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Abstract: The age of initiation and the rate of progression of atherosclerosis vary markedly among 
individuals and have been difficult to predict with traditional cardiovascular risk assessment models. 
Although these risk models provide good discrimination and calibration in certain populations, car-
diovascular disease (CVD) risk may not be accurately estimated in low- and intermediate risk indi-
viduals. Therefore, imaging techniques such as Ankle-Brachial Index (ABI), Coronary Artery Cal-
cium score (CAC), carotid Intima-Media Thickness (cIMT), flow mediated dilation (FMD) and Posi-
tron Emission Tomography (PET) have been developed and used to reclassify these individuals. In 
the present article we review the role of the most commonly used imaging techniques for CVD risk 
assessment. 

Keywords: Subclinical atherosclerosis, calcium score, intima-media thickness. 

INTRODUCTION  

 Atherosclerosis is a chronic disease of the arterial wall, 
and the underlying cause of the majority of cardiovascular 
events. This generalized inflammatory disease is character-
ized by an accumulation of lipids, inflammatory cells, and 
development of scar tissue covered by a fibrous cap build 
within the walls of medium and large-sized arteries. Cardio-
vascular disease (CVD) including coronary heart disease 
(CHD), as well as cerebrovascular, peripheral arterial disease 
and abdominal atherosclerosis affects the majority of adults 
over the age of 60 years. In the Framingham Heart study the 
lifetime risk for CHD at age 40 was 49 percent in men and 
32 percent in women [1]. The age of initiation and the rate of 
progression of atherosclerosis vary markedly among indi-
viduals and have been difficult to predict with traditional 
cardiovascular risk assessment models. 
 Therefore, individuals with subclinical atherosclerosis 
should preferably be identified at an early stage, so that pri-
mary prevention measures can be initiated. Early identifica-
tion of subclinical atherosclerosis in individuals at low- to 
intermediate cardiovascular risk has been challenging. Based 
upon assessment of traditional risk factors several multivari-
ate risk models have been developed for estimating the risk 
of cardiovascular events in asymptomatic individuals. The 
currently available risk estimators have several limitations  
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[2]. Firstly, they do not take into account the duration of risk 
exposure and do not provide life-time risk estimate. Moreo-
ver, they may overestimate or underestimate future CVD 
event in patients at low-risk, resulting in over- or under-
treatment of these individuals. Risk estimates appear to be 
less accurate in diabetics, women, certain ethnicities (such as 
South Asians) or geographic areas, and different socio-
economic strata. Since most risk equations have been de-
rived from cohorts of middle-aged individuals, risk in young 
(<40 years of age) or elderly (>80 years of age) individuals 
may be underestimated. Finally, metabolic abnormalities 
such as metabolic syndrome or pre-diabetes are not included 
in the currently available risk estimators. 
 Although these risk models provide good discrimination 
and calibration in certain populations, CVD risk may be un-
derestimated in low- and intermediate risk individuals. 
Therefore, imaging techniques have been developed and 
used to reclassify these individuals. In present article we will 
review the role of the most commonly used imaging tech-
niques in CVD risk assessment.   

IMAGING TECHNIQUES FOR ASSESSMENT OF 
SUBCLINICAL ATHEROSCLEROSIS 

 Atherosclerosis precedes cardiovascular events and has a 
prolonged asymptomatic phase during which the course of 
the disease can be modified by lifestyle modifications and 
treatment. Patients with asymptomatic CVD, diabetes, 
chronic kidney disease, atherosclerotic cardiovascular dis-
ease (ASCVD) risk estimate>7.5%, Framingham risk score  
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(FRS) >20% or SCORE >5% are considered at high CVD 
risk and should be treated promptly with lifestyle modifica-
tions and statins. However, as described above there is con-
siderable overlap in estimated risk between those who are 
affected by cardiovascular events and those who are at in-
termediate risk. Those with 5-7.5% ASCVD risk estimate 
over next decade or 10-year FRS between 10 and 20% or 
SCORE 1-5% may benefit from assessment of additional 
factors such as coronary artery calcium score ≥300 or >75th 
percentile, ankle-brachial index <0.9, or a high sensitivity C-
reactive protein (hs-CRP) >2.0 mg/L [1, 2].  

