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Vibrio is one of the most detrimental agents of shrimp premature death syndrome. Phage 
therapy for prevention and treatment of Vibrio infections has attracted increasing attentions 
due to the emergence of antibiotic-resistant bacterial variants. Here, we describe a 
workflow of preparing a phage cocktail against Vibrio infections for practical applications. 
Twenty Vibrio strains were isolated from the gut of diseased shrimp and aquaculture 
wastewater, and five of them were identified as pathogens causing shrimp vibriosis. 
Twenty-two lytic phages were then isolated using the above five pathogens as hosts, and 
five of them showed broad host ranges and high lytic capability against the Vibrio strains. 
Whole genomic sequencing and phylogenetic analysis of the five phages indicated that 
they are novel and belong to the Siphoviridae family. The phage cocktail consisting of 
these five phages showed higher efficiency in inhibiting the growth of pathogenic Vibrio 
sp. Va-F3 than any single phage in vitro. We then evaluated the performance of the phage 
cocktail in protecting shrimp against Vibrio sp. Va-F3 infections in situ. The results showed 
that shrimp survival rates could reach 91.4 and 91.6% in 7 days, for the cocktail-treated 
and the antibiotic-treated groups, respectively. By contrast, the shrimp survival rate of the 
group without any treatment was only 20.0%. Overall, this study describes a general 
workflow of how to prepare a phage cocktail and apply it in controlling bacterial infections 
in the shrimp aquaculture. Knowledge gained from this study will not only help fight against 
the shrimp vibriosis in practical but also facilitate the design of phage cocktails with a 
satisfying performance in controlling other animal diseases in aquaculture.
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INTRODUCTION

Vibrio is a genus of Gram-negative, comma-shaped rod bacteria 
and grows preferentially in warm (>15°C) marine water 
(Bakeraustin et  al., 2010) with low salinity (<25  ppt NaCl). 
In shrimp aquaculture, the severe infections of various Vibrio 
strains often cause the shrimp disease of vibriosis (Frans et  al., 
2011). Traditionally, various antibiotics (e.g., sulfonamides and 
tetracyclines) have been widely used in the treatments of the 
infections of V. parahaemolyticus, V. harveyi, V. alginolyticus, 
and other Vibrio strains in the shrimp aquaculture (Tendencia 
and de la Peña, 2001; Vinod et  al., 2006; Al-Othrubi et al., 
2014; Wang et  al., 2015), consequently, causing the alarming 
emergence of multidrug-resistant pathogens. It is imperative 
to develop alternative strategies to prevent and treat the shrimp 
diseases caused by drug-resistant pathogenic bacteria infections 
(Miller and Miller, 2011; Young and Gill, 2015).

Bacteriophage was first discovered in 1915 by Twort (1972) 
and D’Herelle (2011). Since then, bacteriophage has been used 
to treat bacterial infections (commonly termed phage therapy). 
Nowadays, there has been a renewed interest in applying 
phage therapy to control bacterial pathogens due to the limited 
use of antibiotics (Golkar et  al., 2014). So far, phage therapy 
has been applied in controlling the bacterial infections of 
plants, humans, domestic animals, and marine animals as 
well as a biological control for food productions (Chan et  al., 
2013; Doss et  al., 2017; Kalatzis et  al., 2018). The use of 
phage therapy has been proven to be  medically safe and 
effective in several cases (Biswas et  al., 2002; Karunasagar 
et  al., 2007; Chhibber et  al., 2009; Chadha et  al., 2016;  
Wang et  al., 2017).

To date, several phages against V. alginolyticus have been 
isolated and reported, including two myoviruses PVA1 (Zhang 
et al., 2014) and phi-A318 (Liu et al., 2014) and two podoviruses 
ValKK3 (Lal et  al., 2016) and VEN (Kokkari et  al., 2018). 
However, direct use of single phage for combating bacterial 
infections is quite limited because of low efficacy, narrow 
host range of single phage, and fast emergence of phage-
resistant bacterial mutants (Pirnay et  al., 2011; Chan et  al., 
2013; Letchumanan et al., 2016; Yen et al., 2017; Kilcher et al., 
2018). Our study aims to explore the potential use of phage 
therapy as antibacterial tools in aquaculture against bacterial 
infections to combat the antibiotic crisis. Taking the disease 
of vibriosis as an example, here we  describe an integrated 
workflow of how to develop an appropriate phage cocktail 
against the Vibrio pathogens and then determine the effectiveness 
of the cocktail in treating shrimp diseases caused by Vibrio 
sp. Va-F3 infections in situ.

MATERIALS AND METHODS

Animals and Conditions
Healthy two-month-old shrimp (L. vannamei; weight  = 10.2  ± 
0.6  g) and the commercial feeds for shrimp were provided 
by Aolong Seedling Plant of Shenzhen Alpha Feed Agriculture 
and Animal Husbandry Co., Ltd., Shanwei city, China (N: 
22.782051, E: 115.541900). The shrimp were placed and cultured 

at Aolong Seedling Plant. The aquatic water temperature was 
maintained at 24  ±  1°C during the study.

