two elevated parallel beams, is

commonly used to assess motor deficits in laboratory rodents. Twenty-one male Long-Evans

rats, 3 months old and weighing 260–330 g, were used. Eleven rats received motor cortex

devascularization lesions as described previously [17,72]. Rats were anesthetized, and the skin

over the skull was opened and trephined on the side contralateral to the skilled forelimb for

reaching using a fine dental burr. The coordinates for the maximum size trephination was 1 to
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4.5 mm lateral to the midline and −1 to 4 mm anterior to bregma (caudal and rostral forelimb

area of motor cortex). Within this area, the dura was carefully removed using microscissors.

The underlying tissue was devascularized by wiping the pia and blood vessels away with a cot-

ton tip. The skin was sutured after devascularization.

The PBT requires accurate interlimb coordination and balance while left and right limbs

are maneuvered along two distant parallel beams. The task apparatus was elevated 30 cm

above the ground with a refuge (home cage) at the end. A mirror, spanning the length of the

walking platform, was positioned under the walking platform at a 45˚ angle, which provided a

ventral view of the animals. All animals were habituated to the task and trained to traverse the

PBT from the neutral start platform to reach their refuge (home cage) at the other end. Scoring

systems for the PBT are described in detail in [17]. Briefly, three movement features were

scored: (1) deviation from the correct placement of the paw on the beam surface, (2) time to

complete the walk, and (3) average number of placing attempts per step. For the network train-

ing, each of those measures was normalized between 0 and 1, and an average across all three

measures was used as a motor-disability score. In all experiments, we used “leave-one-animal-

out” cross-validation, in which all videos from the predicted animal were excluded from the

training dataset.

Cross-validation

In all presented analyses, we used “leave-one-rat-out” cross-validation. That is, we trained the

network on videos of 15 out of 16 rats from all 5 days and predicted expert scores for one

remaining rat for all days. Thus, all analyses were repeated 16 times, and reported results are

always from rats excluded from the training dataset. The same cross-validation procedure was

applied to predictions using a linear model and using DeepLabCut features. The one exception

to this procedure was a control experiment in which we used “leave-1-day-out” cross-valida-

tion to test how well the network can generalize to data recorded on different days (i.e., slightly

different video recording conditions). In that case, we used videos from all rats from 4 days,

and we predicted expert scores for all rates on the remaining day. This procedure was repeated

five times for each excluded day separately. Considering that all our networks (trained to pre-

dict expert scores, stroke versus control, stroke size, movement element impairments) con-

verged to similar solutions (see section above Fig 9) provides additional argument for the

robustness of our approach. Matlab code and data used for the presented analyses and figures

are available upon request from AL.

Supporting information

S1 Fig. Network scoring was within the human scoring variability range. Each point repre-

sents the average movement score for a single animal. Colors depict scores made by different

researchers (yellow, green, red) and by the network (blue). Solid lines show linear regression

for each researcher score and for the network. Identity line is shown as dashed. For each rat,

we measured the absolute value of difference between the expert and other researcher scores.

To quantify whether network performance was statistically different from that of the trained

researchers, we used paired t tests to compare the distributions of differences; i.e., |expert score

− researcher#i scores| versus |expert score − network scores|, where |. . .| denotes absolute

value, and i is 1, 2, or 3. For all researchers, p> 0.1 (p1 = 0.27, p2 = 0.13, p3 = 0.92), showing

that the network scores were not statistically distinguishable from researchers in reproducing

expert scores.

(TIF)
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S2 Fig. Histogram of distance between normalized scores and stroke volume. Distribution

of network scores closer to zero shows that network scores were better correlated with stroke

volume than were expert scores (Wilcoxon signed rank test p = 0.0013).

(TIF)

S3 Fig. The correlation between network scores and expert scoring across days for individ-

ual rats. Each dot represents a score for a single rat on a single day. Different colors represent

different rats. Solid lines represent the regression for each rat. Distribution of regression lines

along an identity line (dashed) shows that the network can predict changes in rat performance

across days. Insert shows the distribution of correlation coefficients between network and

expert scores for each rat (mean r = 0.67). Strong skewness of the distribution to the right

shows that for the majority of rats, the network very accurately traced individual changes

across days.

(TIF)

S4 Fig. Robustness of the network performance with respect to changes in its architecture.