Imaging Modalities  

 The use of imaging to detect subclinical atherosclerosis 
has the potential to predict the risk of future cardiovascular 
events (Table 1). Imaging of atherosclerosis is superior to 
risk equations as it directly identifies the disease, reclassifies 
low and intermediate risk individuals more effectively and 
can guide medical therapy.  

a) Carotid Intima-Media Thickness  

 Carotid intima-media thickness (CIMT) can be measured 
with either ultrasound or magnetic resonance imaging. Nor-
mal common CIMT in childhood is approximately 0.4 to 0.5 
mm, while in adulthood it progresses to 0.7 mm or more. 
CIMT measurement has excellent intra- and inter-observer 
variability when performed by experienced operators using 
validated image-analysis protocols (Table 2). In a systematic 
review and meta-analysis of 14 studies with 45,828 asymp-
tomatic individuals who underwent a single CIMT meas-
urement and followed-up for 11 years, CIMT was associated 
with the risk of first myocardial infarction (MI) or stroke [3]. 
However, in another meta-analysis of 16 studies including 
36,984 patients without known CVD who underwent serial 
CIMT measurement and followed for seven years there was 
no association between progression of CIMT and future 
events [4]. Baseline CIMT measurements were associated 
with future cardiovascular events. The addition of CIMT or 
carotid plaque to Framingham risk score in a 13,145 indi-
viduals from the ARIC study resulted in reclassification of 
23% of all subjects and 13.5% of intermediate risk individu-
als into the high-risk group [5]. Overall, CIMT plus plaque 
model when compared with the Framingham risk score was 
associated with net reclassification index of 9.9% suggesting 
effective reclassification. These results are similar to the 
analysis of 2,965 individuals from the Framingham Off-
spring Study cohort followed for 7.2 years, which reported a 
significant increase in the net reclassification index after 

addition of CIMT to 7.6% [6]. However, the Carotid Athero-
sclerosis Progression Study (CAPS) did not confirm the pre-
vious findings. CIMT reclassified more patients to the lower 
risk than towards the high-risk group [7]. The addition of 
CIMT to Framingham risk score reclassified only 8.1% indi-
viduals with a non-significant net reclassification index of 
21%. The meta-analysis of single measurement CIMT re-
ported only a modest net reclassification improvement in all 
subjects of 0.8 percent, and in subjects at intermediate risk of 
3.6 percent [3].  
 Although, the previous ACC/AHA guidelines for the 
assessment of CVD risk in asymptomatic individuals made a 
level IIa recommendation for CIMT in intermediate risk in-
dividuals, the most recent risk assessment ACC/AHA rec-
ommended against the routine measurement of CIMT due to 
only modest net reclassification improvement with the use of 
this method [8, 9]. CIMT measured by MRI is currently be-
ing studied. It exhibits lower measurement variability and 
correlates well with the ultrasound measurements suggesting 
similar predictive capacity [10].  

b) Coronary Artery Calcium Score  

 Evidence of CAC on coronary angiography is a well-
known marker associated with severity of CAD and survival 
[11]. CAC is present before the development of clinically 
significant coronary stenosis. Advances in CT technology 
allowed imaging of the heart without motion artifacts and 
thus quantitative assessment of CAC. The most widely used 
and established measure of CAC is the Agatston score [12]. 
In most studies CAC scores<100 signify mild disease while 
score >400 indicate severe CAD [13]. However, due to the 
fact that only few asymptomatic individuals have 
scores>400, the use of CAC percentiles according to age and 
gender, appears a more effective stratification method [14]. 
Intra- and inter- scan variability of Agatston score by non-
contrast CT is low [15]. The presence and extent of CAC 
detect calcified plaques with high accuracy when compared 
to intra-coronary ultrasound and correlate well with the pres-
ence and extend of CAD rather than the severity of stenosis 
[16, 17]. The absence of CAC is highly predictive of the 
absence of significant coronary artery stenosis. In a study of 
1,764 patients with suspected CAD those with no CAC had 
<1% probability of significant coronary stenosis [18]. 
Among individuals with CAC 0, conversion to CAC score>0 
occurred in 25%, was associated with age, diabetes and 
smoking and was more frequent after the fourth year of fol-
low up [19].  

