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Abstract

Group contribution (GC) methods are conventionally used in thermodynamics analysis of

metabolic pathways to estimate the standard Gibbs energy change (ΔrG
0o) of enzymatic

reactions from limited experimental measurements. However, these methods are limited by

their dependence on manually curated groups and inability to capture stereochemical infor-

mation, leading to low reaction coverage. Herein, we introduce an automated molecular fin-

gerprint-based thermodynamic analysis tool called dGPredictor that enables the

consideration of stereochemistry within metabolite structures and thus increases reaction

coverage. dGPredictor has comparable prediction accuracy compared to existing GC meth-

ods and can capture Gibbs energy changes for isomerase and transferase reactions, which

exhibit no overall group changes. We also demonstrate dGPredictor’s ability to predict the

Gibbs energy change for novel reactions and seamless integration within de novo metabolic

pathway design tools such as novoStoic for safeguarding against the inclusion of reaction

steps with infeasible directionalities. To facilitate easy access to dGPredictor, we developed

a graphical user interface to predict the standard Gibbs energy change for reactions at vari-

ous pH and ionic strengths. The tool allows customized user input of known metabolites as

KEGG IDs and novel metabolites as InChI strings (https://github.com/maranasgroup/

dGPredictor).

Author summary

The standard Gibbs energy change is commonly used to check for the feasibility of

enzyme-catalyzed reactions as thermodynamics plays a crucial role in pathway design for

biochemical synthesis. The group contribution methods using expert-defined functional

groups have been extensively used for estimating standard Gibbs energy change. Here, we

introduce a molecular fingerprint-based thermodynamic tool, dGPredictor, that enables

distinguishing between (stereo)isomers in metabolic reactions leading to improved reac-

tion coverage and comparable prediction accuracy as GC methods. dGPredictor can also

be used alongside de novo pathway design tools to ensure the correct directionality of
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chosen reaction steps. We applied and tested dGPredictor on reactions from the KEGG

database and applied it to screen an isobutanol synthesis pathway design. An open-source,

user-friendly web interface is provided to facilitate easy access for standard Gibbs energy

change of reactions at different pH values. (https://github.com/maranasgroup/

dGPredictor).

Introduction

Thermodynamic imperatives affect both the direction of metabolic reactions inside the cell

and the amount of enzyme needed. There has been a number of efforts aimed at predicting the

standard Gibbs energy of metabolites and reactions from compilations of experimental data

[1–3]. Standard Gibbs energy estimates can be used in conjunction with metabolite concentra-

tion values to infer reaction directionalities[3, 4]. Such analysis tools have been integrated [3]

with genome-scale metabolic models to safeguard against the use of reactions in the wrong

direction and eliminate thermodynamically infeasible cycles [3, 5, 6].

Gibbs energies quantify thermodynamic constraints and determine both the directionality

and efficiency of enzymatic reactions, thereby dictating allowable metabolic phenotypes for

product synthesis. For example, the beta-oxidation pathway can be reversed because the over-

all standard Gibbs energy change in the reverse direction becomes negative when utilizing fer-

redoxin as the reducing equivalent [7]. This engineered reversed pathway can be used to

produce higher-chain linear alcohols and fatty acids with greater energy efficiency [7]. The

biological methanogenic and acetogenic reduction pathways are highly efficient in converting

CO2 to CH4 due to lower thermodynamic barriers compared to the corresponding geochemi-

cal pathways [8]. Thermodynamic analyses are an important tool for assessing and selecting

feasible heterologous metabolic pathways [5] and quantifying the thermodynamic driving

force for biosynthesis in different production hosts using intracellular metabolomic data [9].

However, direct experimental measurements of standard Gibbs energy change of reactions

(ΔrG0o) are still limited to ~600 enzymatic reactions cataloged in the Thermodynamics of

Enzyme-catalyzed Reactions Database (TECRDB) [5]. Emerging isotopic labeling experiments

such as deuterium-labeled studies [10] can directly quantify ΔrG0o of enzymatic reactions but

have so far been limited to central carbon metabolism thus necessitating the use of predictive

computational frameworks.

In order to expand the prediction of ΔrG0o for reactions lacking experimental measure-

ments, group contribution (GC) methods were developed. They assume that the ΔrG0o can be

expressed as the sum of contributions from all functional groups (ΔgGo) (based on a pre-

defined list of substructures [2]), which in turn are fitted from experimental data. Multiple lin-

ear regression is typically applied to determine each group’s contribution in a reaction by min-

imizing the mean squared error between the observed and estimated ΔrGo. Various group

contribution methods were developed to improve the prediction accuracy [11]. Table 1 con-

tains a brief description of existing methods for ΔrG0o estimation.

Despite the extensive efforts to improve group contribution predictions, there is a number

of inherent limitations [11]. The expert-defined groups provide incomplete coverage leading

to (i) metabolites that cannot be decomposed, and thus their ΔfGo cannot be estimated, (ii) an

assignment of zero for ΔrGo of reactions with no group changes despite experimental values

being non-zero (such as isomerase reactions), and (iii) large uncertainties in ΔrGo for reactions

that involve groups occurring sparingly in the training dataset.
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Moving beyond simple molecular groups, more than 11,145 descriptors have been devel-

oped for extracting chemical information for describing Quantitative Structure-Activity Rela-

tionships (QSAR) [16]. Molecular descriptors such as molecular [17] and circular fingerprints

[18] use fragments/moieties to represent substructure information as vectors, matrices, or

other mathematical representations such as encoding group information in GC methods.

They were applied extensively, alongside statistical and machine learning algorithms, to pre-

dict physical and (bio-)chemical properties (such as dissociation constant, viscosity, and toxic-

ity) for drug design [19]. However, their application for ΔrG0o estimation of enzymatic

reactions has been limited to only a few studies [20, 21]. The computation tool IGERS [20] pre-

dicts ΔrG0o of a new reaction based on its similarity (calculated using 2D molecular descrip-

tors) to reference reactions with experimental measurements. More recently, a machine

learning algorithm using chemical fingerprints as a feature [21] showed improved prediction

accuracy.