Isolation and Identification of  
Vibrio Pathogens
Vibrio pathogenic strains used in this study were isolated from 
both the gut of the diseased shrimp collected from aquaculture 
pools where numerous shrimp died of vibriosis and the 
aquaculture wastewater samples collected from the drain exits 
of shrimp culturing pools (Nov. 2016, Aolong Seedling Plant, 
Shanwei city, China). The Vibrio strains were isolated by the 
selective medium containing thiosulfate citrate bile salt sucrose 
agar (TCBS agar, Haibo, China) and further incubated at 28°C 
in 2216E medium (5  g peptone and 2  g yeast extract per liter; 
Wang et  al., 2015). Taxonomic assignment of these purified 
strains was performed based on the analysis of 16S rRNA gene 
sequences (Frank et  al., 2008). Briefly, microbial DNA samples 
were used as the substrate for amplification of 16S rRNA gene 
fragments using the universal primers 27f and 1494r (Xu et al., 
2018). The reaction mixture consists of 10 ng of template DNA, 
10  pmol of each primer, 2.5  U of DNA polymerase, 5  μl of 
10× PCR amplification buffer (100  mM Tris-HCl and 500  mM 
KCl), 200 μM dNTP, 1.5 mM MgCl2, and 10 pmol of a primer. 
The above mixture was first denatured for 1  min at 98°C, 
followed by 30 typical PCR cycles of denaturation (10 s at 
98°C), annealing (30 s at 56°C), and extension (40 s at 72°C). 
Finally, another extension was executed at 72°C for 2  min. 
The PCR products were sequenced by Sanger sequencing platform 
(BGI gene Co., Ltd., China). The 16S rRNA gene sequences 
have been submitted to the NCBI GenBank database with 
accession numbers (Supplementary Table S1).

The verified pathogenic strains were further typed based on 
the method described previously (Szczuka and Kaznowski, 2004). 
Briefly, ERIC-PCR (enterobacterial repetitive intergenic consensus 
sequence PCR) method with primers ERIC-R (5′-ATGTAAGCT 
CCTGGGGATTCAC-3′) and ERIC2 (5′-AAGTAAGTGACTGG 
GGTGAGCG-3′) (Versalovic et al., 1991) was employed to type 
the subspecies of the strains. The reaction mixture was denatured 
for 7  min at 95°C, then subjected to 30  cycles of denaturation 
for 30  s at 90°C, annealing for 1  min at 52°C, extension for 
8  min at 65°C, and a final extension for 16  min at 65°C. The 
patterns of PCR products were visualized by 1.5% agarose gel 
(wt/vol) in 1×  Tris-acetate buffer (40  mM Tris-acetate, 1  mM 
EDTA) running for 40  min under 80  V.

To determine the pathogenicity of the isolated Vibrio strains, 
healthy shrimp were challenged with the isolated Vibrio strains 
in April 2017. In total, 750 healthy shrimp were randomly 
divided into 25 groups, with 30 shrimp per group. For the 
control group, none of the Vibrio strains was included, whereas 
for the challenge groups, 500  ml of the bacterial suspension 
of each tested strain was added to the aquatic water at different 
concentrations (2.2  ×  102, 2.2  ×  104, and 2.2  ×  106  CFU/ml). 
Each group of the shrimp was raised within a 20  L plastic 
bucket. The survival rate of the shrimp of each group was 
recorded after 6 days. Low survival rate of the shrimp suggests 
that the corresponding Vibrio strain used for challenge experiment 
is likely the pathogen of vibriosis.
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Isolation and Purification of 
Bacteriophages
The verified pathogens from above experiment were then used 
as hosts to isolate their specific phages. The phages were isolated 
from the wastewater samples collected from sewage draining 
exits in the cities of Shenzhen, Zhanjiang, and Shanwei, China, 
respectively. The wastewater samples were collected in April-
November 2017 and April-July 2018. For each sample, 
approximately 20–50 ml was collected into sterile homogeneous 
bags (500  ml, Hopebiol) and stored at 4°C. The samples were 
centrifuged at 8,000×  g for 10  min, and the supernatants were 
filtered through a 0.22-μm pore-size membrane to remove the 
solid impurities and bacterial cells. The filtrates were then mixed 
with 1× 2216E medium and the pathogenic strain cultures for 
phage enrichment at 28°C overnight. Subsequently, the cultures 
were centrifuged again at 8,000×  g for 10  min, and the 
supernatants were then filtered through the 0.22-μm pore-size 
membrane. The bacteriophage titer of the filtrate was determined 
using the double-layered method (Chen et  al., 2018). Clear 
phage plaques were picked from the plates and placed into 
1  ml of sterile 2216E medium. This separation procedure was 
repeated three times to ensure the purity of the isolated phages.