Blue, red, and yellow dots represent network scores for model 1, 2, and 3, respectively (param-

eters of each model are listed in S1 Table below). Distribution of points along identity line

(dashed) shows that all networks converged to a similar solution. Rationale for model parame-

ter selection: Our network was composed of two parts—the convolutional network part

(Inception V3) to extract features from frames and a recurrent network to combine informa-

tion from multiple frames to make predictions about movement impairments (Fig 1). The

convolutional network was previously optimized to extract features from images [36]. Retrain-

ing the last two blocks (i.e., freezing the first 249 layers and unfreezing the rest) of the convolu-

tional network on our videos did not improve the accuracy of predictions. This suggests that

the original Inception V3 network extracts image features useful for subsequent stroke disabil-

ity predictions. Based on this, we used the original parameters for the convolutional network

part. For the recurrent network, we made three significant modifications to layer structure and

to the number of neurons (S1 Table). Consistency of results across such significantly modified

recurrent networks suggests that our results are robust to network changes; thus, we did not

test any further modifications.

(TIF)

S5 Fig. The network can be trained to predict deficits in individual movement elements.

(A) Each dot represents the score for a single movement element for a single rat averaged over

all trials. Colors represent different movement elements: lift, aim, advance, pronation, grasp,

supination I (“Sup1”), and supination II (“Sup2”) (see insert for color legend). The line repre-

sents least-squares regression fitted to all points regardless of movement element group. For

those predictions, we modified our RNN to have output neurons corresponding to each move-

ment component. Thus, a single network was trained to score all individual movement com-

ponents. (B) Predicting stroke lesion volume from individual movement elements. A simple

sum of scores from all 7 movement elements may not be the optimal predictor of stroke vol-

ume. For that, we used least-squares regression, which appropriately weighted each movement

score to best predict stroke size. We applied this method to individual movements’ scores pro-

vided by the expert (yellow points) and separately to movement element scores predicted by

the network (blue points). To prevent model overfitting, we used leave-one-rat-out cross-vali-

dation as described in the Methods. Results in this figure also show that when the network is

trained to reproduce scores of individual movement elements, its stroke volume predictions

are more similar to human scoring (compare to Fig 2C). This suggests that the network in Fig

2C learned to use temporal combinations of movement features to predict stroke severity.
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When predicting severity from individual movement elements, the absence of information

about temporal relations reduces predictability. (C) Correlation coefficient between individual

movement scores (calculated from expert scores) shows that movement components closer in

time tend to have higher correlation of impairment scores. We found that out of 7 movement

elements, the lift component had the highest correlation with stroke volume (RLift = 0.3592;

RAim = 0.2879; RAdv = 0.2446; RPron = 0.2651; RGrasp = 0.2889; RSup1 = −0.0005; RSup2 =

−0.0846). Supination had the lowest correlation with stroke volume; however, this should be

taken with caution because in our dataset, two control rats had poor supination scores (see

“Single movement element analyses” section). In Fig 3B and 3C, we show that in video clips,

the network could discriminate individual movement components: (1) lift, (2) aim and

advance, (3) pronation, (4) grasp, and (5) supination. To quantify network performance on

this multiclass classification task, we also calculated classification accuracy, precision, and

recall as described in [73]. Because the videos were divided in consecutive segments of seven

frames, each segment could have transitions between movement elements, or more than one

movement element within a segment. We considered the network prediction a success if it was

within ±1 movement element category, as compared to human evaluator classification. The

average network accuracy was 80.2%, precision was 77.7%, and recall was 83.4%. Using the

same methods to compare classification made by two human evaluators gave similar results:

average accuracy was 86.5%, precision was 83.8%, and recall was 83.9%. This again shows that

the network can classify movement elements in video clips in a way similar to human evalua-

tors.

(TIF)

S6 Fig. The same outline of subclusters corresponding to individual movement compo-

nents as shown in Fig 5, but with added examples of frames from subclusters. We selected

frames from the closest to the subcluster center. Each of three frames shown for a single sub-

cluster is selected from a different rat. Note that frames at the bottom show examples of suc-

cessful and unsuccessful grasps. Rationale for dividing data in 40 subclusters: The typical

number of movement elements defined by experts in reaching task is between 7 and 10. Each

movement element can significantly differ between stroke and control animals; for example,

the pronation cluster may be divided in two or more distinct subclusters corresponding to

level of impairment (Fig 5). Moreover, at the beginning and at the end of a trial, there could be

other movements—e.g., rearing or walking—which likely would form separate clusters in fea-

ture space. Therefore, to be able to differentiate all those possibly distinct movement subclus-

ters, we decided to divide the data into 40 clusters. The fit of an ellipse to a given set of points

was done by minimizing the least-squares criterion. Ellipses were only used for data visualiza-

tion and were not used for data analyses.