Table 1. Available imaging techniques assessing vascular function. 

Coronary circulation Peripheral circulation Subclinical atherosclerosis 

Coronary angiography Strain-gauge plethysmography Arterial stiffness 

Intravascular ultrasonography Flow mediated vasodilation Pulse wave velocity 

MRI Laser Doppler flowmetry Carotid intima-media thickness 

PET ABI Coronary Artery Calcium 

Abbreviations: MRI; magnetic resonance imaging, PET; positron emission tomography, ABI; ankle-brachial index. 
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 CAC score is associated with cardiac event in low- to 
intermediate- risk individuals with incremental prognostic 
information in addition to age and other risk factors as 
shown in a study of 8,855 asymptomatic adults screened for 
CAC (Table 3). Also, the extent of CAC correlates with the 
magnitude of the risk in middle-aged and elderly individuals 
[20-22].  
 CAC score provided independent prognostic information 
to that determined by the Framingham risk score across dif-
ferent ethnicities. As shown in a Multiethnic study of athero-
sclerosis (MESA) study sub-analysis, CAC>300 was found 
in one fourth of those with a Framingham risk score of 15-
20% [23]. Additionally, based on the results of large obser-
vational studies CAC score predicted all-cause mortality 
independent of and more accurately than Framingham risk 
score. A German cohort of asymptomatic individuals showed 
that CAC reclassified 21.7% of intermediate-risk patients 
into the low-risk group and 30.6% into the high-risk category 
and resulted in significant increase of c-statistic 0.75 when 
added to Framingham risk score or ATPIII risk model [24-
26]. Similarly, in MESA the addition of CAC to traditional 
risk factors resulted in reclassification of 26 percent of the 
cohort [27]. Although, both CAC and hs-CRP are independ-
ently associated with CVD events, the net reclassification 
improvement appears to be higher for CAC (23.8%) com-
pared to hs-CRP (10.5%) [28]. In MESA, CAC score strati-
fied better patients with hs-CRP>2mg/l and improved reclas-
sification compared to hsCRP, CIMT, ABI, brachial FMD, 
and family history [29, 30]. Importantly, after adjustment for 
traditional risk factors hs-CRP did not correlate with CAC in 
the Dallas Heart study, suggesting weak association with the 
atherosclerotic burden [31]. Finally, studies in asymptomatic 
individuals have shown that progression of CAC was associ-
ated with increased risk of CAD events [32]. Overall, the 
absence of CAC in asymptomatic individuals signifies ab-
sence of CAD while the presence enhances risk prediction 
when added to currently available risk models particularly in 
intermediate-risk individuals. 
 However, it may be prudent at this point to note some 
limitations in its use. CAC score may not give accurate risk 
estimates in specific subgroups such as uremic subjects and 
it is sensible not be used as a test in isolation in the risk 

stratification of these patients. Another obvious disadvantage 
is the use of CT and concomitant radiation exposure with 
doses up to 21.4 mSv compared to a mean of 5.6 mSv for 
diagnostic catheter angiographies [1]. 