Determination of Phage Host Ranges
In total, 20 Vibrio strains (isolated from the above section of 
isolation and identification of the bacterial pathogens) were included 
to determine the host ranges of the isolated phages (Supplementary 
Table S1). Lytic capabilities of the isolated phages were evaluated 
using standard spot tests. Briefly, the bacterial strains were mixed 
with 0.7% 2216E medium top agar and overlaid on 1.5% 2216E 
medium plates, and then 10 μl of the purified phage suspension 
(108 PFU/ml) was dropped in the middle of each plate. The 
plates were examined in 12  h after incubation at 28°C. The 
bacterial hosts of a tested phage were confirmed if a clear phage 
lytic plague could be  observed in the plate. This procedure was 
replicated three times for verification.

Transmission Electron Microscopy
Phage particles were precipitated with 10% polyethylene glycol 
8,000 (PEG 8000) at 4°C overnight, centrifuged at 10,000×  g 
for 15 min, and subsequently suspended in SM buffer (100 mM 
NaCl, 8  mM MgSO4, 50  mM Tris-HCl, and 0.01% gelatin). 
One drop of the concentrated phage particles was placed on 
copper grids with carbon-coated formvar films, followed by 
negative staining with 4  μl of 2% (wt/vol) phosphotungstic 
acid (pH 6.5). Then, the grids were dried and examined using 
a Tecnai G2  F20  S-Twin electron microscope (FEI, USA) 
operated at 120  kV of accelerating voltage.

Phage DNA Extraction, Genome 
Sequencing, and Assembly
The concentrated phage particles were treated using DNase 
I  and RNase A (New England BioLab, England) to remove 
bacterial nucleic acids. Then, phage genomic DNA was extracted 
using the Lambda Bacteriophage Genomic DNA Rapid Extraction 
Kit (Aidlab, China) following the manufacturer’s protocol. 

The purified phage DNA was sequenced using the Illumina 
HiSeq1500 sequencer platform (Annoroad gene technology Co. 
Ltd., China). The filtered reads were assembled using SOAP de 
novo by the default parameters (Luo et  al., 2012). The complete 
genome of each phage was finished and then manually inspected.

Genome Analysis and Phylogenetic Analysis
Open reading frames (ORFs) encoded by the complete phage 
genomes were predicted by the program GeneMark.hmm 
(Besemer and Borodovsky, 2005). The ORFs were annotated 
using the BLASTP algorithm against the non-redundant (nr) 
protein database of the National Center for Biotechnology 
Information (NCBI; Song et  al., 2009; Sharma et  al., 2016) in 
January 2019. The putative promoter sequences and regions 
on the phage genomes were identified using promoter online 
analysis tools of Softberry (Shahmuradov et  al., 2003) and 
Promoter Scan (Prestridge, 2000). We  tried to detect virulent 
genes on the phage genomes using the Virulence Search program 
(Underwood et  al., 2005). Rho-independent transcription 
terminators on the phage genomes were also predicted using 
the ARNold program (Naville et  al., 2011). tRNAs carried by 
the phage genomes were detected using the protein analysis 
software of ARAGORN and tRNAscan-SE (Schattner et  al., 
2005). Comparative genome analysis of the isolated phages 
was conducted using EasyFig 2.1 (Rombouts et  al., 2016). To 
determine the taxonomy of the isolated phages, phylogenetic 
analysis of the phages based on the protein sequences of large 
terminase subunits was carried out using the MEGA 5.02 
software with the neighbor-joining method and 1,000 bootstrap 
replications (Tamura et  al., 2011). Comparison of pairwise 
similarity of phage genomes based on their predicted proteins 
was performed using BLASTP and visualized using R (version 
3.4.1) gplots package (Walter et  al., 2015).

Inhibition of Pathogen by Phages in vitro
Vibrio sp. Va-F3 was selected as the host for phage inhibition 
test. Phages were selected for phage cocktail design based on 
the criteria: (1) the phages have broad and different host ranges; 
(2) the phages were isolated from the samples with different 
locations, and to the most degree, this warrants that the isolated 
phages are different without the knowledge of the genome 
sequences; and (3) the host ranges of the five phages cover 
the highest number of the tested bacteria (Crothers-Stomps 
et al., 2010; Chan et al., 2013). The phage cocktail was prepared 
by pooling equal volume of each purified phage solution at 
a concentration of 109 PFU/ml. Bacterium Va-F3 grew to the 
optical density at 600  nm (OD600) of approximately 0.5, which 
was equal to approximately 108 CFU/ml. Each well of a 96-well 
plate was loaded with 100  μl bacterial culture and 100  μl of 
dilutions of the five phages and the cocktail (MOI, multiplicity 
of infection = 10). Three replications of each test were performed 
as well. Plate sterility, bacterial culture without any phage, and 
phage suspension without any bacterial cell were set up as 
controls. All the plates were incubated at 28°C for 36  h, and 
the value of OD600 of each plate was measured using the 
Bioscreen plate reader (Bioscreen C, Finland) at 30 min intervals.
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Pathogenic Infections of Shrimp by Vibrio 
sp. Va-F3 and Phage Therapy in situ
To validate the therapeutic performance of the designed cocktail 
in controlling the pathogenic bacterial infections in practical 
applications, 540 healthy shrimp (weight  =  10.2  ±  0.6  g) were 
equally divided into six groups for the experiment in November 
2017. Each group contained 90 shrimp and was then divided 
equally into three parallel subgroups as replicates (30 shrimp 
per subgroup). Group I  was supplemented with fresh 2,216 
medium only. Group II was challenged with Vibrio sp. Va-F3 
within a culturing bath at a concentration of 2  ×  106  CFU/
ml. Group III was treated with 10  mg/L kanamycin after a 
two-day challenge of Va-F3. Group IV was supplemented with 
the phage cocktail at a final concentration of 2  ×  107 PFU/
ml but without the challenge of Va-F3. Group V received the 
treatment of the phage cocktail at a final concentration of 
2  ×  107 PFU/ml after a two-day challenge of strain Va-F3 at 
2 × 106 CFU/ml. The control group was set as the one without 
any treatment. The survival rate of the shrimp of each group 
was subsequently summarized after 7-day cultivation.