(TIF)

S7 Fig. Changes in movement element probability during stroke recovery. Each dot repre-

sents a subcluster corresponding to single movement component. y-Axis (M1) is a ratio of

movement probability on day 1 after stroke and prestroke, and x-axis (M6) is a ratio of move-

ment probabilities on days 6–15 after stroke in relation to prestroke probability. Specifically,

here we investigated changes during the poststroke period across all subclusters (movement

components). For this, within each subcluster j, we counted the number of points from the

control period (p0j), the number of points from day 1 after stroke (p1j), and the sum of points

from days 6, 11, and 15 after stroke (p6j) (those counts were then converted to probabilities by

dividing by the total number of points on a given day). To see the changes in relation to the

prestroke period for each subcluster, we calculated measures: M1j = p1j/p0j and M6j = p6j/p0j

(for numerical stability to avoid division by 0, we added a small epsilon = 0.0001 to all pj). In
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other words, M1j is a ratio of red bar (day 1) to blue bar (day before stroke) in Fig 6Ba or 6Bb.

Plotting M1 versus M6 showed that about the third of the movement components effectively

disappeared after stroke, with a similar number of new movement elements emerging after

stroke. The distributions of points above the diagonal for “novel” movements and below the

diagonal for “lost” movements indicates improvements in movement during the recovery

period (days 6–15). To estimate how “elongated” the distribution of points along diagonal is,

we calculated the correlation coefficient between log(M1) and log(M6) values for each rat sepa-

rately. We found that more elongated distributions correlated with higher values of movement

disability scores (r = 0.58, p< 0.001). Those analyses illustrate that the internal network repre-

sentation can express complex movements in a simple low-dimensional representation, which

allows for a detailed tracking of stroke recovery.

(TIF)

S8 Fig. Measuring similarity of movement trajectories. (A) Any point in a movement trajec-

tory is defined by values in PCs’ coordinates. To compare two trajectories, we concatenated

the values of PC components in a single vector, separately for each trial. (B) Next, we calculated

the cross-correlogram between both vectors, and the maximum value of the cross-correlogram

was used as a measure of similarity between two movement trajectories. (C) Using the cross-

correlogram enables the detection of similar movements, even if one movement started at a

different time in relation to the beginning of the video clip. We used the first 7 PCs to measure

the similarity of trajectories. We have chosen 7 PCs based on examination of eigenvalues, but

changing the number of PCs between 5 and 15 did not affect our conclusions. (D) To measure

distance between trajectories in a manner robust to changes in movement velocity, we also

applied dynamic time warping (https://www.mathworks.com/matlabcentral/fileexchange/

43156-dynamic-time-warping-dtw). Using dynamic time warping gave similar results to that

using cross-correlation measure (compare with Fig 7; note that in this plot, smaller values of

distance indicate larger similarity of trajectories). PC, principal component.

(TIF)

S9 Fig. Shifts in camera angle cause large changes to PCA space. (A) As a control experi-

ment, we applied PCA to all video frames to use it as features. As a result, each video frame

was represented by 20 principal components, accounting for most of the variance. Next, we

applied a least-squares regression to predict the expert scores from PCA scores. This did not

give a significant result (r = −0.1 p = 0.69). For selecting the number of PCA components, we

use the scree plot method [74]. Specifically, in the above scree plot of eigenvalues, we selected a

“knee” point at which values level off. This is a generally used rule of thumb, as there is no

theoretically optimal method for selecting the number of PCA components. To ensure this

does not introduce bias, we varied the number of selected PCA components between 10 and

100, which gave consistent results. (B) To investigate why our predictions from PCA scores

failed, we visualized the first 20 principal components in 2D using t-SNE [42], a nonlinear

dimensionality reduction technique. Each point corresponds to a single frame in the t-SNE

projection. Data from each rat are marked with a different color. For clarity, only data from

nine rats and 1 day are shown, when the camera was accidentally moved after filming rat #5.

The camera shift caused large change in PCA features as evident by separate cluster for rats

6–9. The average frame for rats 1–5 and rats 6–9 is shown on the right side. (C) Using 2,048

principal components and the RNN improved the predictions toward expert scores. However,

it was still markedly worse than using 2,048 ConvNet features and RNN (compare to Fig 2B).