c) Arterial Stiffness  

 Progressive alteration of arterial structure and function 
including hypertrophy and hyperplasia of smooth muscle 
cells within the arterial wall, coupled with deposition of col-
lagen, calcium and loss of elastic matrix leads to impaired 
reduced vascular compliance and increased vascular stiff-
ness, which play a pivotal role in the initiation and progres-
sion of atherosclerosis [33]. Arterial stiffness may be as-
sessed by a variety of noninvasive, reproducible, and rela-
tively inexpensive methods [34], and has been linked to in-
creased risk for the development of atherosclerosis, as well 
as been utilized as a prognostic marker beyond standard risk 
factor stratification (Table 4) [35]. The physiologic marker 
of aortic stiffness that is most easily evaluated is the meas-
urement of the pulse pressure. Increased pulse pressure has 
been associated with an increased incidence of CVD [36]. 
However, the most useful clinical marker of arterial stiffness 
is pulse wave velocity (PWV), which represents the time 
required for the pressure wave to travel between two regions 
in the vasculature. PWV has been demonstrated to be an 
independent predictor of CVD events after adjustment for 
traditional risk factors in hypertensive’s and elderly indi-
viduals [37, 38]. In a meta-analysis of 17 studies that in-
cluded over 15,000 patients in whom aortic PWV between 
the carotid and femoral arteries had been correlated to clini-
cal outcome, the pooled relative risks for total cardiovascular 
events, cardiovascular mortality, and all-cause mortality 
were significantly increased comparing high versus low aor-
tic PWV groups [39]. The additive value of PWV above and 
beyond traditional risk factors has been quantified by 3 sepa-
rate studies. In asymptomatic hypertensive patient, 
Framingham risk score and PWV had similar predictive 
value (c-statistic), and when combined the c-statistic signifi-
cantly increased to 0.76 [40]. The predictive ability of PWV 
was confirmed in the asymptomatic middle-aged and elderly 
individuals [41, 42]. PWV but not augmentation index or 
central pulse pressure has also been demonstrated to improve 

Table 2. Studies measuring intima-media thickness and carotid plaque in asymptomatic patients. 

Study  Technique  Population  Number Follow up Endpoint  C-statistic without/with IMT 

Anderson et al. [62] cIMT Asymptomatic men 1,574 7.2 years CV events 0.75/0.75 

Folsom et al. [63] cIMT Asymptomatic subjects 6,698 5.3 years CV events 0.77/0.78 

Price et al. [64] cIMT Asymptomatic men  1,007 12 years CV events 0.61/0.62 

Lorenz et al. [65] cIMT Asymptomatic subjects 4,909 10 years CV events 0.72/0.72 

Nambi et al. [66] cIMT Asymptomatic subjects 13,145 15.1 years CV events 0.74/0.75 

Cao et al. [67] Carotid plaque Asymptomatic subjects 5,020 8 years CV events 0.72/0.73 

Stork et al. [68] Carotid plaque Asymptomatic subjects 403 4 years CV events 0.67/0.72 

Plichart et al. [69] Carotid plaque Asymptomatic subjects 5.895 5.4 years CV events 0.75/0.76 

Abbreviations: HR: hazard ratio, CV: cardiovascular, cIMT: carotid intima-media thickness. 
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reclassification. In the Framingham study, 15.7% of patients 
at intermediate risk were reclassified into higher (14.3%) or 
lower (1.4%) risk group [43]. Finally, in a recent meta-
analysis, 19% and 22% of intermediate risk individuals were 
reclassified into higher-risk and 22% into lower- cardiovas-
cular risk [44]. Based on the above, arterial stiffness assessed 
with PWV is a strong predictor of CVD events that could 
enhance predictive ability of traditional risk models. 

d) Ankle-Brachial Index  

 The ankle-brachial index (ABI), namely the ratio of sys-
tolic blood pressure at the ankle to the blood pressure in the 

upper arm is a relatively simple and inexpensive method to 
confirm the clinical suspicion of peripheral arterial disease. 
ABI is also a strong predictor of CVD events. Low ABI<0.9 
is associated with a higher risk of CHD, stroke, transient 
ischemic attack, progressive renal insufficiency, and all-
cause mortality (Table 5) [45-47]. In a meta-analysis com-
prising 48,294 subjects, a low ABI (<0.9) compared to a 
normal ABI (1.1–1.4) was related to a 2–3-fold increase in 
both 10-year major coronary events and cardiovascular mor-
tality independent of the Framingham risk score [48]. The 
addition of ABI to Framingham risk score resulted in reclas-
sification of risk in 1 in 5 men and 1 in 3 women mainly 
from intermediate towards the high risk-group [48]. Finally, 

Table 3. Studies measuring coronary artery calcium score in asymptomatic patients. 