Nucleotide Sequence Accession Number 
and Phage Preservation
The phages were preserved in China Center for Type Culture 
Collection (Wuhan, China) with CCTCC Nos. M2107548 of 
ValLY-3, M2107549 of VspDsh-1, M2107547 of VpaJT-1, 
M2107552 of ValSw4-1, and M2107551 of VspSw-1. The complete 
genome sequences of the phages have been submitted to the 
NCBI GenBank database with accession numbers: MH925090 
of ValLY-3, MH925091 of ValSw4-1, MH925092 of VpaJT-1, 
MH925093 of VspDsh-1, and MH925094 of VspSw-1.

RESULTS

Isolation and Characterization of  
Vibrio Pathogens
In this study, in total, 20 Vibrio strains were successfully 
identified, and the sequences of their 16S rRNA genes have 
been submitted to the NCBI GenBank database (Supplementary 
Table S1). According to the top hits of their 16S rRNA genes 
in NCBI nr database, 1 strain has top hit to V. ovensii, 8 to 
V. parahaemolyticus, 2 to V. natriegens, 2 to V. metschnikovii, 
2 to V. azureus, and 5 to V. alginolyticus. These 20 Vibrio 
strains were then used to challenge the healthy shrimp to 
determine if they can cause shrimp vibriosis. Five Vibrio sp. 
strains Va-F4, Va-F2, Va-F3, Va-F10, and Val-3 are likely the 
pathogens of shrimp vibriosis because the mortality rates of 
the shrimp challenged by these strains reached from 16.7 to 
73.4% after 6-day cultivation (Figure 1; Supplementary 
Figure S1; Supplementary Table S1). Meanwhile, we  further 
typed the subspecies of the five Vibrio strains using ERIC-PCR 
primers, and the results indeed showed slightly different patterns 
of their PCR products (Supplementary Figure S2), suggesting 
that these five strains belong to different subtypes of the same 
species within the genus of Vibrio. Besides, among the five 

pathogenic strains, Va-F3 showed the highest pathogenic 
capability to the shrimp (73.4% mortality rate as shown in 
Figure 1). Therefore, Va-F3 was selected as the representative 
pathogen for the following studies.

Isolation of Lytic Bacteriophages Using 
Pathogenic Vibrio Strains as Hosts
Using the five pathogenic Vibrio strains as hosts, we successfully 
isolated 22 bacteriophages from the collected water samples. 
These phages can form clear plaques on their host strains 
following overnight incubation at 28°C, suggesting that all 
these phages are likely lytic phages against their hosts. The 
host ranges of the isolated phages were then determined using 
the 20 Vibrio strains isolated in this work (Figure 2; 
Supplementary Table S1). According to the results, five phages 
that were named ValLY-3, VspDsh-1, VspSw-1, VpaJT-1, and 
ValSw4-1 have broader host ranges against Vibrio strains, 
respectively (Figure 2). Notably, phage ValLY-3 appeared to 
be  more effective against Vibrio sp. strains because it could 
lyse four of the five pathogenic Vibrio sp. strains and the top 
hits of their 16S rRNA genes in NCBI nr database all belong 
to V. alginolyticus (Supplementary Table S1). However, none 
of the isolated phages could individually infect all the five 
pathogens (Va-F4, Va-F2, Va-F3, Va-F10, and Val-3). Based 
on the observation that the host range of combining the five 
phages covers all the five pathogenic strains, it is likely that 
the cocktail consisting of these five phages can be  applicable 
to effectively inhibit the growth of the Vibrio pathogens causing 
vibriosis in situ.

Morphology of the Lytic Bacteriophages
The morphologies of the isolated phages were observed using 
TEM, indicating that all the five phages exhibit hexagonal 
heads (diameter ranged from 55 to 90 nm) and non-contractile, 
flexible tails (length ranged from 100 to 200  nm), which are 
typical features of the phages belonging to the Siphoviridae 
family (Figure 3), although ValLY-3 and ValSw4-1 have a larger 
size in head with the diameters of 89.8 and 57.5 nm, respectively.

