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ABSTRACT: Single-molecule bioelectronic sensing, a groundbreaking domain in biological
research, has revolutionized our understanding of molecules by revealing deep insights into
fundamental biological processes. The advent of emergent technologies, such as nanogapped
electrodes and nanopores, has greatly enhanced this field, providing exceptional sensitivity,
resolution, and integration capabilities. However, challenges persist, such as complex data sets
with high noise levels and stochastic molecular dynamics. Artificial intelligence (AI) has stepped
in to address these issues with its powerful data processing capabilities. AI algorithms effectively
extract meaningful features, detect subtle changes, improve signal-to-noise ratios, and uncover
hidden patterns in massive data. This review explores the synergy between AI and single-molecule
bioelectronic sensing, focusing on how AI enhances signal processing and data analysis to boost
accuracy and reliability. We also discuss current limitations and future directions for integrating
AI, highlighting its potential to advance biological research and technological innovation.
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■ VOCABULARY SECTION
Bioelectronics: Bioelectronics is an interdisciplinary field that
combines biology and electronics to study and manipulate
biological systems using electronic devices and technologies.

Single-molecule bioelectronic sensors: Single-molecule
bioelectronic sensors are devices that can detect and analyze
the electrical behaviors of individual biological molecules such as
proteins, enzymes, and DNA at a very detailed level.

Artificial Intelligence (AI): Artificial Intelligence refers to
the simulation of human intelligence processes by computer
systems, including learning, reasoning, and decision-making, to
analyze and interpret complex data.

Single-molecule detection: The process of identifying and
measuring the presence of individual molecules at the single-
molecule level, allowing for sensitive detection and analysis of
biological interactions and functions.

Single-molecule sequencing: A high-resolution method in
bioelectronics that involves the direct analysis of individual
molecules, typically DNA, RNA, or proteins, to determine their
nucleotide or amino acid sequence. This technique provides
detailed information about the genetic material at the molecular
level, enabling precise identification and analysis of genetic
variations.

Molecular electronics: Molecular electronics focuses on the
development of electronic devices and circuits at the molecular
scale, utilizing individual molecules as building blocks for
innovative high-performance technologies.

1. INTRODUCTION
Bioelectronics, an interdisciplinary fusion of biology and
electronics, has garnered significant attention for its trans-
formative impact on biological research. The advancement of
single-molecule bioelectronic techniques has overturned our
traditional understanding of the fundamental material world and
biosystems, which provides an approach to exploring and
manipulating the electrical behaviors of biomolecules, including
proteins, enzymes, andDNA, at an unprecedented level of detail,
enabling a deeper understanding of their structures, dynamics,
interactions, and functions from a perspective beyond ensemble
systems.1−3 Over the years, remarkable progress has been made
in developing sensing devices with exceptional sensitivity, and
temporal and spatial resolution, such as tunneling sensors with
nanogapped electrodes, nanopores, and single-molecule FETs.
Single-molecule bioelectronic technologies exhibit substantial
potential across diverse applications, particularly in medicine,
healthcare, and environmental management. By directly probing
biological systems at the molecular level, these sensors enable
timely and precise biomarker detection, enhancing early disease
diagnosis.4−8 They also play a pivotal role in drug screening by
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allowing real-time monitoring of molecular interactions, thereby
accelerating the identification of effective drug candidates and
fostering the development of targeted therapies.9,10 Moreover,
the platform’s high sensitivity and selectivity make it an
invaluable tool for detecting and quantifying pollutants and
environmental toxins, contributing to the protection of water
and air quality, and overall environmental health.11 The
advancement of single-molecule bioelectronics also drives the
frontier of molecular electronics and device development,
serving as the building blocks for innovative, high-performance
molecular-scale electronic devices and circuits.12