Chemical substructures have been used extensively to encode molecular information in

many computational de novo pathway design tools [22]. Substructure changes in enzymatic

reactions can be generalized as rules, thereby codifying de novo reactions to fill in missing

chemical conversion steps. However, current de novo pathway design tools allow only a poste-
riori evaluation of thermodynamic feasibility of a proposed metabolic pathway as novel reac-

tion steps are generally treated as being reversible [23]. Therefore, significant computational

resources may be expended in generating pathways with one or more steps operating in a

thermodynamically unfavorable direction. Even though tilting the relative reactant/product

concentrations can maintain feasibility of the designed pathway, the imposed concentration

ranges may not be physiologically viable. Furthermore, operating near thermodynamic equi-

librium dramatically increases the required enzyme level, incurring a significant metabolic

burden [6, 14]. Thus, an automated approach for estimating the ΔrG0o of all novel steps is

required, which can also be easily embedded within pathway design tools such as novoStoic

[24]. This would help refine de novo predictions by constraining the reaction steps/rules in

only the thermodynamically feasible direction.

Herein, we developed a moiety-based automated fragmentation tool called dGPredictor for

ΔrG0o estimation of enzymatic reactions. Moieties are descriptors of the bonding environment

of all non-hydrogen atoms in a chemical structure. They differ from functional groups which

fragment molecules into their constitutive parts [25]. In contrast, moieties are descriptors of

all non-hydrogen atoms in a molecule encoding their bonding environment up to a pre-speci-

fied bonding distance. Multiple models were tested within dGPredictor using moiety descrip-

tions of different spans and using both explainable linear regression and neural network-based

Table 1. Existing methods for the prediction of standard Gibbs energy of biochemical reactions.

Algorithm/Method Citation Major contributions

Group contribution Mavrovouniotis et al. [2]

(1990)

• Estimate Gibbs energy of formation by decomposing compounds into functional groups based on biochemical

knowledge

Group contribution Jankowski et al. [3] (2008) • Gibbs energy estimation for biochemical reactions in Escherichia coli metabolic network and improved

previous method by introducing additional groups and interaction factors

Group contribution Noor et al. [12] (2012) • Improved last method by integrating known thermodynamic data for molecules when available

• Considered pseudoisomers of molecules at different protonation levels to accounts for the effect of pH and

ionic strength

eQuilibrator Flamholz et al. [13] (2012) • User-friendly web-interface based on previous group contribution method by Noor et al. [12]

Component

contribution

Noor et al. [14] (2013) • Prioritize on reactant contribution over group contribution, which directly uses the formation energy when

available

Updated group-

contribution

Du et al. [15] (2018) • Improved previous methods using entropy and enthalpy information

• Considered influence of magnesium binding with metabolites and temperature

https://doi.org/10.1371/journal.pcbi.1009448.t001
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nonlinear formalisms. Resultant prediction accuracies and overfitting potential were calcu-

lated as the mean squared error (MSE) over training data and median of mean absolute error

(MAE) of leave-one-out-cross-validation (LOOCV) results, which were used as two metrics to

compare the prediction accuracies for ΔrG0o estimates and facilitate the direct comparison

with widely used GC method (specifically, component contribution (CC) [14]). dGPredictor

improved the goodness of fit over the widely used GC method [14] by 78.76% (i.e., MSE over

training data from the TECRDB database (see Table 2)). It also led to an increase in the cover-

age of ΔfG0o and ΔrG0o estimation for metabolites and reactions present in the KEGG database

by 17.23% and 102%, respectively, over GC by allowing for stereochemical considerations not

captured in previous expert-defined chemical groups. Examining the sensitivity of model pre-

dictions to moiety definition revealed that moieties spanning a bonding distance of two are

more prone to overfitting as compared to the moieties of binding distance one due to the com-

binatorial explosion of unique moiety types (e.g., cross-validation MAE of 5.83 kJ/mol vs.

15.46 kJ/mol for bonding distance one and two, respectively). Select moieties spanning dis-

tances one and two in a combined linear model were found to be less prone to overfitting than

the corresponding non-linear variants (cross-validation MAE 5.48 kJ/mol vs. 7.27 kJ/mol for

the best performing non-linear NN model). This is likely due to the relatively small size (i.e.,

4,001 reactions and 673 metabolites) of the training dataset that does not seem to benefit from

using a more extensive set of descriptors embedded in a non-linear modeling framework.

Next, we employed dGPredictor to aid metabolic pathway design by improving upon the

current practice of considering de novo reactions as being always reversible, thereby necessitat-

ing additional scrutiny to ensure thermodynamic feasibility. We show that dGPredictor can

estimate the ΔrG0o of de novo reactions (i.e., involving novel metabolites) by utilizing their

chemical structure information in the IUPAC International Chemical Identifier (InChI)

strings [26]. Furthermore, pathway design tools can use the moiety changes in dGPredictor as

reaction rules to ensure thermodynamic feasibility.

Results

Automated fragmentation of metabolites

In contrast to the widely used GC methods that rely on expert-defined groups, we apply an

automated fragmentation approach similar to Carbonell et al. [17] to encode novel molecules.

dGPredictor classifies every (non-hydrogen) atom in a structure by assessing its bonding envi-

ronment at a distance of one (M1 moieties) or two bonds (M2 moieties). We do not consider

bonding distance zero (i.e., M0 moieties) as that is equivalent to encoding each atom as a moi-

ety. Bonding distances higher than two were also evaluated but did not yield a significant per-

formance increase, as the available regression dataset was relatively limited in size.

Table 2. Details of prediction accuracy and cross-validation scores for different regression models.

Model Mean squared error (kJ/mol)2 cross-validation: Mean absolute error (kJ/mol)

M1-linear 38.30 5.83

M2-linear 24.60 15.46

M1,2-linear 9.60 5.48

M1-nonlinear 20.81 6.64

M2-nonlinear 6.92 14.69

M1,2-nonlinear 6.95 7.27

GC [14] 45.20 5.32

https://doi.org/10.1371/journal.pcbi.1009448.t002

PLOS COMPUTATIONAL BIOLOGY dGPredictor

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009448 September 27, 2021 4 / 24

https://doi.org/10.1371/journal.pcbi.1009448.t002
https://doi.org/10.1371/journal.pcbi.1009448


Fig 1A and 1B highlight the possible loss of stereochemical information that may occur

when not considering the two different configurations around an asymmetric tetrahedral

atom, which results in the same moiety description for both configurations. We use (+)-epi-

isozizaene as an example to demonstrate the chemical moieties-based metabolite descriptors

used in dGPredictor. Fig 1A shows the seven chemical moieties generated from (+)-epi-isozi-

zaene when stereochemistry is considered. The occurrence of the seven moieties is counted

and used as the moiety incidence matrix Gi,g (shown in blue, where rows denote moieties, and

the columns count the occurrence of each moiety in the chemical structure and corresponding

Simplified molecular-input line-entry system (SMILES) representation). The moiety shown in

orange was obtained from the SMILES annotation C[C@@H](C)C, where the chiral specifica-

tion (i.e., “C@@H”) indicates the carbon atom is the tetrahedral center. The two different sym-

bols, “@” and “@@” indicate anticlockwise and clockwise configurations, respectively.