Study  Technique  Population  Number Follow up Endpoint  C-statistic without/with CAC 

Polonski et al. [27] CAC Asymptomatic subjects 5,878 5.8 years CV events 0.76/0.81 

Erbel et al. [26] CAC Asymptomatic subjects 4,129 5 years CV events 0.68/0.75 

Folsom et al. [63] CAC Asymptomatic subjects 6,698 5.3 years CV events 0.77/0.81 

Elias-Smale [70] CAC Asymptomatic subjects 2,028 9.2 years CV events 0.72/0.76 

Greenland et al. [5] CAC Asymptomatic subjects 1,312 7 years CV events 0.63/0.69 

Abbreviations: CV: cardiovascular, CAC: coronary artery calcium. 

Table 4. Pulse wave velocity and prognostic information. 

Study  Population  Number Follow up Endpoint  Comments 

Meaume et al. [71] Geriatric subjects 141 2.5 years CV events PWV is a strong, independent predictor of CV death 

Boutouyrie et al. [72] Essential hypertensive 
patients 

1,045 5.7 years CV events PWV was significantly associated with the occur-
rence of coronary event after adjustment either of 

Framingham score or classic risk factors 

Mattace-Raso et al. 
[73] 

Community-based adults 2,835 4.1 years CV events PWV is an independent predictor of coronary heart 
disease and stroke 

Mitchell et al. [74] Community-dwelling 
sample 

2,232 7.8 CV events PWV is an independent predictor of CV events 

Laurent et al. [75] Essential hypertensive 
patients 

1,980 9.3 years CV events PWV was significantly associated with all-cause and 
cardiovascular mortality, independent of previous 

cardiovascular diseases, age, and diabetes 

Cruickshank et al. 
[76] 

Patients with Diabetes 
Mellitus  

394 10.7 years CV events The addition of PWV independently predicted all-
cause and CV mortality 

Shoji et al. [77] End-stage renal disease 
patients 

265 5.3 years CV events PWV was a significant predictor for CV and overall 
mortality but not for non-CV death 

Shokawa et al. [78] Japanese-Americans 
subjects 

492 10 years CV events PWV is an independent predictor of CVD 

Sutton-Tyrrell et al. 
[79] 

Community-dwelling 
sample of older adults 

2,488 4.6 years CV events PWV associated with higher CV mortality, CHD, 
and stroke 

Zoungas et al. [80] Patients with chronic 
kidney disease  

315 3.6 years CV events PWV was an independent predictor of CV events 

Wang et al. [81] Community-dwelling 
sample  

1,272 15 years CV events PWV predicted all-cause and CV mortality in both 
men and women 

Abbreviations: PWV: Pulse wave velocity, CV: cardiovascular. 
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in an analysis of 18 cohorts which included 24,375 asymp-
tomatic men and 20,377 asymptomatic women, ABI in addi-
tion to Framingham risk score led to an improvement in re-
classification mainly in women [49]. Although, ABI im-
proves performance of the risk models when measured in the 
intermediate risk individuals [49], it appears to be inferior in 
reclassifying intermediate risk individuals compared to CAC 
as demonstrated in the Rotterdam and MESA studies [50, 
51].  

e) Flow-Mediated Dilation (FMD) 

 Inflation of a blood pressure cuff to supasystolic pressure 
for five minutes and subsequent release of pressure leads to 
endothelial-dependent FMD of the brachial artery. The per-
centage of change of end-diastolic diameter of the artery 
from baseline is a surrogate marker of endothelial function 
[52]. A meta-analysis of fourteen cohorts including 5,547 
asymptomatic individuals showed that FMD is associated 
with future CVD beyond traditional risk factors [53]. Data 
from the MESA cohort suggest that FMD is a predictor of 
CVD events in asymptomatic individuals, and correctly re-
classifies 29% of these individuals without a significant im-
provement in discrimination when added to FRS [54]. Al-
though, FMD correlates well with future events, it does not 
add significantly to risk stratification as shown by a more 
recent robust meta-analysis of different imaging modalities 
[55] (Table 6). The use and application of vascular reactivity 
techniques such as FMD has been limited by the fact that 
several factors, such as environmental (time, light, tempera-
ture), patient-related (caffeinated beverage, food intake, 
smoking, menstrual cycle, antihypertensive and lipid-

lowering medications) and operator-related (intra- and inter-
observer variability, technique, equipment) may affect the 
validity and accuracy of the measurements. 