FIGURE 1 | Survival rates of the shrimp infected by Vibrio sp. Va-F3. 
Survival rates of the shrimp were calculated after cocultured with Vibrio 
strains for 1 week. The control group was set as no Vibrio strain included, 
and the experimental groups included 500 ml of bacterial suspension with 
three different bacterial concentrations, as 2.2 × 102, 2.2 × 104, and 
2.2 × 106 CFU/ml.
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Genome Sequencing and Annotation of 
the Phages
We further sequenced and characterized the whole genome 
sequences of the five phages. The features of the genomes 
were summarized in Table 1. The genomes range in size from 
46.6 to 113.7  kb with GC contents of 43.8–49.2%. The GC 
contents of the five phages are lower than those of their Vibrio 
host genomes (averagely, 50%). Phage VspSw-1 encodes the 
highest number (n  =  25) of tRNAs. By contrast, the other 

phages encode few tRNAs (≦2), indicating that they mainly 
depend on the host translation machinery. ORFs encoded by 
the phage genomes were predicted, and the corresponding 
functions were annotated by Blastp analysis against the NCBI 
nr database. About 66.2% (351/530) of ORFs share 26–100% 
identities of amino acid sequences with those deposited in 
the NCBI GenBank database. We  identified the ORFs that 
were assigned to the basic phage-related functions (Figure 4), 
including DNA replication, DNA metabolism, DNA packaging, 

FIGURE 2 | Host ranges of phages ValLY-3, VspDsh-1, VspSw-1, VpaJT-1, and ValSw4-1. A total of 20 bacterial strains were used for determining the phage host 
ranges. The 16S rRNA gene sequences of all the strains have been sequenced and submitted to the NCBI with accession as attached above (more information 
referring to Supplementary Table S1). Black spots indicated clear plaque, gray for turbid plaque, and white for no phage plaque. a: The host strain used for 
VspDsh-1 isolation; b: VspSw-1 isolation; c: VpaJT-1 isolation; d: ValLY-3 isolation; e: ValSw4-1 isolation. *, Verified pathogenic strains in this study.

A B C D E

FIGURE 3 | TEM images of the isolated lytic phages. (A) ValLY-3, (B) VspDsh-1, (C) VpaJT-1, (D) ValSw4-1, and (E) VspSw-1. The phages were stained with 2% 
phosphotungstic acid and visualized at 120,000× magnification with transmission electron microscopy. Scale bars represent 20 nm.
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structural proteins, and host lysis. Neither the genes responsible 
for toxins or virulence in the ARDB database (Liu and Pop, 
2008) or the VFDB database (Chen et  al., 2005), nor the 
known lysogenic-related genes (Oppenheim et  al., 2005) were 
found within the genomes of the five phages. These genetic 
features ensure that these phages are suitable candidates for 
phage therapy.

Whole genomic sequence alignment also demonstrates the 
novelty of the five phages at the genomic levels. As shown 
in Figure 4, the phages have only few cross wires with those 
in the NCBI GenBank database, except for ValLY-3, whose 
genome highly resembles that of previously characterized 
Vibrio phages SSP002 (JQ692107.1), with the identity of 95% 
(Table 1). Phylogenetic analysis was performed based on the 
large terminase subunits identified in ValLY-3, ValSw4-1, 
VpaJT-1, VspDsh-1, and VspSw-1, as well as other 21 classified 
phages ratified by ICTV (Figure 5A). The results indicated 

that the five phages belong to five different genera within 
the Siphoviridae family. VpaJT-1 and ValSw4-1 are members 
of two different unclassified genera within the Siphoviridae 
family, respectively, as they are grouped into different clades 
in the phylogenetic tree (Figure 5A). Moreover, we  also 
conducted an in silico pairwise comparison of the proteomes 
of the phages used in the phylogenetic analysis. Eight different 
groups can be clustered, in line with the result of the phylogenetic 
analysis (Figure 5B). This analysis suggests that the five phages 
are different and likely employ different mechanisms to infect 
the Vibrio hosts.

Inhibition of Bacterial Growth by  
Phages in vitro
We then tested the infective capability of the five phages and 
the cocktail containing five phages against Vibrio sp. Va-F3 
in vitro, respectively. Strain Va-F3 was verified to be  the 

TABLE 1 | Genomic features of the five phages.