Fig 1. The substructures/chemical moieties generated by dGPredictor. The decomposition of (+)-epi-isozizaene (A) with stereochemistry consideration and (B)

without stereochemistry consideration, and (C) moiety incidence matrix created by dGPredictor for all metabolites in TECRDB.

https://doi.org/10.1371/journal.pcbi.1009448.g001
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Without stereochemistry, (+)-epi-isozizaene can be decomposed into only five moieties (see

Fig 1B). The moiety shown in green is now represented by the SMILES string CC(C)C without

chiral specifications. Thus, including stereochemistry-based decomposition within dGPredic-

tor increases resolution by describing moiety changes for reactants and products that differ

only in stereochemistry (e.g., isomerases).

The component contribution method [14] cannot decompose (+)-epi-isozizaene due to the

incomplete coverage of substructures. As shown in Fig 1, dGPredictor can encode metabolites

with either very complex structures or small molecules such as hydroxylamine (NH2OH). We

applied dGPredictor to construct the moiety incidence matrix for the 673 metabolites with

experimental measurements in TECRDB (see Fig 1C). For moieties spanning a bonding dis-

tance of one and two, we generated 263 (S1 Table) and 1,380 (S2 Table) members, respectively,

using the RDkit python package (See Methods section ‘Automated fragmentation of

metabolites’).

Improved goodness of fit of ΔrG0o by dGPredictor using an automated

moiety classification method

The Gibbs energy contribution of moieties for predicting overall ΔrGo of reaction was gener-

ated separately using Bayesian ridge regression [27, 28] and feed-forward neural networks [29,

30]. Moiety generation and the regression models employed are described in detail in the

Method section. Note that as experimental data was collected at different pH and ionic

strengths, a mixture of pseudoisomers (i.e., multiple structures with different protonation

states) exists for each metabolite. We used the Inverse Legendre Transform (see details in

Methods section ‘Pseudoisomer’) to standardize the experimental values of ΔrGo to a single

pseudoisomer [31]. The Inverse Legendre Transform reduces the ensemble of pseudoisomers

to a single pseudoisomer (i.e., the most abundant pseudoisomer at pH 7 and ionic strength

0.25M) which was used as the reference for regression analysis in this section. The difference

between ΔrGo calculated for a single pseudoisomer and the transformed Gibbs energy ΔrG0o

(i.e., Gibbs energy of the ensemble) at a specific cellular condition is corrected as a function of

the dissociation constant pKa for each pseudoisomer, pH, and the ionic strength when making

predictions (see details in Methods section ‘Pseudoisomers’).

First, we applied Bayesian ridge regression to estimate the individual contribution of each

moiety using experimental measurements of ΔrGo from 4,001 reactions. We considered moie-

ties associated with a bonding distance of one and two to select the model with better predic-

tion accuracy. In the remainder of the paper, we refer to these models of distance one and two

as M1-linear (263 unique moieties) and M2-linear (1,380 moieties). In addition, we examined

the efficacy of using moieties of both distances simultaneously within a single model

(M1,2-linear model, with 1,643 moieties). The mean squared error (MSE) over the entire train-

ing dataset was used as a metric for the goodness of fit in models. For the M2-linear model,

MSE improved by 35.77% over the M1-linear (see Table 2), which is expected as the number

of moieties increases >5-fold from 263 to 1,380. We found that combining moieties of radius

one and two in model M1,2-linear further lowered the MSE by 60.97% compared to the

M2-linear. Thus, the overall model ranking using the MSE is M1,2 > M2-linear > M1-linear.

Next, we determined the overfitting potential of the constructed models by evaluating the

leave-one-out cross-validation mean absolute error (MAE). A large MAE value on the valida-

tion data alongside a low MSE value on the training data indicates model overfitting. MAE is

the absolute difference between the experimentally observed Gibbs energy change of a reaction

(i.e., DrGo
obs in the validation dataset) and the predicted value from the linear regression model

trained without the experimental data of that particular reaction (i.e., DrGo
est in the training
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dataset). We found a significant increase in MAE for M2-linear compared to M1-linear and

M1,2-linear models, with a median MAE of 15.46 kJ/mol, 5.83 kJ/mol, and 5.48 kJ/mol,

respectively (see Table 2). The M1,2-linear model had the lowest MSE on the training dataset

with a value of 9.60 (kJ/mol)2 compared to 38.30 (kJ/mol)2 for M1-linear and 24.60 (kJ/mol)2

for M2-linear. Therefore, we chose the M1,2-linear as the best among the three linear models

due to the lowest overfitting potential and highest cross-validation prediction accuracy. Do

note that this should not be interpreted as a result that would hold universally for all datasets,

and this analysis should be performed before selecting an appropriate moiety bonding

distance.

Introducing neural network-based nonlinear moiety contribution leads to a

marginal increase in prediction performance

We next explored whether the inherent linearity of moiety contributions in the developed

models limits their predictive capability. We used a feed-forward multi-layer neural network

to allow for a nonlinear description of moiety contribution for predicting ΔrGo. Similar to lin-

ear models, three different models with moiety spanning distances one and two were gener-

ated to determine the effect of moiety description on prediction accuracy - M1-nonlinear,

M2-nonlinear, and M1,2-nonlinear. The non-linear models followed a similar trend as their

linear counterparts in terms of goodness of fit scores, i.e., MSE decreases as we increase the

number of moieties with distance two due to overfitting (see Table 2). Models M2-nonlinear

and M1,2-nonlinear were nearly identical in performance on training dataset (MSE 6.92 (kJ/

mol)2 vs. 6.95 (kJ/mol)2) and outperformed the M1-linear model (>3-fold higher MSE 20.81

(kJ/mol)2). However, the M1,2-nonlinear model performs well in terms of both MSE and

LOOCV MAE scores, indicating that the M1,2-nonlinear is the better-performing nonlinear

model.

A comparison among the six models (three linear and three nonlinear) indicates that the

MSE values (i.e., prediction accuracy) for all three nonlinear models were better than their lin-

ear counterparts. However, a correspondingly higher LOOCV MAE reveals that the MSE

improvement is likely due to overfitting. For example, M1,2-nonlinear has a slightly lower

MSE compared to the M1,2-linear (6.95 (kJ/mol)2 vs. 9.60 (kJ/mol)2). However, cross-valida-

tion scores showed that the M1,2-linear is significantly less susceptible to overfitting with

MAE 5.48 kJ/mol vs. 7.27 kJ/mol. This implies that the extra complexity and lack of interpret-

ability associated with the M1,2-nonlinear model do not come with any appreciable increase

in prediction performance. Since the MSE of both models is comparable, we chose model

M1,2-linear as the dGPredictor default model in all subsequent results that were computed

using this model. The M1,2-linear model also offers straightforward interpretability of the

obtained Gibbs energy predictions.