Despite the remarkable sensitivity achieved by single-
molecule bioelectronic sensing, several challenges persist in
the measurement and data analysis process. Specifically, factors
like temperature fluctuations and electromagnetic interference
introduce noise, complicating signal interpretation.13 On the
other hand, the weak signals generated by biomolecules often
pose a challenge in differentiating them from background

noise.14,15 Additionally, accurately interpreting these signals can
be difficult due to their rich information and complex
transformations, thus requiring sophisticated data analysis
techniques. To address these complexities, Artificial Intelligence
(AI), which emulates human intelligence through computer
systems and involves advanced algorithms for learning,
reasoning, and decision-making,15−19 has emerged as a powerful
facilitator in this field. AI excels in processing the massive,
intricate data generated by single-molecule sensors, enabling
efficient extraction of insights such as biomolecule identification,
interaction characterization, and molecular structure analysis.
Furthermore, AI algorithms optimize sensor design and
performance by predicting optimal configurations and exper-
imental conditions, thereby boosting the reliability of single-
molecule measurement.
This review aims to delve into the integration of AI with

single-molecule bioelectronic sensing, providing a comprehen-
sive overview of the current landscape, challenges, and

Figure 1. Single-molecule bioelectronic sensors. (a) STM and tunneling signals of a single nucleotide.20 Reproduced with permission from ref 20.
Copyright 2010, Springer Nature Limited (b) Fixed-nanogap electrodes and measurement of tyrosine (Y) and phenylalanine (F).21 Reproduced with
permission from ref 21. Copyright 2014, Springer Nature Limited. (c) Biological nanopore and electrical signals of polypeptide.22 (d) Solid-state
nanopore and its measurement of DNA.23 (e) Silicon nanowire FET and its monitoring of DNA folding/unfolding process.24 Reproduced with
permission from ref 24. Copyright 2016Wiley VCHVerlag GmbH&Co. KGaA,Weinheim. (f) The active molecules undergo oxidation and reduction
through the top (red) and bottom (black) electrodes, generating an electric current.25
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prospects. We discuss various single-molecule bioelectronic
sensors, with a particular emphasis on how AI-driven methods
enhance detection accuracy through enhanced signal processing
and data analysis. By examining the interplay between AI
techniques and single-molecule bioelectronic sensing, we seek to
illuminate advancements, potential applications, and the
remaining challenges that must be overcome to fully harness
the power of AI in this rapidly evolving research domain.

2. DEVICES AND PRINCIPLE OF SINGLE-MOLECULE
BIOELECTRONIC SENSING

Single-molecule bioelectronic sensing techniques have signifi-
cantly transformed the realm of nanotechnology and bioelec-
tronics by enabling the nanoscale detection and analysis of
individual molecules. The fundamental principle lies in
constructing nanoconfinement devices that convert molecular
changes into detectable electrical signals at the molecular scale.
This section will explore three primary types of these devices:
tunneling sensors with nanogapped electrodes, nanopore
sensors with monitoring ionic current, and the others, which
are classified based on the different types of detected currents.
Nanogapped electrodes, such as those in Scanning Tunneling
Microscope (STM) (Figure 1a) and fixed-nanogap setups
(Figure 1b), leverage the tunneling current, which is highly
sensitive to both the gap size and the molecules nearby.
Nanopores, including biological nanopores (Figure 1c) and
solid-state nanopores (Figure 1d), function as nanoscale
conduits for molecule passage, where monitoring ionic current
fluctuations reveals information about size, shape, and charge
properties. In addition, single-molecule field-effect transistors
(smFETs) (Figure 1e) detect molecular interactions by
measuring conductance variations in nanowires or nanotubes.
For electrochemically active analytes, their molecular reactions
can be harnessed to generate measurable currents by integrating
them with external electronic circuits. (Figure 1f) Furthermore,
innovative combinations of sensor components and advanced
nanofabrication techniques have expanded the capabilities of
single-molecule bioelectronic sensing, offering unprecedented
precision and control in studying and manipulating individual
molecules.
2.1. Tunneling Sensors with Nanogapped Electrodes
Tunneling is a fundamental concept in quantum mechanics and
refers to the phenomenon where electrons can pass through a
potential barrier that would be classically insurmountable. This
occurs due to the wave-like nature of electrons, which allows
them to exist in all regions of space simultaneously. The
probability of tunneling is governed by the transmission
coefficient, which depends on the barrier height, width, and
the energy of the electrons. In a tunneling sensor, electrodes are
separated by a very small gap, typically on the order of a few
nanometers. The presence of a molecule between these
electrodes can serve as the bridge for electron transport. The
Landauer-Buttiker formula, derived from quantum transport
theory, provides a quantitative description of the tunneling
current. It states that the tunneling current I is proportional to
the transmission probability T(E) of electrons across the barrier
and the applied voltage V, given by26,27