This is likely due to fact that convolutional networks with pooling layers, as used in our

approach, can extract features which are robust to spatial shifts [75]. We also asked whether

the dimensionality of the featurized image data changes before and after stroke. To test this,
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we did SVD on image features from ConvNet separately for data before and after stroke. We

could not detect significant differences among the distributions of singular values. This sug-

gests that dimensionality is likely too crude of a measure to detect movement differences

induced by stroke. However, the amplitude of selected features allows for such discrimination,

as described in Fig 4. ConvNet, convolutional network; PCA, principal component analysis;

RNN, recurrent neural network; SVD, singular-value decomposition; t-SNE, t-distributed sto-

chastic neighbor embedding.

(TIF)

S10 Fig. (A) Sample frames with marked body parts by DeepLabCut. (B) We used the RNN to

predict expert scores from coordinates of points marked by DeepLabCut and from its confi-

dence levels. The correlation coefficient between predicted and actual expert scores was

r = 0.53, p = 0.036. All x- and y-coordinates were divided by 300 to be in the 0–1 range. For

points assigned to body parts that were not visible in a frame or were difficult to identify, Dee-

pLabCut gave a confidence level close to 0. Adding 4 more markers on body parts did not sig-

nificantly change predictions. We also tried other software to track body parts: LEAP [43],

which gave comparable results to DeepLabCut. RNN, recurrent neural network.

(TIF)

S11 Fig. Network validation on the mouse string-pulling task. (Left) Sample frame of a

mouse during the string-pulling task. For this task, we trained the network to discriminate

control from stroke mice. (Right) Network scores of movement deficits. Bars show group aver-

age, and crosses show scores for individual mice. The network learned to discriminate between

both groups with 100% accuracy (note: no overlap in scores between groups). String-pulling

task: This task examines the coordination of bilateral hand and arm movements used in spon-

taneous string pulling. Procedures for training mice in the string-pulling task were based on

an earlier description of the behavior [5]. Briefly, 11 Chat-CreAi32 mice (5 females, 6 males)

that were 3–5 months old, weighed 20–30 g, and were raised at the Canadian Centre for Beha-

vioural Neuroscience Vivarium at the University of Lethbridge were weighed and placed on

food restriction 3 days prior to training. Food reinforcement on the end of the string was used

as motivation for string pulling. Mice were weighed daily to maintain body weight at 90% of

pre-restriction weight. They were given additional food in their home cage 2 hours after com-

pletion of daily training/testing. On each training/testing day, animals were individually placed

in a clear plastic container for transport to the testing room. Mice were trained for 3 days to

pull a 90-cm-long piece of string hanging from the top of a transparent Plexiglas box to obtain

the food reward tied at the end, and then they were filmed. They underwent photothrombotic

stroke induction in their primary forelimb somatosensory area and were filmed in the string-

pulling task before stroke and on day 4 poststroke. Animals were kept on food restriction

throughout the experiment. No scoring system has been developed for this task; thus, we only

trained network to classify stroke versus control condition with pre- and poststroke videos.

(TIF)

S1 Table. RNN parameters. Numbers in brackets show the number of neurons in a layer.

LSTM neurons can remember their previous state, which makes them particularly useful for

analyzing temporal sequences, as used here for scoring movements in video clips. The max-

pooling layer down-samples an input representation, which reduces computational complexity

and helps to find shift-invariant features. We also used a dropout layer with value 0.1, meaning

that at each time, 10% of randomly selected neurons were set to 0. This procedure helps the

network to avoid overfitting. Dense layer refers to output neurons that receive inputs from all

neurons in the layer below. For our RNN, we used ADAM optimizer with 10−6 learning rate
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and with “mean squared error” loss function. Our batch size was set to 8, and changing it to 16

did not improve predictions. We set number of training epochs to 1,000, with steps per

epoch = number of training data/batch size. From 16 rats, we had 692 recorded trials, with

mean number of trials per rat = 43.25 ± 5.2 SEM (because of variability in rat performance,

not all rats did the same number of trials). We used a cross-validation method with 16 replica-

tions. This means that during each training session, data from one rat were excluded (Meth-

ods); thus, about 649 video clips were used for training and about 43 for testing. To predict

expert scores, the network was trained for regression task. LSTM, long short-term memory;

RNN, recurrent neural network.
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