Finally, we assessed model performance between the automated decomposition scheme

using moieties proposed herein and expert-based groups. We applied the same set of thermo-

dynamics data compiled by Noor et al. [14] (available at https://github.com/eladnoor/

component-contribution/) on dGPredictor and the GC method to enable direct comparison.

dGPredictor using the M1,2-linear model outperformed GC, with a lower MSE (9.60 (kJ/

mol)2 vs. 45.20 (kJ/mol)2) and again near perfect R2 score (0.9998 vs. 0.9989) (Fig 2A) esti-

mated over the entire training dataset. As evaluated by Du et al. [11], the linear regression-

based GC model often predicts unrealistically large |ΔgGo| for functional groups with limited

representation in the training data. A similar observation was also made in the current study

wherein GC predicted a |ΔgGo| value greater than 1,500 kJ/mol for two groups (Fig 2B), while

the largest value in dGPredictor is ~200 kJ/mol. dGPredictor mitigates this issue by applying
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Fig 2. Comparison between group contribution method by Noor et al. [14] and dGPredictor (best model: M1,2-linear). (A)

Comparison of regression analysis for the best dGPredictor model (M1,2-linear model) and previous group contribution method. It

shows the improvement in the mean squared error (MSE improved from 45.20 (kJ/mol)2 to 9.60 (kJ/mol)2 and nearly identical R-

squared values. (B) Histogram denoting the estimated contribution of groups. dGpredictor group contribution estimates do not predict

unrealistically high values, unlike group contribution. (C) leave-one-out cross-validation results, which indicates very close performance

with the previous method with an improved MSE value.

https://doi.org/10.1371/journal.pcbi.1009448.g002
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regularization in the regression analysis, which lowers moiety contribution estimates by add-

ing L2-regularization term in the regression objective function which also helps avoid overfit-

ting (see Methods section for details). It must be noted that the median MAE from GC and

dGPredictor is 5.32 kJ/mol and 5.48 kJ/mol respectively (Fig 2C) indicating similar overfitting

potentials.

Increased coverage of metabolites and reactions by dGpredictor

A rigorous test of any predictive model lies in its ability to generalize over unseen data. Thus,

we used the KEGG database [32] to test the dGPredictor’s scope and prediction capability for

reactions that are not included in the training dataset. This also helps evaluate the model’s abil-

ity to provide genome-scale coverage and estimate ΔrGo for novel reactions when designing de
novo biochemical pathways. The KEGG database instance used consisted of 15,278 metabolites

and 7,053 reactions with chemical structure information defined by InChI strings. We first

compared the ability of the GC method and the automated fragmentation method of dGPre-

dictor to describe all metabolites present in the database as chemical functional groups and

moieties. The GC method could describe 85.3% of the 15,278 metabolites, while dGPredictor

succeeded in describing all metabolites (see Table 3). The GC method missed 14.7% metabo-

lites because they contain unique substructures that are not included in its expert-defined 163

groups. Fig 3A illustrates a few of these unique moieties and the corresponding dGPredictor

decomposition. Most of the substructures that were not covered in GC methods decomposi-

tion involved bonds with N, P, and S atoms. Next, the ΔrGo of reactions in the KEGG database

was calculated using dGPredictor and GC. Metabolites from the TECRDB database [33] were

decomposed using expert-defined GC groups and the automated moiety-based framework in

dGPredictor and used to calculate ΔrGo. GC could successfully describe 33.8% of the database

reactions, while dGPredictor could parameterize twice that number (i.e., 69.3%), indicating

that the developed formalism can successfully generalize to provide larger reaction coverage.

Even though dGPredictor improved the coverage of KEGG metabolites and their corre-

sponding reactions, there are still metabolites with associated moieties absent from the

TECRDB dataset, leading to incomplete moiety coverage during model training. For example,

the reaction shown in Fig 3B represents six moiety changes. However, the moiety “C-N-N” is

not in the list of the 1,643 moieties generated from metabolites in the TECRDB training dataset

(for both radius one and two). Noor et al. [14] flagged all these instances by setting a standard

deviation of 1010kJ/mol to indicate that it cannot estimate ΔrGo with any level of certainty.

dGPredictor uses Bayesian ridge regression to provide (generally) a narrower ΔrGo range by

assuming an isotropic Gaussian distribution with precision parameter α and identity matrix I
for the standard Gibbs energy contributions of the moieties/groups (ΔgGo):

pðDgG
ojaÞ ¼ Nð0; a� 1IÞ

After the hyperparameter optimization during model training (see Methods section ‘Bayes-

ian ridge regression to determine the Gibbs energy of groups ΔgGo’) to estimate parameter α

Table 3. Statistics of 15,278 metabolites and 7,053 reactions from KEGG that can be decomposed into groups/

moieties.

GC dGPredictor

Coverage of KEGG

metabolites

85.3% (13,032/

15,278)

100% (15,278/15,278)

Coverage of KEGG reactions 33.8% (2,385/7,053) 69.3% (4,887/7,053) (using moieties from TECRDB training

data)

100% (using moieties from KEGG metabolites)

https://doi.org/10.1371/journal.pcbi.1009448.t003
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[28] by maximizing the log of the posterior distribution in Bayesian ridge regression yields a

parameter α of 9.023 10−4. The standard deviation of ΔgGo in dGPredictor is computed as s ¼
ffiffiffiffiffiffiffi
a� 1
p

¼ 33:29 kJ/mol. As shown in Fig 2B, the ΔgGo contributions of 1,643 moieties are well-

determined as their estimates for 99% fall within three standard deviations of their mean.