POSITRON EMISSION TOMOGRAPHY (PET) 

 In contrast to the aforementioned modalities, PET can 
evaluate dynamic intraplaque activity such as inflammation, 
active plaque calcification, and other biologic processes [56, 
57]. For example inflammatory process of the unstable 
plaque can be imaged and quantified with fluorine-18 (F-18) 
fluorodeoxyglucose (FDG). FDG has also become estab-
lished in diagnosing and monitoring large vessel vasculitis 
and has now entered routine practice [58]. 
 Macrophages have high metabolic rates and require an 
equally abundant energy supply while they potentiate local-
ized inflammatory responses and are fundamental mediators 
of atherosclerosis. Radiolabelled FDG may then serve as a 
marker of metabolic activity within the plaque and an in-
flamed high-risk lesion. Of note, in patients with sympto-
matic carotid atherosclerosis imaged with 18FDG-PET, FDG 
was found to localize to macrophage-rich regions [59]. 
Moreover, while the degree of vascular stenosis evaluated 
with angiography is related to FDG uptake, Davies et al have 
suggested that angiography may not always identify the cul-
prit lesion [60]. Patients with recent transient ischemic attack 
who had a severe stenosis in the ipsilateral carotid artery, and 
were awaiting carotid endarterectomy underwent FDG-PET 
and high resolution magnetic resonance imaging (HRMRI) 
scanning. It was demonstrated that combined FDG-PET and 
HRMRI can assess the degree of inflammation in stenotic 
and even nonstenotic plaques and could potentially be used 

Table 5. Ankle brachial index and CV risk. 

Study  Population  Number Endpoint  Comments 

McDermott et al. [82] Subjects free of clinically evident 
CVD 

6,570 Subclinical car-
diac and carotid 
atherosclerosis 

Excess coronary and carotid atherosclerosis at ABI 
values below 1.10 (men) and 1.00 (women) 

Hasimu et al. [83] Patients at high CV risk 5,646 Subclinical athe-
rosclerosis 

A lower ABI was associated with generalized athe-
rosclerosis 

Menke et al. [84] Representative sample of United 
States population 

4,895 CV events A low-normal ABI was associated with a 10-year 
risk of CHD of ≥20% 

Matsushita et al. [85] Participants ages 45-84 years 
without prior CVD 

6,553 CV events ABI was independently associated with cardiovascu-
lar outcomes HR, 1.20; 95% CI, 1.08 to 1.32 

Li et al. [86] Inpatients at high risk of athero-
sclerosis 

3,210 All-cause and CV 
mortality 

Low ABI is related to a higher all-cause and CV 
mortality 

Li et al. [87] Patients with type 2 DM 1,647 All-cause and CV 
mortality 

Low ABI was independently associated with a high 
risk of all-cause and CVD mortality 

Ramos et al. [88] Subjects aged 35-79 (general 
population) 

6,262 CV events Adding ABI measurement to CHD-risk screening 
better identifies moderate-to-high cardiovascular risk 

patients 

Poredos et al. [89] Patients at high CV risk, or with 
evidence of CAD or CVD 

952 CV events Abnormal ABI was strongly associated with CAD 
and CVD 

Abbreviations: ABI: Ankle brachial index, CVD: Cardiovascular disease, HR: Hazard ratio, DM: Diabetes mellitus, CAD: Coronary artery disease. 
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to identify lesions responsible for embolic events. Therefore, 
FDG imaging of atherosclerotic lesions may be of incre-
mental benefit when performed in conjunction with other 
modalities to identify culprit lesions at high risk of rupture 
[60]. Moreover, according to a recent study, the usefulness 
of 18FDG measurement to localize and quantify arterial in-
flammation in each artery segments and as a result of the 
CVD risk factors was confirmed [61]. Current trials will con-
tribute toward validating and establishing FDG PET, as well 
as developing other biomarkers using a multimodality ap-
proach to characterize aspects of atherosclerosis biology, 
disease burden, and identifying high-risk plaques [57] (Table 
7). 
 However, it should be clearly noted that FDG imaging of 
vasculature is a relatively new area which suffers from sev-

eral limitations. For example, direct evidence demonstrating 
that FDG is taken up directly into macrophage cells is still 
lacking. Also, imaging coronary vasculature with FDG con-
tinues to be affected by myocardial motion and myocardial 
FDG uptake. Besides, there are other limitations such as pa-
tient preparation and diets which may lower myocardial 
FDG uptake [57]. 

