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ABSTRACT Here, we report the complete genome sequence of Avian coronavirus
strain ArkDPI of the GI-9 lineage, isolated from broiler chickens in North Georgia in
1994. This is the complete genome sequence of this vaccine strain, reisolated from
broilers in the United States.

Avian coronavirus infectious bronchitis virus (IBV) (family Coronaviridae, genus Gam-
macoronavirus) is a respiratory pathogen that causes severe economic losses in the

poultry industry worldwide (1–4). Numerous IBV variants have been reported in the
United States (5). However, the Arkansas type is one of the most common IBV serotypes
isolated from chickens in the field (6, 7). Currently, only Arkansas Delmarva Poultry
Industry (ArkDPI) attenuated live vaccine is commercially available against the Ark-IBV
serotype (6). It has been shown that the ArkDPI live attenuated vaccine can persist in
flocks (8), causing a rolling reaction by continuing transmission of the vaccine virus to
the unvaccinated chickens, which results in increased virulence of the vaccine and
vaccine reactions in the flock (6, 9). This is unique to the ArkDPI vaccine and is due to
a minor subpopulation in the vaccine, exhibiting polymorphisms in the spike 1 (S1)
protein. Reisolation of the ArkDPI vaccine virus from chickens has shown that two
amino acid changes in the S1 protein, Y43H and Δ344, are the most common mutations
observed (7, 10–13). In this study, we report the complete genome of the ArkDPI
vaccine virus, reisolated from chickens in the United States.

The ArkDPI-like IBV was isolated from the feces of broiler chickens collected at a
commercial farm in North Georgia in 1994 (14). The feces were homogenized and
passed sequentially through 1.2-�m- and 0.45-�m-pore-size filters (Merck Millipore,
USA) to remove bacteria. The filtrate was inoculated into specific-pathogen-free em-
bryonating chicken eggs. The embryos died 48 to 96 h postinoculation and were
harvested, quick frozen in liquid nitrogen, and stored at –70°C. The Ark-IBV was
previously detected in the infected embryo using monoclonal antibodies (14). Total
nucleic acids were isolated from a preserved 25-year-old pancreas sample of a chicken
experimentally inoculated with homogenized infected embryo using the DNeasy blood
and tissue kit (Qiagen, Germany), followed by DNase treatment with the TURBO
DNA-free kit (Ambion, USA) to remove host DNA according to the manufacturer’s
recommendations. Sequence-independent single-primer amplification (15) was used to
produce random amplicons that were processed using the Nextera XT DNA library
preparation kit (Illumina, USA). Next-generation paired-end sequencing (2 � 150 bp)
was performed on an Illumina MiSeq instrument using the 300-cycle MiSeq reagent kit
v2. A total of 2,146,321 raw paired-end reads were generated. A customized workflow
on the Galaxy platform (16) was used to perform preprocessing and assembly of the
raw sequencing reads, as described previously (17, 18). Briefly, the raw read quality was
assessed using FastQC v0.63 (19), and the residual adapter sequences were trimmed
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using Cutadapt v1.6 (20). After the host and control library reads were removed, the
overlapping read pairs were joined with PEAR v0.9.6.1 (21). Digital normalization via
median k-mer abundance was performed using the khmer package v1.1-1 (cut-
off � 100, kmer size � 20) (22). De novo assembly was performed utilizing MIRA3 v0.0.1
(23) with default settings. The contigs of interest were subjected to a BLASTn search
and aligned with the full-length reference genome ArkDPI11 (GenBank accession
number EU418976) to obtain a draft genome scaffold. The genome consensus was then
recalled from 183,511 raw IBV reads using BWA-MEM (24) mapping of trimmed but
unnormalized reads to the genome scaffold. The median read depth of the IBV
assembly was 444. The final genome consensus of the isolate, designated GA/1359/
1994, was 27,617 nucleotides long, excluding the poly(A) tail (100% genome coverage
based on reference genome ArkDPI11), and had a 38% GC content. The open reading

FIG 1 Phylogenetic analysis of IBV isolates of the Arkansas-type variant based on the complete S1 gene sequences. The S1 gene
sequences of 35 IBV isolates were downloaded from the NCBI GenBank database. Together with the sequence obtained in the current
study, all sequences were subjected to multiple alignment using the ClustalW algorithm. The phylogenetic tree was constructed by
using the maximum likelihood method based on the general time-reversible model in MEGA v7.0.26. The tree with the highest log
likelihood (�3,705.46) is shown. The percentages of replicate trees in which the associated taxa clustered together in the bootstrap
test (1,000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths measured in the number of
substitutions per site. The analysis involved 36 nucleotide sequences (the sequence from the GI-27 lineage is included as an outgroup).
All positions containing gaps and missing data were eliminated. There were a total of 1,617 positions in the final data set. The
ArkDPI-derived vaccine, the reisolated ArkDPI-like strains from experimentally vaccinated chickens, and the strain used in this study
are shown in red, blue, and bold, respectively.
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frames (ORFs) were identified using Geneious v11.1.5 and confirmed by alignment with
published IBV genomes. The genome has the typical genetic structure of all IBV strains
and contains 13 ORFs (5=-1a/1b-S-3a-3b-E-M-4b-4c-5a-5b-N-6b-3=). A preliminary BLAST
comparison to the currently available full-length IBV genome sequences showed the
highest (99.87%) nucleotide identity to the virulent Arkansas strain ArkDPI11
(EU418976), belonging to the GI-9 lineage (25, 26). Detailed phylogenetic analysis
based on the complete coding sequence of the S1 gene (27) confirmed that GA/1359/
1994 is a member of the GI-9 lineage, clustering in one group along with the lineage
prototype strain Ark99/1973 (96.62% nucleotide identity; M99482) (Fig. 1). Certain
polymorphisms in the S1 gene can often be found in viruses reisolated from chickens
vaccinated with the ArkDPI attenuated vaccine. The Y43H and Δ344 mutations are
critical for vaccine virus fitness in chicks, as changes at these two positions are most
frequently seen in field reisolated viruses compared to the parent vaccine. The S1 gene
of GA/1359/1994 had both the Y43H and Δ344 amino acid changes. Despite the ArkDPI
vaccine persisting in U.S. flocks (9, 13, 28), there are only sequences of the S1 gene
available and no full genomes. This complete genome sequence information would be
useful for in-depth understanding of the role that live vaccines play in the recombi-
nation of IBVs, which may enhance the virus fitness in chickens.

Data availability. The complete genome sequence of the GA/1359/1994 isolate
of the ArkDPI-like strain has been deposited in GenBank under the accession
number MN566147. The raw data were deposited under SRA accession number
SRR10742607, BioSample number SAMN13020879, and BioProject number
PRJNA556282.
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