Fig 3. Unique substructure covered by dGPredictor. (A) Unique substructures in the 14.7% metabolites missed by previous GC method. Here the count indicates

the occurrence of such substructures in metabolites (B) Example of a reaction with groups (i.e., group “C-N-N”) missing from the 263 groups from TECRDB.

https://doi.org/10.1371/journal.pcbi.1009448.g003
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Therefore, Bayesian ridge regression provides a much narrower confidence interval for all

moieties with no prior thermodynamic information. The model predictions can thus increase

to 100% reaction coverage with Bayesian regression, although with a wider confidence interval

in ΔrG0o for reactions that contain moieties without experimental data. Hence, the use of an

automated moiety-based description with Bayesian regression allows expanding the set of

Gibbs energy predictions while narrowing the overall confidence interval as compared to the

previous GC method.

dGPredictor enhances prediction scope by accounting for reactions with no

GC-defined group changes

A limitation of previous GC methods lies in their inability to predict ΔrG0o of reactions with no

group changes, which are ultimately assigned a ΔrG0o value of zero. Many of these reactions are

isomerases or transaminases, which may have non-zero ΔrG0o [11]. One such example is the

enzymatic reaction catalyzed by GDP-D-mannose 3,5-epimerase (EC number: 5.1.3.18), with

an experimentally measured equilibrium constant K’ = 1.94, implying a ΔrG0o of 1.7 kJ/mol

[34]. The reactant and product, GDP-mannose, and GDP-L-galactose, respectively, are struc-

tural isomers (Fig 4A), due to which GC-based methods are unable to capture a group change

in the reaction. dGPredictor accounts for the inherent stereochemical changes by capturing

the clockwise and anticlockwise configurations of the two chiral centers (Fig 4A). The pre-

dicted ΔrG0o is 1.74 kJ/mol, which is quite close to the experimental measurement of 1.7 kJ/

mol.

The KEGG database has 319 reactions associated with no group changes, as defined by GC-

based methods (Fig 4B). Most of them are transferases (EC 2) and isomerases (EC 5), which

cannot be captured due to no group changes from the 163 expert-defined groups because of its

inability to differentiate stereochemistry in chemical structures. dGPredictor described 86.83%

of the reactions with no group changes (i.e., 277/319) and, in particular, 39.71% isomerases

(i.e., 110/277). This is because the simultaneous inclusion of moieties spanning distances one

and two allows us to consider additional details of the localized bonds and atoms, thus alleviat-

ing problematic cases of no moiety changes being registered when considering single bonding

distance. For example, the moiety description of an aminotransferase reaction (EC 2) (Fig 4C)

generates identical moieties for both substrates and products, leading to an empty group

change vector when considering bonding distance one moieties. However, allowing an addi-

tional bonding distance of two helps dGPredictor generate unique moieties, thus resolving the

issue of zero change and in turn leading to a non-zero ΔrG0o value. We estimated the ΔrG0o for

only reactions with no-group changes and found an MSE of 5.06 (kJ/mol)2 for dGPredictor

compared to 63.97 (kJ/mol)2 for GC methods (see S3 Table for no-group change reactions in

training dataset). The cross-validation error followed the same trend as the mean MAE error

for the GC method was 3.84 kJ/mol compared to 2.26 kJ/mol for the dGPredictor (see S3

Table for no-group change reactions in validation dataset). S4 Table is provided with the list of

all no-group change reactions from the training dataset resolved by dGPredictor, along with

their corresponding experimental and estimated Gibbs energies.

Nevertheless, 42 reactions could still not be resolved because both M1 and M2 descriptions

used by dGPredictor were identical between reactants and products. This is because the RDkit

tool [35] used for computing moieties stores molecules with implicit hydrogen (i.e., not explic-

itly present in the molecular graph) and ignores the “C-H/O-H” bond when generating the

SMILES string. Thus, RDkit cannot identify an atom to be chiral unless it has all the atoms dif-

ferent at the specific bonding distance that is being considered. We have used moieties of up to

distance 2 (i.e., M2). Moieties associated with longer bonding distances tend to significantly
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increase in number and cause overfitting. An example is shown in Fig 4D, where KEGG reac-

tion R10764 that converts α-L-Fucopyranose to β-L-Fructopyranose is expected to have non-

empty moiety changes if the moieties preserve the same stereo configurations (i.e., [C@H] or

[C@@H]) as α-L-Fucopyranose and β-L-Fructopyranose, but RDkit cannot determine the

moiety as being chiral as the “C” atom is attached to two “O” atom for bonding distance one.

In this case, RDkit returning an empty group can be alleviated by combining both distances to

capture a non-zero moiety change. This flexible moiety consideration is the primary reason

behind dGPredictor providing ~87% more coverage for reactions with no group/moiety

change than previous GC methods. The remaining 13% could be tackled using more advanced

molecular descriptors such as Neural Graph Fingerprints [18] that account for higher-order

interactions instead of local atom/bond information.

User-friendly interface for Gibbs energy calculation of novel reactions and

metabolites beyond KEGG

Advances in computational pathway design have expanded the range of microbial product

synthesis to non-natural synthetic molecules and drug precursors, leveraging broad-substrate

range enzymes [36, 37] promiscuous activity [38], and even de novo enzyme design [39, 40].

However, tools such as novoStoic [4] generally treat novel transformations as reversible, neces-

sitating additional scrutiny to ensure the thermodynamic feasibility of the designed pathway.

The ability of dGPredictor to characterize unseen metabolites, and by extension, chemical

transformations, accompanied by an automated moiety-based framework enables its use in

pathway design tools to eliminate thermodynamically infeasible predictions. In this section,

we demonstrate how dGPredictor can predict ΔrG0o for novel reactions which do not span

known biochemical reactions using chemical moieties, and a GUI that can help users query

the same.

The dGPredictor input format uses KEGG IDs to indicate the substrates and products of a

reaction. For example, dGPredictor can recognize ‘C00096 < => C02280’ as the reaction

“GDP-mannose < => GDP-L-galactose” (discussed in above section). However, KEGG is

only one of many databases consolidating biochemical reactions, has a lower metabolite con-

tent [41], and does not capture novel molecules that often show up in the reactions of retrosyn-

thetic metabolic pathways [42]. Therefore, we designed dGPredictor to allow for user-defined

chemical structures as an additional input to estimate ΔrG0o for any novel reaction. A user-

friendly interface has been developed (https://github.com/maranasgroup/dGPredictor) to

facilitate thermodynamic analysis for reactions. Metabolites with known chemical structures

can be entered using KEGG IDs and InChI strings are required for molecules not present in

the KEGG database. For example, in the de novo pathway found by novoStoic for pinosylvin

(C01745) degradation, a deoxygenase enzyme catalyzes the first step and produces an aromatic

product (see Fig 5). KEGG IDs identify all metabolites except the reduced product ‘N00001’ in

the reaction “C01745 + C00004 < => N00001 + C00003 + C00001”. Here, we use ID

“N00001” to represent the novel metabolite 3-Phenethyl-phenol, where N refers to novel. The

user can indicate that the reaction involves a novel metabolite (i.e., absent in the KEGG data-

base) by clicking a checkbox and filling in the InChI string placeholder under the stoichiome-

try of the reaction to describe the atom composition and bonds in metabolite N00001 (see