= [ ]
+

I
e
h

T E f E f E dE( ) ( ) ( )L R (1)

where e is the electron charge, h is Planck’s constant, and f L and
f R are the Fermi−Dirac distribution functions for the left and

right electrodes, respectively. This formula highlights the
dependence of tunneling current on the molecule’s properties,
as changes in the molecule’s energy levels or electronic structure
can alter the transmission probability. The sensitivity of the
tunneling current to the presence and properties of molecules
lies in the fact that any change in the molecule’s electronic
structure, such as an alteration in its chemical bonding, charge
state, or size, can influence the energy levels and thus change the
tunneling probability. This can lead to a detectable variation in
the current. In tunneling sensors, this sensitivity is exploited to
detect and quantify the presence of specific molecules or
molecule-binding events with high precision.
Various techniques have emerged for establishing tunneling

interfaces between molecules and electrodes, with two
prominent examples being top-contact junctions typified by
Scanning Tunneling Microscope (STM) and planar fixed-
nanogap electrodes. STM detects tunneling current between the
sharp metal tip and substrate, analyzing individual molecules by
monitoring current fluctuations during scanning of the tip.28

When maintaining a constant tunneling current through
feedback control, STM can perform high-resolution imaging
and characterization of atomic and molecular features.29,30 A
notable technique is the STM break junction (STM-BJ), where
the tip is repetitively withdrawn and repositioned to create
single-molecule junctions, as illustrated in Figure 2a. This
method permits controlled manipulation of molecules and offers
insights into their electronic and mechanical properties.31,32

By comparison, fixed-nanogap electrodes construct contact of
a molecule with two nanoelectrodes, facilitating integration and
miniaturization of devices.28 The fabrication of these electrodes
involves diverse techniques, with a primary focus on creating
uniform nanometer-sized gaps, which can be attained through
three principal methods: addition, subtraction, and splitting.33

Addition obtains nanogaps by increasing electrode materials
from bottom to top and gradually reducing the interval, such as
electrochemical deposition, which involves controlled electro-
chemical reactions to deposit gold particles in a nanogap
configuration. Gold deposition is achieved by applying a voltage
bias between electrodes in an electrolyte solution containing
gold ions, while size adjustment and shape control can be
performed based on the feedback of tunneling current between
the formed electrodes, as shown in Figure 2b.34 Besides, the
template methods employ masks with predefined structures to
form nanogaps, such as single-walled carbon nanotubes. (Figure
2c)35 Subtraction creates nanogaps by removing electrode
materials, which is typically achieved through high-energy ion or
electron etching.36,37 Focused ion beam etching (FIB) uses the
ion beam, typically gallium, to etch material with atomic-level
precision, allowing for the formation of subnanometer gaps. Ions
are accelerated and scanned across the substrate, removing
material layer by layer, as displayed in Figure 2d. Electron beam
lithography (EBL) employs a highly energetic electron beam,
which interacts with a photosensitive resist layer. When exposed
to light, the resist becomes sensitive, and subsequent develop-
ment removes the unexposed areas, leaving behind the desired
pattern and further obtaining nanogaps through etching. (Figure
2e) The splitting approach obtains nanogapped electrodes by
tearing electrode materials, such as the mechanically control-
lable break junction (MCBJ)38−40 and electromigration.41−43 In
MCBJ, a metallic wire, usually gold or platinum, is clamped and
stretched until it fractures, creating a precisely controllable
nanogap, as depicted in Figure 2f. Electromigration involves
high current densities that induce atomic rearrangement and gap
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formation due to electron-metal atom momentum transfer.
(Figure 2g) These nanofabrication techniques have led to highly
sensitive tunneling sensors capable of detecting individual
molecules with exceptional resolution, allowing for the study of
charge transfer dynamics.
2.2. Nanopore Sensors with Monitoring Ionic Current
The foundation of nanopore technology dates back to the mid-
20th century with the development of Coulter counting and
single-channel current recordings.45 In its typical configuration,
nanopores are immersed in an electrolyte solution, such as
potassium chloride (KCl), as depicted in Figure 3a. By
positioning electrodes, often Ag/AgCl, on either side of the
nanopore and applying an external voltage, ions are driven to
traverse the pore, undergoing oxidation−reduction reactions on
the electrode surfaces (as per eqs 2 and 3), resulting in a stable
ionic current.