Phage name

VspDsh-1 VpaJT-1 ValLY-3 ValSw4–1 VspSw-1

Features Genome length (bp) 46,692 60,177 76,310 79,545 113,778
GC content (%) 46.7 49.2 48.8 45.7 43.8
ORFs 60 96 104 112 158
Terminators 25 29 57 58 68
Promoters 110 134 179 190 271
tRNAs 1 2 0 0 25
Host Vibrio sp. Va-F4 Vibrio sp. Va-F3 Vibrio sp. Val-3 Vibrio sp. Va-F3 Vibrio sp. Va-F2
Accession ID MH925093 MH925092 MH925090 MH925091 MH925094

FIGURE 4 | Multiple sequence alignment of phage genomes. Whole genome sequences of the isolated phages (ValLY-3, VspDsh-1, VpaJT-1, ValSw4-1, and 
VspSw-1) and the highest similar reference phages were compared using Easyfig. The gray regions indicate high similarity among the genomic sequences. The 
predicted functional proteins are indicated by different colors. Blastn analyzes of the five phages’ genomes show that the top hits in NCBI nr database of ValLY-3, 
VspDsh-1, VpaJT-1, ValSw4-1, and VspSw-1 are Vibrio phage SSP002 (JQ692107.1, with cover 95% and identity 99%), Enterobacteria phage 9 g (KJ419279.1, 
with cover 0% and identity 80%), vB_SenS_Sergei (KY002061.1, with cover 0% and identity 100%), Vibrio phage Ares1 (MG720309.1, with cover 31% and identity 
67%), and Vibrio phage pVp-1 (JQ340389.1, with cover 2% and identity 79%), respectively.
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pathogen with the highest mortality rate against the shrimp 
in our study (Figure 1; Supplementary Figure S1). As shown 
in Figure 6, all the five phages were found to be  capable of 
inhibiting the growth of Va-F3, but the host growth recovery 
started in 2, 2, 6, 9, and 9  h when treated with phages 
VspDsh-1, ValLY-3, ValSw-1, VpaJT-1, and VspSw-1, respectively. 
This suggests different abilities of the five phages in inhibiting 
the growth of Va-F3. For the control group without phage 
treatment, the OD600 value of strain Va-F3 reached 0.45 after 
2  h incubation, while the growth of Va-F3 was inhibited in 
all phage-treated groups within the first 2  h. By contrast, the 
inhibition effectiveness of the cocktail was higher than those 
of any single phage, as we  can see that the growth inhibition 
of the host in the cocktail-treated group lasted for at least 
24  h (Figure 6).

Application of the Cocktail Against Vibrio 
sp. Va-F3 Infections of the Shrimp in situ
For practical application of phage therapy, we sought to validate 
the performance of the cocktail against the pathogenic infections 
of the shrimp in situ. In this experiment, we set up one control 
group and five experimental groups. The shrimp of group II 
were infected by the pathogen without any treatment, and the 
skin color of the shrimp became white and turbid and the intestine 
turned to be  slightly red in 5 days. Meanwhile, the body of 
the infected shrimp was soft, the size of their hepatopancreas 
was enlarged, and the color was light yellow (Supplementary 
Figures S3A–D). The survival rate of the shrimp of group II 
reached only 20% in 7  days (Figures 7A,B). In comparison, 
the survival rate of the shrimp of group V treated by the 
cocktail reached 91.4%, which was quite comparable to that 
of group III treated by antibiotics (91.1%, Figure 7A). 
Furthermore, to eliminate the concern of potential phage toxicity, 
we  included group IV where the shrimp got the cocktail 

treatment only, and the survival rate was similar to those of 
groups III and V, suggesting that no apparent side effects of 
the phages were detected.

A B

FIGURE 5 | Phylogenetic analysis of the five isolated bacteriophages. (A) Phylogenetic tree based on the sequences of the large subunits of terminases of the 
selected bacteriophages. The sequences of the large subunits of terminases were aligned using the Mega 5.05 program, and the phylogenetic tree was generated 
using the neighbor-joining method with 1,000 bootstrap replications. (B) Heat map showing percentage of the shared protein sequences among the bacteriophages.

FIGURE 6 | Growth inhibition of Vibrio sp. Va-F3 by the five phages and the 
phage cocktail in vitro. The MOI was set as 10, the optical density of bacterial 
solution as approximately 0.5 (OD600, 108 CFU/ml), and the concentrations of 
the phages (ValLY-3, VspDsh-1, VspSw-1, VpaJT-1, ValSw4-1, and their 
cocktail) as 2 × 109 PFU/ml. Each point represents the average result of three 
replicates, and error bars represent standard deviations. According to the 
curve, we can calculate the frequency of phage resistant bacteria in the 
population to a given phage. First, we calculated the number of the phage 
resistant bacterial cells starting to grow during the incubation using the formula: 
Nm = Nt(the number of bacterial cells at OD600 = 1)/2[tOD600(the time bacteria grow to 

OD600 = 1)/td(bacterial cell doubling time)], and then f(the frequency of phage resistant 
bacteria) = Nm(the number of bacterial mutant cells at beginning)/N0(the 
number of all bacterial cells at beginning). We determined N0 = 2 × 108 CFU/ml  
and td = 60 min; at OD600 = 1, tOD600 = 5 h for control, tOD600 = 8 h for 
ValLY-3 and VspDsh-1, tOD600 = 11 h for ValSw4-1, tOD600 = 20 h for 
VspSw-1, and tOD600 = 23 h for VpaJT-1; Nt = 109. Therefore, we  
calculated the f(ValLy-3 and VspDsh-1) = 0.20, f(ValSw4-1) = 0.002, 
f(VspSw-1) = 4.77E-06, f(VpaJT-1) = 5.96E-07. During the experiment in 
24 h, we were not able to determine the growth of the bacterial cells when 
treated with the cocktail, suggesting the frequency of the cocktail resistant 
bacterial cells is extremely low.
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DISCUSSION AND CONCLUSION