Fig 4. Increased coverage of reactions with no GC-defined group changes. (A) GDP-mannose 3,5-epimerase (R00889) reaction that can be

resolved to give group change using stereochemistry information, and examples of reactions in EC 2, (B) The number of reactions that have no

group changes defined by GC (blue) and resolved by dGPredictor (orange), (C) an example of reaction in EC 5 (D) that cannot be resolved by

dGPredictor using only bonding distance one.

https://doi.org/10.1371/journal.pcbi.1009448.g004
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Fig 5). Similar to eQuilibrator [13], we allow the customized input of intracellular conditions

(i.e., pH and ionic strength) via two sliders. With all the information properly defined, on

clicking the “search” button, dGPredictor first show the chemical structures in the reaction

and then calculate the standard transformed Gibbs energy ΔrG0o of the reaction at a particular

pH and ionic strength. The output information also displays the standard deviation of predic-

tions from Bayesian ridge regression and the moiety changes as defined by dGPredictor. Note

that the standard transformed Gibbs energy ΔrG0o is not a function of the actual metabolite

Fig 5. The graphical user interface of dGPredictor. It allows the input of metabolites using their KEGG IDs (for known compounds) and InChI strings (for novel

compounds) in a chemical reaction. Intracellular conditions of pH and ionic strength can also be adjusted using sliders. The final output shows the standard transformed

Gibbs energy ΔrG0o of the reaction at a particular pH and ionic strength.

https://doi.org/10.1371/journal.pcbi.1009448.g005
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concentrations. The measured concentrations of metabolites (ci) can be used to calculate the

actual Gibbs energy for a reaction j (DrG0j) via the equation DrG0j ¼ DrG0
�

j þ lnð
Q

i½ci�
sjiÞ where,

Sji is the stoichiometry of metabolite i in reaction j. We envision the developed GUI to facilitate

easy adoption of dGPredictor to the broader metabolic engineering and synthetic biology

community.

Assigning thermodynamics-derived directionality to reaction rules in de
novo pathway design

As dGPredictor generates automated molecular descriptions, it can be used in conjunction

with pathway design tools to ensure that individual reaction, and in turn, the overall pathway,

is thermodynamically feasible. Pathway design tools such as novoStoic, RetroPath, and Retro-

Path2.0 [4, 43, 44] can be integrated with the moiety change vector of dGPredictor as reaction

rules to design de novo pathways. We used the novoStoic tool to illustrate this integration and

deployed dGPredictor on the 3,603 unique reaction rules generated from KEGG database. We

found that based on the predicted standard free energy of change, a number of novel reactions

can reliably be flagged as irreversible (i.e., |ΔrG0o|> 20 kJ/mol). We chose a value of 20 kJ/mol

because the actual concentrations are rarely known during the pathway discovery stage. There-

fore, we used the conservative cutoff of |ΔrG0o| > 20 kJ/mol as a threshold for deciding the

reversibility of reactions, as reversing reactions with |ΔrG0o| > 20 kJ/mol would require highly

imbalanced concentrations that are unlikely to be physiologically relevant. This enables the

elimination of intermediate steps with a high Gibbs energy barrier, thereby significantly reduc-

ing the number of candidate pathways to be explored.

Similar to the definition of reaction rules in novoStoic [4], which captures changes in the

topology of molecular graphs for a substrate to product conversion [45], dGPredictor assumes

that reactions with same rule undergo same substrate to product change, thereby conforming

to identical moiety change. We estimated ΔrG0o for all 3,603 reaction rules and use ±3 standard

deviations to obtain confidence intervals (i.e., 99.7% probability that the Gibbs energy estimate

is within the calculated interval) (Fig 6A and 6B). We identified 331 reaction rules with pre-

dicted Gibbs energy confidence intervals that span only positive values (see Fig 6B) implying

that they can only be deployed in the reverse direction. As an additional safeguard, we only

applied the irreversibility restriction if the absolute value of the predicted free energy of change

|ΔrG0o| exceeds 20 kJ/mol, to account for varying metabolite concentrations that may ulti-

mately tilt reaction directionality [46]. This additional constraint reduces the number of reac-

tion rules that can confidently be treated as irreversible from 331 to 325 (see Fig 6C for EC

classification of irreversible reaction rules). Therefore, the dGPredictor framework can help

identify the direction a priori for irreversible reaction rules and eliminate the thermodynami-

cally infeasible intermediate steps. This allows novoStoic to consider not only the overall ther-

modynamic feasibility of the pathway but also evaluate every single step.

To assess the extent of reaction rules’ directionality affecting pathway design predictions,

we applied the set of reaction rules to search for isobutanol production pathways (a well-studied

product from the Ehrlich pathway [24, 47–49]) using 2-ketoisovalerate as the precursor. Two

distinct production pathways were identified by novoStoic (Fig 6D). Pathway A is the engi-

neered pathway in E. coli and C. thermocellum with a demonstrated thermodynamic feasibility

in vivo. Pathway B (shown in orange), however, is thermodynamically infeasible. The first step

converts 2-ketoisovalerate to isobutyric acid using a novel reaction R1, which has the same moi-

ety change as the native reaction of indole-3-pyruvate monooxygenase. However, the second

step is a novel reaction R2 similar to the reaction catalyzed by nucleoside oxidase that favors the

reverse direction based on dGPredictor thermodynamics analysis. Thus, instead of relying on
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manual post-processing, direct inclusion of thermodynamic constraints from dGPredictor

within the novoStoic pathway design tool can help eliminate infeasible pathways.

Discussion

This paper presents an automated thermodynamic analysis tool, dGPredictor, based on molec-

ular fingerprints and chemical moieties to estimate the ΔrG0o of biochemical reactions.

Fig 6. Moiety/Group change vectors can be used as reaction rules to design de novo pathways. (A) ΔrG0o for all the 3,603 reaction rules, (B) 331 reaction rules found to

be irreversible from the uncertainty analysis using ± 3 standard deviations (C) The EC classification for irreversible reaction rules, and (D) an example of

thermodynamically infeasible pathways eliminated by using irreversible reaction rules. (See S5 Table for the Gibbs energy information of reaction rules and their

corresponding KEGG IDs).

https://doi.org/10.1371/journal.pcbi.1009448.g006
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Compared with previous group contribution methods, dGPredictor expands thermodynamic

calculation coverage to more molecules and reactions with improved accuracy. This is primar-

ily due to the automated fragmentation method that allows incorporating stereochemical

information while generating chemical moieties, which was lacking in the group decomposi-

tion scheme in previous methods [2, 12, 14, 50]. The versatility of the fragmentation method is

further illustrated by extending predictions to de novo reactions, which enables determining

the thermodynamical feasibility of synthetic pathways and thus aid strain design algorithms.