+ +Cathode AgCl Ag Cl: e (2)

+ +Anode Ag Cl AgCl: e (3)

Translocation of biomolecules through nanopores will induce
transient current fluctuations, reflecting their physical properties
like charge, shape, and interactions.46 This process is influenced
by competing forces, including diffusion, electrophoresis (EP),
and electroosmotic flow (EOF). Diffusion is determined by the
concentration gradient of molecules in the solution, and the EP

force is closely related to the molecular charge, driving
molecules to move toward electrodes with opposite polarity.
In addition, the EOF plays an undeniable role, mainly due to
local electrostatic interactions caused by surface charges of the
nanopore. Free ions carrying opposite charges in the electrolyte
will be electrostatically absorbed onto the charged solid surface,
forming an electric bilayer system. When molecules approach
the surface of charged nanopores, the electric double layer
interferes with the movement of molecules with EOF.47 The
charge carried by molecules, as well as electrolyte concentration
and pH, can affect the magnitude of EP and EOF forces, thereby
modulating the process of molecular translocation.45

Nanopore sensors can be classified into two primary
categories: biological nanopores and solid-state nanopores.
Biological nanopores (Figure 3b), exemplified by α-hemoly-
sin46,48,49 and MspA,50,51 are naturally occurring proteins or
lipid membrane channels, offering high sensitivity and reliability
due to their consistent structure. These pores can be harnessed
for selective molecule binding, facilitating controlled molecular
translocation. However, they are limited by stability concerns
and stringent environmental requirements. In contrast, solid-
state nanopores, including those fabricated from materials like
silicon nitride, quartz, metals, and graphene,45,52 are created
through advanced nanofabrication techniques like focused ion
beam or electron beam etching (Figure 3c),53,54 with pore sizes
below 5 nm can be obtained. However, these methods often
involve expensive and complex procedures.55 Alternative
approaches, such as controlled dielectric breakdown (Figure
3d)56 and chemical etching (Figure 3e),57,58 apply high electric
fields or use photolithography to pattern and etch substrates,
respectively. Laser-assisted drawing59 offers a low-cost, rapid
route by heating and stretching capillary glass tubes, benefiting
from the low capacitance noise of glasses due to their high
dielectric constant.60 Nevertheless, uniformity in shape and size
of generated nanopores remains a significant challenge.
Solid-state nanopores exhibit several key advantages,

including exceptional mechanical and thermal stability, tunable
pore dimensions and shapes, and compatibility withmicrofluidic
integration. Despite these advancements, practical implementa-
tion remains hindered by challenges such as limited temporal
resolution due to rapid molecular translocation and unpredict-
able signals resulting from nonspecific adsorption on the pore
surface.52 Several surface modification strategies have been
explored, such as the functionalization of specific functional
groups, lipid bilayer coating to simulate biological environments,
or surfactant modification to reduce adsorption.45 Notably,
molecular sensing with carriers like DNA has been proven to be
effective in enhancing specificity in solid-state nanopore
detection. By using DNA as a carrier and incorporating
recognition elements like aptamers and antibodies, the selective
capture of target molecules, such as cancer markers in serum, has
been demonstrated. (Figure 3f)61−63