The concept of using phages as an agent for controlling 
pathogen infections has been widely accepted. There have 
been numerous studies describing the applications of phage 
therapy in controlling pathogen infections in aquaculture 
(Rao and Lalitha, 2014). However, the application of phage 
therapy in aquaculture as well as in clinics is still greatly 
limited. This can be  attributed to the lack of a standard 
workflow of how to prepare a phage cocktail for controlling 
pathogen infections in practical applications. To our knowledge, 
for the first time, our study describes the integrated workflow 
starting from step (1) isolation and verification of the Vibrio 
pathogens from diseased animals; step (2) specific phage 
isolation, sequencing, and characterization; and step (3) phage 
cocktail preparation for the efficiency test in vivo and in 
situ. Each step of the workflow is necessary and will be  the 
warrant of developing a safe and efficient phage cocktail in 
an application. Some studies directly used the pathogens 
provided by other studies for phage isolation and phage 
cocktail preparation (Higuera et  al., 2013; Kalatzis et  al., 
2016). Thus, these bacterial strains may not be  able to cause 
vibriosis in situ. Meanwhile, some studies failed to obtain 
the sequences of the phages used for phage cocktail (Higuera 
et  al., 2013; Mateus et  al., 2014; Zhang et  al., 2015). 
This sequencing information of the phages could be  quite 
helpful, and thus, we  may exclude those phages carrying 
toxin genes for phage therapy based on the bioinformatics 
analysis of their gene sequences before phage cocktail 
preparation. More importantly, in our study, the in situ 
experiment showed that the administration of the resulted 
phage cocktail in treating the Vibrio infections of the shrimp 
promoted the survival rate of the shrimp as significantly as 
the antibiotic treatment (Figure 7).

Instead of using the Vibrio pathogens reported in other 
literature (Mechri et  al., 2017; Rameshkumar et  al., 2017; 

Lv et  al., 2019) as hosts for lytic phage isolation, our study 
started with the isolation of Vibrio strains from the diseased 
shrimp within the shrimp-farmed pond. Furthermore, the 
pathogenicity of the five Vibrio sp. strains (Va-F4, Va-F2, 
Va-F3, Va-F10, and Val-3) was confirmed, respectively 
(Figure 1; Supplementary Figure S1). Other reported 
pathogenic Vibrio strains may not be able to cause the disease 
of vibriosis in shrimp in our study, because the shrimp 
hosts and other environmental factors are likely the key 
causative factors of vibriosis as well (Mahoney et  al., 2010). 
We  observed that strain Va-F3 showed different pathogenic 
capabilities in causing the shrimp vibriosis in the two challenge 
experiments (Figures 1, 7), which were performed in April 
and November 2017, respectively, highlighting that the 
environmental factors likely play important roles in the 
development of vibriosis in the shrimp. More importantly, 
due to the fact that phages usually are highly specific to 
infect their hosts (Schmelcher and Loessner, 2014; Kilcher 
et  al., 2018), using the well-known Vibrio strains reported 
in other literature may probably lead to failure of phage 
therapy in practical applications.

The fast emergence of phage-resistant bacterial variants after 
treatment with single phage limited the therapeutic applications 
of phage therapy. Phage cocktail that can delay the appearance 
of resistant variants has been widely used in practical applications 
(Gu et  al., 2012). Currently, no criteria have been developed 
to select phages for phage cocktail preparation due to the limited 
availability and the great diversity of phages. In our previous 
study, a phage cocktail containing only two phages with divergent 
genomes showed higher antimicrobial activity than other cocktails 
and any single phage (Chen et al., 2018). The divergent genomes 
of the selected phages imply that heterogeneous infection 
mechanisms against their hosts could be  employed by the 
phages. Thus, the high performance of the phage cocktail can 
be  explained by the fact that the heterogeneous mechanisms 
likely lead to phage synergy in killing the hosts. 