First, we showed that the moiety-based automated fragmentation using the SMILES nota-

tions could account for stereochemistry in metabolite descriptions. Moieties spanning bond-

ing distances of one and two were generated and used in a linear and non-linear regression

framework to ascertain the best-performing model. We found that employing a non-linear

framework and moieties spanning a bonding distance of two leads to a slight increase in pre-

diction accuracy while being significantly more prone to overfitting. Therefore, an explainable

linear model comprising moieties spanning bonding distances of one and two (i.e., M1,2-lin-

ear) was determined to be the best performing model and the default for dGPredictor. Notably,

the cross-validation MAE (representing prediction accuracy and overfitting potential) was

comparable to the current state-of-the-art GC method (Component Contribution) and the

MSE (metric for goodness of fit) improved by 78.76% over same training (i.e., the TECRDB

database) and cross-validation (i.e., the KEGG database) datasets for a direct comparison of

model predictions. We found that the proposed automated fragmentation approach can be

implemented on all metabolites in the TECRDB database, unlike the GC method, which uses

expert-defined functional groups to decompose metabolites and only cover 85.3% of metabo-

lites. Molecular descriptions thus obtained were used to estimate ΔrG0o for reactions in the

KEGG database, leading to increased reaction coverage (69.3% vs. 33.8%). However, there

remains scope for improvement in the dGPredictor prediction pipeline, which can be aided by

increasing the experimental coverage of reactions with experimental ΔrG0o estimates, in turn,

increasing the number of characterized moieties. dGPredictor can be used to prioritize these

experimental targets for ΔrG0o estimation by focusing on reactions that comprise unique moie-

ties frequently occur in the uncovered reactions. A list of such reactions ranked by the fre-

quency of unmeasured moieties is provided in the supplementary file S6 Table. In addition,

quantum chemical calculation [51, 52] that de novo estimate ΔfG0o for metabolites with no

experimental measurements and/or novel metabolites generated by retrosynthetic pathway

design algorithms can be used to supplement the available experimental data.

A graphical user interface was built for the dGPredictor tool, similar to the group contribu-

tion-based web interface eQuilibrator. It can estimate ΔrG0o at different intracellular condi-

tions, namely pH and ionic strength. dGPredictor improves upon eQuilibrator by not only

estimating the ΔrG0o for reactions with compounds in the KEGG database and allowing the

user to input novel metabolites using their InChI strings. Thus, our tool broadens the capabil-

ity of ΔrG0o prediction by incorporating novel reactions. This prediction ability is extended to

estimate the ΔrG0o of designed pathways by restricting the directionality to new reaction rules

in the de novo pathway design tool novoStoic [4]. dGPredictor can help eliminate unnecessary

solutions in novoStoic that are not thermodynamically feasible. The moiety change vectors in

the dGPredictor can be directly used as allowed reaction rules in novoStoic [4]. dGPredictor

thus facilitates an effective search for thermodynamically feasible metabolic pathways by dis-

carding on average 10% of the reaction rules as infeasible, thereby reducing the search space

and computational expense for pathway design.

However, it must be noted that there still exists scope for improvement in the molecular

descriptors proposed herein. dGPredictor cannot fully resolve reactions with no moiety

changes in isomerase reactions due to limitations in the fingerprints defined by RDkit.
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Therefore, applying advanced 3D molecular descriptors to capture the exact stereochemistry

might help capture such reactions. 2D molecular descriptors only contain information for the

localized atoms/bonds, whereas a 3D descriptor allows precise capture of molecular shape and

interactions [16]. In a recent study, the Quantitative Structure-Activity Relationship (QSAR)

method based on Smooth Overlap of atomic position (SOAP) descriptors was shown to suc-

cessfully capture the 3D atomic environment from conformers [53]. Therefore, utilizing a 3D

molecular descriptor for molecule decomposition in the free energy prediction has great

potential to account for even more accurate estimation. In addition to that, dGPredictor can-

not handle reactions involving metals such as Fe or polymeric structures (e.g., glycogen,

starch) due to the lack of available thermodynamic information in the training dataset. This

can be remedied with the inclusion of additional relevant information in the dataset.

Methods

Automated fragmentation of metabolites

The algorithm first classifies every atom in the chemical structures of a metabolite into groups

of adjacent atoms within a specified bonding distance (i.e., moieties). The bonding distance

defines the bond’s proximity to consider from an atom to be described as a chemical moiety.

We use the InChI string of metabolites as input. Next, we represent each fragment/moiety

with canonical SMILES string. Finally, a group incidence matrix Gi,g is used to represent the

count of each moiety as group g for every metabolite i. We use the automated fragmentation

algorithm and represent each group by a unique SMILES string utilizing the Cheminformatic

tool RDkit[35] accessed through python.

Bayesian ridge regression to determine the Gibbs energy of groups ΔgGo

Using the molecular descriptions thus obtained, we determine the standard Gibbs energy con-

tributions of moieties ΔgGo that allows the best fit of experimental data from TECRDB.

Parameters

S: stoichiometric matrix (Ri×j)

G: moiety incidence matrix that represents group decomposition (Ri×g)

DrGo
obs;j: Gibbs energy change of reaction j observed in enzyme thermodynamic database

TECRDB.

Variables

ΔgGo: standard Gibbs energy contributions of moiety (Rg×1)

DrGo
est: estimated standard Gibbs energy change of reactions (Rn×1)

The optimization formulation of multi-linear regression with L2 regularization (i.e., ridge

regression) to estimate ΔgGo by minimizing the sum of the squared estimate of errors (SSE)

and the regularization term is shown as follows:

min
Pn

j ðDrG
o
obs;j � DrG

o
est;jÞ

2
þ lðDgG

oÞ
T
DgG

o ð1Þ

s.t.

DrG
o
est ¼ STG � DgG

o ð2Þ

Because the multi-linear regression is prone to overfitting, especially since more moieties/
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groups are defined in our method than previous GC-based methods, L2 regularization (λ
(ΔgGo)TΔgGo) is often applied in ridge regression to reduce cross-validation errors.