2.3. The Others

Transistors play a crucial role in electronic circuits, in which the
current between the source and drain is controlled through the
voltage applied to the gate. The interaction of a single molecule
with the transistor channel can disrupt charge distribution,
altering the leakage current. In 2000, the first smFET was
achieved utilizing a solitary C60 molecule. (Figure 4a) In this
pioneering work conducted by Park et al., a C60 molecule is
connected to the source and drain electrodes, while the gate is
positioned beneath them.64 When a voltage is applied to the

Figure 2. Construction of nanogapped electrodes. (a) STM-BJ.31 (b)
Electrochemical deposition.34 (c) Manufacturing nanogaps using
single-walled carbon nanotubes as masks.35 (d) FIB and its generated
nanogaps.36 Reproduced with permission from ref 36. Copyright 2015
Wiley VCH Verlag GmbH &Co. KGaA, Weinheim. (e) Preparation of
the graphene single-molecule device by EBL and oxygen plasma
etching.43 Reproduced with permission from ref 43. Copyright 2023,
Springer Nature Limited. (f) MCBJ.44 (g) Nanogapped electrodes
prepared by electromigration.42
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Figure 3.Nanopore sensors. (a) Generation of the ionic current. (b) Biological nanopores. MspA51 and α-hemolysin.46 Reproduced with permission
from ref 51. Copyright 2012, SpringerNature America, Inc. (c) Focused ion beam etching.53 Reproducedwith permission from ref 53. Copyright 2001,
Macmillan Magazines Ltd. (d) Controlled dielectric breakdown.56 (e) Chemical etching.57 Reproduced with permission from ref 57. Copyright 2018
IOP Publishing Ltd. The size of the nanopores in c, d, and e can be controlled by monitoring the number of ions or the magnitude of ion current
through a feedback system. (f) Specific detection with DNA carriers through capillary nanopore. The binding of target molecules can be identified
through the secondary spike of nanopore signals.63
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Figure 4. Other approaches of single-molecule bioelectronic sensing. (a) The first C60 FET.
64 Reproduced with permission from ref 64. Copyright

2000, MacmillanMagazines Ltd. (b) Silicon nanowire FET, whose surface is modified with biotin, with an increase in conductance at ‘2’ indicating the
binding of streptavidin.67 Reproduced with permission from ref 67. Copyright 2001, The American Association for the Advancement of Science. (c)
smFET constructed by single-walled carbon nanotube, which is utilized for monitoring lysozyme kinetics. The rapid (blue) and slow (green)
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gate, it modulates the electrostatic potential of the molecules,
leading to energy displacements and offering valuable molecular
information.65

Semiconductor nanowires (NWs) (Figure 4b) and carbon
nanotubes (CNTs) (Figure 4c) are widely employed in the
fabrication of highly sensitive FETs due to their molecular-scale
dimensions.1,66 NW-FETs consist of nanoscale semiconductor
wires, such as silicon, gallium arsenide, or indium phosphide,
typically synthesized through bottom-up methods like chemical
vapor deposition or vapor−liquid−solid growth.67 Carbon
nanotubes, cylindrical carbon structures with exceptional
electronic properties and a large specific surface area,68 are
produced using techniques like chemical vapor deposition or arc
discharge, often resulting in aligned arrays or individual tubes.
The conductance of smFETs can be modulated by molecular
interactions, including charge scattering, transfer, and surface
charge-induced gating.1,68 However, despite their high carrier
mobility, which enables strong signal generation, smFETs face
themajor challenge of relatively high noise levels, hindering their
performance in demanding applications.1,66