CONCLUSIONS 

 It has become evident that monitoring or treating sub-
clinical atherosclerosis remains an issue under debate. Over 
the last decade, there is increasing use of imaging tech-
niques. Data from studies using CAC, ABI, cIMT and FMD 
appear to be encouraging, but large-scale studies with cost-

Table 6. Flow-mediated dilatation and prognostic information. 

Study  Population  Number Follow up Endpoint  Comments 

Gokce et al. [90] Patients with peripheral 
arterial disease 

199 1.2 years CV events Risk was approximately nine-fold higher in patients 
with FMD <8.1% (lower two tertiles) compared with 

those in the upper tertile 

Frick et al. [91] Patients admitted for inva-
sive evaluation of chest pain 

398 4.5 years CV events No difference in CV events was found 

Huang et al. [92] Patients with peripheral 
arterial disease  

267 0.8 years CV events FMD independently predicted CV events  

Hu et al. [93] Patients admitted for inva-
sive evaluation of chest pain 

279 1.3 years CV events FMD independently predicted 

CV events 

Suessenbacher et al. 
[94] 

Patients admitted for inva-
sive evaluation of chest pain 

396 11.8 years CV events No difference in CV events was found 

Brevetti et al. [95] Patients with peripheral 
arterial disease 

131 1.9 years CV events FMD independently predicted CV events  

Chan et al. [96] Patients with coronary artery 
disease 

152 2.8 years CV events FMD independently predicted CV events 

Fathi et al. [97] Patients at risk of CV events 444 2 years CV events No difference in CV events was found 

Modena et al. [98] Post-menopausal and hyper-
tensive women 

400 5.6 years CV events After 6 months of treatment subjects without im-
provement of FMD exhibited increased event rate 

Abbreviations: FMD: Flow mediated dilatation, CV: cardiovascular. 

Table 7. Studies measuring atherosclerotic plaque inflammation with 18FDG-PET. 

Study  Technique  Population  Number Endpoint  Comments 

Rudd et al. [59] 18FDG-PET Symptomatic carotid athero-
sclerosis 

8 Atherosclerotic 
plaque inflammation 

Unstable plaques accumulate more 
18FDG than asymptomatic lesions 

Davies et al. [60] 18FDG-PET 

HRMRI 

Recent transient ischemic attack 12 Atherosclerotic 
plaque inflammation 

Combined FDG-PET and HRMRI can 
assess the degree of inflammation  

Khalil et al. [61] 18FDG-PET 3 healthy subjects, 3 patients 
with hypercholesterolemia and 
2 patients with stable angina 

pectoris 

8 Atherosclerotic 
plaque inflammation 

After 12-month follow-up period, non-
calcified arteries showed a significant 
increase of (18)F-FDG uptake in both 

healthy, hypercholesterolemic and 
stable angina patients 

Abbreviations: 18FDG-PET: 18F fluorodeoxyglucose positron (FDG)-emission tomography (PET), HRMRI: high-resolution magnetic resonance imaging. 
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effectiveness analysis in low- to intermediate- risk individu-
als have not yet been completed. The best available strategy 
to improve outcomes is primary prevention based on risk 
estimation and screening for subclinical atherosclerosis. In-
dividuals with diabetes, advanced chronic kidney disease, or 
classified as high-risk according to the various risk models 
should be aggressively treated. In the intermediate risk indi-
viduals the addition of imaging modalities-mainly CAC- or 
ABI, enhances the predictive capacity of traditional risk 
models and better predict CVD events. However, further 
studies are needed to examine whether treatment based on 
re-classification with imaging modalities and risk scores 
results in meaningful improvement of cardiovascular out-
comes. 
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