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To the Editor:

Bardet–Biedl syndrome (BBS) is a rare genetically
heterogeneous disorder presenting with retinal dys-
trophy, postaxial polydactyly, obesity, renal malforma-
tions, learning disabilities, and male hypogenitalism
[Beales et al., 1999]. To date, 12 genes have proven to
be implicated in the disease, accounting for the
mutational load in 70–90% of the patients [Blacque
and Leroux, 2006; Stoetzel et al., 2007]. BBS is
inherited as an autosomal recessive disease though
in some instances, digenic triallelic inheritance has
been suggested [Katsanis et al., 2001]. Although
mutations in many different BBS genes have been
described in Caucasians, BBS1 and BBS10 are the
two major genes accounting for greater than 50% of
the BBS patients [Mykytyn et al., 2002; Stoetzel et al.,
2006a]. Mutational findings in the remaining known
genes have predominately been reported in non-
Caucasian patients [Ansley et al., 2003; Chiang et al.,
2004; Stoetzel et al., 2006b]. BBS5 is a minor
contributor to BBS as only 2% of families from
various ethnic backgrounds harbor BBS5 mutations
[Li et al., 2004].

We studied five BBS patients from two non-
consanguineous families residing in Denmark: A
Somali family (Family 1) with five siblings of whom
four were affected, and an affected boy from Sri
Lanka (Family 2). The Sri Lankan patient was a single
adopted child and no further information of his
biological parents was available. The patients were
identified from the files of the Retinitis Pigmentosa

Registry at the National Eye Clinic, Hellerup, Den-
mark [Haim, 2002]. Diagnosis was based on an
ERG-verified panretinal photoreceptor dystrophy in
association with three or more systemic manifesta-
tions; that is, postaxial polydactyly, obesity, cognitive
impairment, renal signs, and male hypogenitalism
[Beales et al., 1999]. DNA from the patients was
collected for mutation analysis. The control group
consisted of 43 East Africans (Kenya) and 58 West
Africans (Nigeria) for family 1 [Rotimi et al., 2001],
and 54 Indian individuals for family 2. Appropriate
informed consent was obtained from the patients
and their families.

As part of a larger study screening of BBS1, BBS2,
BBS4, MKKS, and BBS10 was done by denaturing
high performance liquid chromatography (DHPLC,
Varian, Inc., Palo Alto, CA) followed by DNA sequenc-
ing of aberrant products on an ABI3100 automated
capillary sequencer using Big Dye Terminator v.3.1
(Applied Biosystems, Foster City, CA; authors’
unpublished data, manuscript submitted). BBS5
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mutational analysis was likewise performed by
DHPLC. Primer sequences and PCR protocols for
BBS5 are available upon request.

Genotyping of the two families was done sepa-
rately. For Family 1 we used the Affymetrix Gen-
eChip Mapping 10K 2.0 Array to search for regions of
shared genotypes among the affected siblings.
Sample processing for this part of the study was
carried out at the Microarray Facility in Tübingen,
Germany. For Family 2, SNP genotyping was
performed on Affymetrix GeneChip Human Map-
ping 50K Hind 240 SNP microarrays (Affymetrix,
Santa Clara, CA). We allowed SNPs that could not be
scored to be included in the regions of interest. An
average call rate >95% was obtained.

Screening of BBS1, BBS2, BBS4, MKKS, and BBS10
by DHPLC did not reveal causative mutations in
the five patients. We therefore performed SNP
genotyping in order to identify other BBS loci. Since
we had no information of consanguinity in Family 1,
we searched for regions of shared genotypes cover-
ing more than 5 Mb among the four affected sibs
and different from the unaffected sib. We identified
threemajor regions: Two regions at 6q15 (23Mb) and
12q32 (34 Mb) did not contain any known BBS gene
while a region spanning 11 Mb at 2q31 contained
the BBS5 locus (see the online Table I at http://
www.interscience.wiley.com/jpages/1552-4825/
suppmat/index.html). Mutational analysis of
BBS5 revealed a homozygous nucleotide change,
c.214G>A (p.Gly72Ser) in exon 4, identified in all
four affected siblings in Family 1 but not in the
unaffected sib. Both parents were carriers. The
mutation was absent in 202 ethnically matched
control chromosomes. Sequence alignment showed
the change to be localized within a conserved region
(Fig. 1).