Single-molecule bioelectric sensing can also be achieved
through redox cycles or electrocatalysis. Introducing molecules
with electrochemical activity into circuits can monitor the
electron transfer of individual molecule redox reactions or study
the mechanism characteristics of individual catalytic mole-
cules.66 Moreover, some new concepts have been proposed to
combine different single-molecule bioelectronic sensors to
further enhance their advantages. Combining nanopores with
smFET (Figure 4d)69,70 or integrating nanopores with tunneling
sensors (Figure 4e)71,72 can enhance the control and sensitivity
of single-molecule detection, and improve the accuracy of signal
measurement. Introducing additional incentives can also
enhance the manipulation of single-molecule behavior.40,73,74

Especially, light, as a noninvasive signal, can be combined with
the break junction techniques. Imidazole molecules exhibit
enhanced conductivity under optical stimulation (Figure 4f),73

providing a new approach for constructing novel molecular
optoelectronic devices.

3. INTEGRATION OF AI IN SINGLE-MOLECULE
BIOELECTRONIC SENSING

The thorough and accurate comprehension of single-molecule
bioelectronic sensing data is pivotal aspect of single-molecule
research, while this often presents challenges. These data,
derived from high-resolution experiments, are voluminous and
characterized by low signal-to-noise ratios. The intricate nature
of the signals, resulting from the dynamic behavior of individual
molecules, necessitates advanced analytical techniques to
decode the underlying information. The inherent complexity,
with its potential for subtle variations, has yet to be fully
harnessed or understood. Traditionally, analyzing such data has
been a labor-intensive process, often relying on human intuition
and expertise. However, the advent of Artificial Intelligence (AI)

has revolutionized the way with its strength of processing and
analyzing large, noisy data sets, detecting patterns that may be
elusive to human observation. In the following section, we will
give a brief introduction to AI and delve into the application of
AI in enhancing the capabilities of single-molecule bioelectronic
sensing.
3.1. Synopsis of AI
Artificial Intelligence (AI) aims to develop intelligent machines
that can emulate human cognitive capabilities. Machine
learning,18,76 a subset of AI (Figure 5a), is further classified

into supervised learning and unsupervised learning.77,78 (Figure
5b) Supervised learning, with algorithms like linear regression,
Hidden Markov Model (HMM), decision tree, Support Vector
Machine (SVM), and random forest, relies on labeled data to
construct a mapping function from inputs to outputs and is often
applied in tasks like regression and classification. Unsupervised
learning, which mainly includes clustering and dimensionality
reduction, focuses on discovering hidden patterns within
unlabeled data. Deep learning79,80 has seen significant growth
driven by the advancement of high-performance computing
hardware. By creating neural network architectures with
multiple layers and different computational logics, it can
accomplish various tasks. These networks facilitate nonlinear
relationship modeling, enhance sensitivity and accuracy, and
handle high-dimensional and noisy data, thus enabling
information extraction and pattern recognition in intricate
data sets.14 Machine learning and deep learning have shown
considerable potential and advantages in single-molecule
bioelectric sensing, with intelligent models being created, that
could tackle tasks like automatic feature extraction, molecular
difference recognition, and signal enhancement. Furthermore,
they facilitate modeling and simulation analysis, providing
supplementary insights for experimental design and aiding in
optimizing sensors to improve data quality.
3.2. AI-Enhanced Single-Molecule Bioelectronic Sensing

3.2.1. Feature Extraction. A prominent benefit of AI is to
perform efficient feature extraction on complicated and variable
sensor data. Single-molecule bioelectronic sensingmeasurement
data typically consists of one-dimensional temporal electrical

