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ABSTRACT
The samurai wasp Trissolcus japonicus (Ashmead, 1904) is a parasitoid hymenopteran that came into
the limelight as the natural enemy of Halyomorpha halys. Here, we present the complete sequence
of the mitochondrial genome of the CREATJ laboratory strain, naturally recovered in Italy in 2018.
The molecule conforms to the typical model of animal mitochondrial genomes. Gene order is identical
to that of its congeneric Trissolcus basalis. Phylogenetic analysis confirms its placement within mono-
phyletic Scelionidae and Telenominae as the sister group of T. basalis.
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Trissolcus japonicus (Ashmead, 1904) is an egg parasitoid and
the natural enemy of Halyomorpha halys. Native to Asia, it
followed its main host to the USA (Talamas et al. 2015),
Switzerland (Stahl et al. 2019) and Northern Italy (Sabbatini
Peverieri et al. 2018). Although multiple Trissolcus species can
parasitize H. halys eggs (Talamas et al. 2019), T. japonicus was
identified as the most promising candidate for biological con-
trol (Zhang et al. 2017). The strain CREATJ, used here, was
established starting from females emerged from five egg
masses of H. halys collected in 2018 in the area of Lodi (lati-
tude 45.302793, longitude 9.478790) and used for permanent
reared colonies at CREA facilities (Florence, Italy).

The complete mitochondrial genome of T. japonicus is
likely to be of interest for biological control as it will: (a)
allow to track the CREATJ strain in its natural spread in the
field; and (b) allow the development of additional molecular
markers to investigate intrageneric phylogenetic relationships
and the invasion process of the species.

Total gDNA was extracted from a pool of individuals of
the CREATJ strain using the QIAamp UCP DNA Micro Kit
(QIAGEN, Hilden, Germany) and pooled with other unrelated
species for sequencing (DNA voucher ID: CREATJ1, preserved
in the Unisi-DSV collection, contact F.N., francesco.nardi@
unisi.it; insect voucher ID: CREATJ1, preserved in the CREA
collection, contact G.S.P, giuseppino.sabbatini@crea.gov.it).
gDNA was sequenced at DNA LINK (Amsterdam, The
Netherlands) using a TruSeq Nano DNA chemistry. Two differ-
ent methods were used for sequence assembly: (a) MEGAHIT
(version 1.2.9, default settings; Li et al. 2015); (b) NovoPlasty

version 3.8.3 (default settings, K¼ 77, 101, 119; Dierckxsens et
al. 2017) using sequence MT671804 as seed. Coverage was
assessed in samtools version 1.11 (Li et al. 2009) after remap-
ping in bbmap (kfilter ¼ 22, subfilter ¼ 15, maxindel ¼ 80;
sourceforge.net/projects/bbmap/). The resulting T. japonicus
mitochondrial genome was automatically annotated using
Mitos (version 1 (Bernt et al. 2013) and manually curated.

All complete, or semi-complete, mitochondrial genome
sequences from Platygastroidea (10) were downloaded from
GenBank, as well as representatives Proctotrupomorha (4),
Evaniomorpha (1), and Ichneumonomorpha (1) as outgroups.
Protein-coding gene sequences were processed through the
EZmito webserver (Cucini et al. 2021). PartitionFinder version
2.1.1 (Lanfear et al. 2016) was used to identify optimal parti-
tioning and models starting from partitions by strand/type/
position, MrBayes version 3.2.7 (50 million generations, 25%
burnin; Ronquist et al. 2012) was used for the phylogen-
etic analysis.

Sequencing produced a total of 186,490,629 read pairs.
MEGAHIT produced >6 million contigs, one of which
(16,410 bp, average coverage 1372, terminating with repeats
at both ends) was identified as the candidate genome.
NovoPlasty (K¼ 77 and 101) produced identical circularized
candidate genomes (16,264 bp, average coverage �1300).
Sequences differed by the presence of four imperfect tandem
repeats (56–60 bp) in the latter corresponding to the
boundaries of the former. The final submitted sequence
corresponds to the NovoPlasty assembly (Supplementary
Table 1). Coverage was unequal over the genome
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(Supplementary Figure 1), decreasing in areas characterized
by strong secondary structures and high AT content, with a
�2� spike encompassing tandem repeats. A short secondary
sequence (MZ322407), closely related to TrnC-TrnQ, was
recovered by Sanger sequencing and confirmed by remap-
ping. Its minimal coverage (�25) compared to the genome
(�1300) suggests its nuclear origin, although this has not
been investigated further.

The genome is a circular molecule of 16,264 bp. All canon-
ical 37 genes are present and in the same order as in
Trissolcus basalis. The trnS1 and trnR lack the D-loop. The
trnR, not annotated in T. basalis, was identified between
trnS1 and nad5 and sequence similarity (52/54 sites) suggests
its presence also in T. basalis (Mao et al. 2012) in partial over-
lap with nad5. Four imperfect tandem repeats of 56–60 bp
were observed between tnrC and trnY. Coverage discontinu-
ity suggests the possibility that the number of repeats may
be larger or that some copy number variation is present in
heteroplasmy (as in Nardi et al. 2001). Additional short imper-
fect repeats were observed in a low complexity area within
the CR (nucleotides 15,300–15,600).

Limited to regions of sequence overlap, the genome pre-
sented here corresponds to the haplotype H1 in Sabbatini
Peverieri et al. (2018), and is identical to sequences
MT671799-804 (Zapponi et al. unpublished) sampled in Italy,
as well as sequences MN615628 (Talamas et al. 2019),
AB971832 (Mita et al. 2015), and MK188351/6 (Gariepy et al.
unpublished) sampled in Japan. This indirectly supports that
the Italian population originated from Japan, as suggested by
Stahl et al. (2019). The phylogenetic analysis recovered well
supported assemblages within the ingroup (Figure 1). T. japo-
nicus clusters with the congeneric T. basalis. The two families
Platygastridae and Scelionidae are recovered as

monophyletic. Within Scelionidae, subfamily Telenominae
was recovered as monophyletic while Scelioninae appeared
non-monophyletic due to the position of Scelio sp.
Phylogenetic relationships, limited to shared sequences, are
in line with Shen et al. (2019) and Tang et al. (2019), includ-
ing the non-monophyly of Scelioninae in the latter.
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Figure 1. Phylogenetic placement of T. japonicus (in bold) in the context of Platygastroidea. Subfamilies are color coded and outgroup sequences appear in gray.
Numbers at nodes represent posterior probability values and nodes with support <0.85 are collapsed.
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