Confidence interval analysis from strongly biased models (e.g., ridge regression) relies on

bootstrap-based methods. It often produces inaccurate uncertainty estimations [54]. Credible

intervals used by Bayesian inference provide an alternative metric to confidence intervals.

They have been shown to provide more reliable uncertainty estimation in 13C metabolic flux

analysis [55]. Herein, we apply Bayesian ridge regression and define the prior of the ΔgGo as

the isotropic Gaussian distributions with precision parameter α:

pðDgG
ojaÞ ¼ NðDgG

oj0; a� 1IÞ ð3Þ

The likelihood function for the DrGo
est is defined as a Gaussian distribution with a precision

parameter β:

pðDrG
o
estjDgG

o; bÞ ¼ NðDrG
o
estjS

TG � DgG
o; b

� 1
Þ ð4Þ

Based on the prior and likelihood function, ΔgGo is then estimated by the method of maxi-

mum a posteriori estimation (MAP) of the log of the posterior distribution:

max
DgGo

lnðpðDrG
o
estjDgG

o; bÞ � pðDgG
ojaÞ ð5Þ

Note that the maximization of the log of the posterior distribution is equivalent to the

multi-linear regression with L2 regularization defined in Eq (1) and λ = α/β as shown in [27]:

ln p DrG
o
estjDgG

o; b
� �

� p DgG
oja

� �
¼ �

b

2

Pn
j ðDrG

o
obs;j � DrG

o
est;jÞ

2
�
a

2
ðDgG

oÞ
T
DgG

o ð6Þ

�

The prediction interval of DrGo
est;j for a new reaction j with a moiety change vector xj from

Bayesian ridge regression can then be calculated as:

pðDrG
o
est;jjxj;DgG

o; a; bÞ ¼ Nðxj � DgG
o; s2ðxjÞÞ ð7Þ

where the variance of the prediction interval can be calculated following the derivation in [34]

as:

s2ðxjÞ ¼ 1=bþ xj
TSNxj

SN ¼ ðaþ bðS
TGÞTSTGÞ� 1

We apply the Bayesian ridge regression function from the scikit-learn python package to

train the Bayesian ridge regression model. Scikit-learn optimizes the precision parameters α
and β by iterative re-estimation based on an estimate for “how well-determined” the corre-

sponding ΔgGo is by the training data [28]. We found the same parameters and mean squared

error in the fitted data upon Bayesian ridge regression to 50 different initial guesses of preci-

sion parameters. We infer that the iterative method applied in Bayesian ridge regression in sci-

kit-learn can produce unique, optimized parameters α and β. Then, the Bayesian ridge

regression model can estimate the mean (xj�ΔgGo) and standard deviation (σ) of DrGo
est;j.

Neural networks models for estimating Gibbs energy of groups ΔgGo

We choose a feed-forward multi-layer perceptron neural network for nonlinear regression.

These networks have neurons that are ordered in layers. The model starts with an input layer
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(moiety incidence vector), followed by a hidden layer, and ends with an output layer. S1 Fig

shows the architecture for a feed-forward neural network. The multi-layer perceptron model

maps the moiety incidence matrix of the training data with the output layer using nonlinear

functions. Finally, the output of the hidden layers is determined by using a rectified linear unit

transfer function [56].

We applied the multi-layer perceptron regression from the scikit-learn python package to

train the neural network model. LBFGS (Limited memory Broyden-Fletcher-Goldfarb-

Shanno) backpropagation algorithm [29] is used to minimize the mean squared error and

update the weights of the hidden layers based on the estimates in the output layer. The LBFGS

is a faster technique in the family of quasi-newton methods commonly used for parameter esti-

mation in machine learning [29]. Our model has three layers: input, hidden, and output. We

considered the scikit-learn package default single hidden layer with 100 neurons to build the

neural network model. Studies suggest that a single layer can adequately approximate any

function which maps one finite space to another [30]. Scikit-learn package automatically esti-

mates the number of neurons based on the cross-validation results for an accurate fit.

At last, we build three different models for bonding distance one, two and combining both

distances. The M1,2-nonlinear model inputs the moiety incidence matrix for both the radiuses

in a single input matrix. The radius one and two have 263 and 1,380 unique moieties for 673

metabolites in 4,001 reactions. Therefore, the M1,2-nonlinear model considers a total of 1,643

moieties to generate moiety incidence. The same leave-one-out cross-validation was per-

formed as linear regression models for a direct comparison of the model performance.

Pseudoisomers

The exact structure of the metabolite inside a cell is typically unknown because it exists as a

mixture of pseudoisomers with different protonation states. Pseudoisomers are incorporated

into dGPredictor by assuming that the intracellular mixture of pseudoisomers follows the

Boltzmann distribution. We use Inverse Legendre Transform [12] to calculate the difference

between the standard Gibbs energy of formation of a compound ΔfGo of the major pseduoi-

somer (i.e., most abundant at pH 7 and ionic concentration 0.25M) and the transformed

Gibbs energy of formation of the mixture ΔfG0o:

Df G
0o ¼ Df G

o þ RTln 10ð Þ �m � pH

� RTln
PNH

n¼0
exp ln ð10Þ

Pn
i¼mþ1
ðpKaðiÞ � pHÞ þ

2:91482ðzn2 � nÞ
ffiffi
I
p

RTð1þ 1:6
ffiffi
I
p
Þ

" #

ð8Þ

where the acid-base dissociation constant pKa(i) of pseudoisomer i is calculated using Che-

mAxon Marvin, NH is the maximum number of protonated hydrogens within a molecule (i.e.,

the number of pKas), m is the number of hydrogens of the reference pseudoisomer, zn is the

total charge of the pseudoisomer n, I is the ionic strength, R is the gas constant, and T is the

temperature.

The experimental measurement in TECRDB for a reaction for the apparent equilibrium

constants K0, which is used to calculate the standard transformed Gibbs energy of reaction j:

DrG
0o
j ¼ � RTlnðK0Þ ¼

P
iSijDf G

0o ð9Þ

Replacing ΔfG0o in Eq (9) with Eq (8), the resulting linear equations can be used to calculate

ΔfGo using Gaussian elimination. When predicting ΔrG0o of a reaction, the difference between

ΔfG0o and ΔfGo (i.e., ΔΔG = ΔfG0o−ΔfGo) of all the metabolites in the reaction calculated from

Eq (8) can be added to the ΔrGo calculated from regression analysis in the above sections to
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correct the contribution of the pseudoisomer mixture. Both the calculation of ΔfGo using

Inverse Legendre Transform and ΔΔG are implemented using the functions from the compo-

nent contribution package (https://github.com/eladnoor/component-contribution).
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