Figure 4. continued

oscillations of the I(t) signal correspond to the nonproductive binding and catalytic events of lysozyme, respectively.75 Reproduced with permission
from ref 75. Copyright 2012, The American Association for the Advancement of Science. (d) The integration of nanopore and FET and the observed
synchronous electrical signals.70 Reproduced with permission from ref 70. Copyright 2011, Springer Nature Limited. (e) The integration of nanopore
and tunneling electrode. The sudden jump of the current indicates the capture of molecules into the nanogap.72 Reproduced with permission from ref
72. Copyright 2011, The Author(s). (f) Fiber-based MCBJ and conductance traces of single-imidazole junction measurements with logarithm
coordinates in the absence (sky blue) and presence (sand) of light illumination.73 Reproduced with permission from ref 73. Copyright 2016 Royal
Society of Chemistry

Figure 5. Synopsis of AI. (a) Relationship between artificial
intelligence, machine learning and deep learning. (b) Classification of
machine learning and related algorithms.
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traces and changes in electrical signals reflect molecular
information. However, due to the interference of background
noise and the dynamic and random behavior of molecules, these
signals take on complex forms. In traditional methods, it is
necessary to define a threshold to separate the signal and noise,
and to fit the changes in the signal through precise algorithm

design, which concerns several limitations. On the one hand, the
threshold setting is inherently subjective and can significantly
impact the accuracy of the analysis. On the other hand, the
custom-designed algorithms can be time-consuming and may
not be universally applicable to all types of signals. In contrast,
AI-based approaches offer a more robust and efficient solution.

Figure 6. AI for feature extraction. (a) Principle of HMM. (b) Multilevel signals fitted by HMM.90 (c) Composition of deep-channel and (d) its
reduced single-molecule measurement signals.85 (e) The B-Net architecture, comprising of two ResNets, each consisting of a CNN and FFNN.86 (f)
The PETR in which an input temporal window can be classified into pulse (colored) or no-pulse (gray).89
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TheHiddenMarkovModel (HMM)81,82 has been utilized for
the idealization of electrical signals from single-molecule
bioelectric sensing. The HMM, which is characterized by
hidden states, observations, transition probabilities, and
observation probabilities, postulates a sequence of unobservable
hidden states with transition probabilities governing state shifts.
These hidden states generate observable outputs, establishing a
link between observed and hidden states. In practical

implementation, the electrical signal represents the observation,
with different electrical levels indicating distinct hidden states.
The HMM is trained using known category data to estimate
model parameters, therefore enabling signal prediction and
computation of characteristic parameters based on the identified
hidden states and observations, as depicted in Figure 6a, b.
Several types of neural networks have also been successfully

applied. For example, Long Short-Term Memory (LSTM)

Figure 7. AI for high precision differentiation in single-molecule bioelectronic sensing. (a) Features in time, frequency, and cepstrum domain.97 (b)
Features about a single electrical pulse.99 (c) Extraction of the kurtosis and the skewness.4 Reproduced with permission from ref 4. Copyright 2023 The
Authors. Small Methods published by Wiley VCH GmbH. (d) The pulse is divided into ten equal parts and combined with the maximum current,
average current, and duration time to form a 13-dimensional feature vector.104 Reproduced with permission from ref 104. Copyright 2022Wiley VCH
GmbH. (e) Conver-sion of the temporal signal into a two-dimensional image, extraction of features through a pretrained AlexNet network, and
implementation of classification through clustering algorithms.113 (f) Feature extraction through an Autoencoder.114 Reproduced with permission
from ref 114. Copyright 2020 Royal Society of Chemistry. (g) Removal of noise and classify through PUC.105 (h)Direct classification of mixed samples
based on the probability density of feature space.116
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networks83 are well-suited for processing sequential data,
allowing for the capture of long-term dependencies in sensor
responses. Convolutional Neural Networks (CNNs)84 excel in
exploring the local spatial correlation in the data, which is crucial
in detecting subtle changes. Celik et al. proposed a deep learning
model85 that combines CNN and LSTM. As illustrated in Figure
6c, d, the model first conducts one-dimensional convolution on
the input temporal current data to extract crucial features,
followed by feeding it into the LSTM architecture, which
captures comprehensive information in sequence. Subsequently,
the model generates predictions for each data category. This
approach enables automatic and precise idealization of complex
single-molecule activities in a swift manner, without the need for
predefined parameters.
Besides, neural networks can also improve signal separation