SNP genotyping of the patient in Family 2 lead to
the identification of nine homozygous regions
including two regions containing a known BBS
gene. One locus spanning 19.6 Mb at 1p32
contained TRIM32 (BBS11) while the other locus
spanning 16.6 Mb at 2p31 contained BBS5 (see
the online Table I at http://www.interscience.

wiley.com/jpages/1552-4825/suppmat/index.html).
Sequence analysis of TRIM32 did not reveal any
causative nucleotide changes in the patient. How-
ever, direct screening of the entire BBS5 gene
identified a novel single base pair change,
c.547A>G, in exon 7 in the homozygous state
predicted to result in a non-conserved amino acid
change, p.Thr183Ala (Fig. 1). The mutation was
absent in 108 ethnically matched control chromo-
somes. Furthermore, it was not detected among
60 BBS patients primarily of Northern European
origin (authors’ unpublished data, manuscript
submitted). No family members were available for
testing.

We report here on twonovelmissensemutations in
BBS5. Both mutations are localized within conserved
regions of the gene, are present in the homozygous
state in the patients, and are absent in control
chromosomes. In silico analysis predicts the muta-
tions to affect protein function and in Family 1 the
mutation segregates with the phenotype. Most of the
known mutations in BBS5 are localized within either
of two putative domains, called DM16 (Fig. 2); as for
the mutations reported here, p.Gly72Ser is localized
in the first domain while p.Thr183Ala is localized in
the second DM16 domain of BBS5. DM16 is a domain
of unknown function and evolutionary conserved
among many species [Li et al., 2004]. The fact that the
mutations reported here are located in the DM16

FIG. 1. Evolutionary conservation of BBS5 surrounding novel missense
mutation sites showing local alignment of amino acid sequence. A: c.214G>A
(p.Gly72Ser). B: c.574A>G (p.Thr183Ala). Hs, Homo sapiens; M, Mus
musculus; Gg, Gallus gallus;Md, Monodelfis domesticus; Rn, Rattus norvegicus;
Bt, Bos Taurus; Cf, Canis familiaris; Pt, Pan troglodytes.

FIG. 2. Diagram of the BBS5 protein. Origin of exons is shown as boxes. The positions of the previously reported sequence variations and those reported here are
indicated with reference to the exon where mutations occurred. Protein alterations are indicated with the one-letter abbreviations. Though the mutations mainly are
truncating mutations and thereby affecting other parts than the DM16 domains, the missense mutations are all localized within the two domains. p.Asn184Ser (N184S)
and p.Arg207His (R207H) are of uncertain pathogenecity due to their detection in the heterozygous state in BBS patients.
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domains supports their pathogenecity. We cannot
rule out though, the existence of another mutation in
linkage disequilibrium with these missense muta-
tions. However, all coding regions plus 20 base pairs
in theflanking regionswere sequenced.Ourfindings
represent the first missense mutations detected in the
homozygous state in BBS5 patients. Thus, these
BBS5 missense mutations might be useful for func-
tional studies (Table II).

Only five other point mutations, two indels and
one large deletion have been previously reported in
BBS5 (Table II) [Li et al., 2004; Nishimura et al., 2005;
Smaoui et al., 2006]. Most of these were detected in
the homozygous state with the exception of the two
previously reported missense variants (p.Asn184Ser
and p.Arg207His). The previously published muta-
tions are identified in patients from Africa and the
Middle East, and in a single patient from New
Foundland [Li et al., 2004; Smaoui et al., 2006].

In conclusion, we report two novel missense
mutations in BBS5. Several pieces of information
support that the mutations are pathogenic. Both
patients are non-European. Screening of 60 patients
from Northern Europe revealed no mutations in
BBS5. These data might have implications for the
mutational screening strategy of BBS5.

ELECTRONIC DATABASES

Online Inheritance of Man (OMIM)—BBS5:#
603650.

GenBank RefSeq cDNA accession number:
NM_152384.2.
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