A B

FIGURE 7 | Comparison of the survival rates of the shrimp in different treatment groups in situ. (A) Survival rates of the shrimp of each group after the 7-day 
treatment; (B) Survival rates of each group in the experiment duration. C: The control group was set up without any treatment. G-1: Group I was given fresh 2,216 
medium only. G-2: Group II was challenged with Vibrio sp. Va-F3 at concentration of 2 × 106 CFU/ml. G-3: Group III was treated with 10 mg/l kanamycin after two-
day challenge of Va-F3 at 2 × 106 CFU/ml. G-4: Group IV received treatment of the phage cocktail at the final concentration of 2 × 107 PFU/ml. G-5 Group V 
received treatment of the phage cocktail at the final concentration of 2 × 107 PFU/ml after two-day challenge of strain Va-F3 at 2 × 106 CFU/ml. Asterisks above the 
columns indicate significant differences at the p < 0.01 level (Wilcoxon-Mann-Whitney test).
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Accordingly, in this study, three criteria (see in the section 
“Materials and Methods”) were set up to select phages for 
phage cocktail preparation. These criteria warrant that the phages 
we  selected are different in genome and infection mechanism. 
We  selected five phages for cocktail preparation in terms of 
the observation that the five phages have broad host ranges 
against Vibrio strains (Figure 2; Supplementary Table S1). Our 
results indicate that the five phages have different host ranges, 
phylogenies, and divergent genome sequences. These observations 
suggest that the phages are likely to employ different mechanisms 
in infecting their hosts. Therefore, although it was shown that 
two phages (ValLY-3 and VpaJT-1) can infect all five tested 
pathogenic Vibrio strains, including Va-F4, Va-F2, Va-F3, Va-F10, 
and Val-3 (Figure 2), in our study, the main purpose of including 
five phages for phage cocktail preparation is to cover a high 
chance of emergence of phage resistant variants of the Vibrio 
strain during and before the treatment. As shown in Figure 6, 
bacterial variants emerged rapidly when treated with one single 
phage, while phage cocktail including the five phages can inhibit 
the growth of the strain for a long time. Figure 6 also showed 
the frequencies of phage-resistant variants in Vibrio sp. strain 
Va-F3 when treated with single phage and cocktail. According 
to the growth curves of Va-F3 treated with different phages, 
the number of ValLY-3-resistant variants of Va-F3 is similar 
to that of VspDsh-1 but higher than those of VspSw-1, VpaJT-1, 
ValSw4-1, and the cocktail (the frequencies of ValLY-3  = 
VspDsh-1  >  VspSw-1  >  VpaJT-1  >  ValSw4-1). Thus, in our 
study, the cocktail using the five phages that likely have different 
mechanisms to infect Va-F3 can kill not only the five isolated 
pathogenic Vibrio strains but also phage-resistant Va-F3 variants. 
This can be observed from Figure 7 that a satisfying performance 
in controlling the pathogen growth was obtained in the 
practical application.

The concept of phage MOI describes the ratio of phages 
to their host bacteria (Abedon, 2016). The MOI value of 10 
was directly used in our in vitro experiment. It is difficult to 
estimate the actual number of a specific bacterial pathogen 
in a given environment before the phage therapeutic application. 
Thus, we  did not determine the optimal MOI of the phage 
cocktail for neither in vitro nor in situ experiments. We delivered 
the phage cocktail at the final phage concentration of 2  ×  107 
PFU/ml against pathogen Va-F3  in the 20  L bucket, resulting 
in a significantly high survival rate of the shrimp challenged 
by the pathogen in situ (Figure 7). A bacterial cell infected 
by a lytic phage may release up to several hundreds of progeny 
phage particles with infection activity for the next round 
infection (Guo et  al., 2019). Thus, a lytic phage may generate 
enormous progeny phages in a given environment full of its 
host in a short time. This likely suggests that we  do not have 
to use a large dose of phages in the prevention of shrimp 
vibriosis in practical applications.

The microbial compositions of the aquatic water, as well 
as the shrimp intestinal tract, are complex (Fan et  al., 2019). 
We  observed that the survival rate of the shrimp challenged 
by the pathogen increased significantly when the phage cocktail 
was administered as compared to that of the pathogen-challenged 
shrimp without any treatment. Nevertheless, we  did not 

completely understand what happened to the microbial 
ecosystems of the aquatic water and the shrimp gut when 
the phages were administrated. In terms of the predator-prey 
relationship between phage and its bacterial host, both the 
environmental microbiota and the shrimp gut microbiota can 
be  interfered by the phage treatment in the experiment in 
situ. We  noticed that the intestine of the shrimp (group II) 
infected by Va-F3 turned to be  slightly red, the body was 
soft, the size of the hepatopancreas was enlarged, and the 
color of the hepatopancreas was light yellow (Supplementary 
Figures S3A–D). However, the shrimp of group V with the 
treatment of the phage cocktail after Vibrio challenge did not 
show significant changes compared to those of group II. Further 
studies are needed to determine the interplays between phages, 
microbes, and the shrimp intestine throughout the whole 
process of phage therapeutic application using metagenomic 
sequencing, which will shed deep insights into the dynamics 
of shrimp gut microbiota, provide useful clues toward potential 
therapeutic applications of phages in aquaculture, and further 
warrant the success of applications in prevention and treatment 
of the bacterial infection diseases of the shrimp, and even 
for other animals.

In conclusion, our study describes a successful example of 
developing a phage cocktail and applying it in treating Vibrio 
sp. Va-F3 infection disease of the shrimp. Since the use of 
various antibiotics in aquaculture tends to be banned, the phage 
cocktail demonstrates the potential of being used as a therapeutic 
agent for controlling pathogenic bacterial infections, particularly, 
against vibriosis.
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