from background noises. Dematties et al. introduced the bipath
neural network (B-Net) (Figure 6e) specifically tailored for
identifying pulse signals in nanopore measurements.86 The B-
Net architecture is inspired by the ResNet,87 which is designed
for image processing and modified to adapt to one-dimensional
data. It involves ResNet 1 predicting pulse count and ResNet 2
determining the average amplitude and dwell time of pulses
within a specified temporal window. Furthermore, the pulse
detection transformer (PETR) is proposed to extract pulse
segments from traces, consisting of a pulse counter, backbone,
transformer,88 and feed-forward network. (Figure 6f)89 ResNet
1 from the B-Net functions as the pulse counter, and ResNet 2
serves as the backbone network with convolution to extract
essential features. The transformer employs a self-attention
mechanism to capture dependencies within the input sequence,
while the feed-forward network predicts the presence and timing
of pulses in the input window. Both models are tested on
synthetic data sets with varying signal-to-noise ratios and
experimental data on DNA and protein translocation,
demonstrating their robustness and versatility.

3.2.2. High-Precision Differentiation. Due to the
similarity in structures or internal properties of certain
molecules,91,92 similar electrical signals are often generated,
presenting challenges in distinguishing between molecules using
statistical approaches. Machine learning and deep learning
provide a promising solution to this problem by comparing large
amounts of data and analyzing their differences comprehen-
sively. Generally, this is achieved by training a classifier, which
assigns input molecular features to corresponding categories.
Classic supervised machine learning, such as SVM93,94 and
random forests7,95 have been widely applied. SVM aims to find
the optimal hyperplane to separate data from different groups.96

The advantage is that it can effectively process high-dimensional
data. For nonlinear problems, data is usually mapped to a high-
dimensional space through specific kernel functions to construct
linearly separable scenarios. Random Forest is an ensemble
learning algorithm that combines multiple decision trees, each is
trained on a subset of the data and then summarizes the results
to obtain a final prediction. As the combination of multiple
decision trees helps generalize well to unseen data, it is robust
against overfitting.
Notably, these models which we usually define as shallow

machine learning, often require manual extraction of data
features, which reflect key information on individual molecules
and can realize differentiation accordingly. Typical features to
characterize molecules in single-molecule bioelectronic sensing
include amplitude, dwell time, and signal frequency. In addition,
multidimensional parameters are developed to improve the

accuracy of recognition. Transforming time-domain electrical
signals into the Fourier frequency domain and cepstral domain
can extract a range of characteristic parameters. (Figure
7a)6,97,98 However, due to the nonlinear and nonstationary
nature of signals from single-molecule bioelectronic sensing,
Fourier transform alone may not be sufficient for accurate signal
analysis, hence methods like variational mode decomposition
and Hilbert transform are employed to enhance the feature
information.91 Factors such as pulse area, kurtosis, and
skewness5,99−102 that describe the detailed shape of pulses are
also taken into consideration. (Figure 7b, c) Moreover, each
signal can be divided into multiple equal parts (Figure 7d), and
from each the electrical component can be extracted to create a
feature matrix.4,103−105 It should be noted that the choice of
feature combinations can significantly impact the final
prediction accuracy of the model.4 Principal Component
Analysis (PCA)106 has been suggested to identify the most
relevant feature parameters.107 The main principle of PCA is to
transform a set of correlated variables into a new set of
uncorrelated variables called principal components. It is
achieved by identifying the eigenvectors and eigenvalues of
the covariance matrix of the data, with the eigenvectors
representing the directions of maximum variance and the
eigenvalues indicating the magnitude of variance along these
directions. Then, according to the size of the eigenvalues, the
eigenvector corresponding to the eigenvalue with the highest
variance is called the first principal component, and its
corresponding variance is the variance of the data in the
direction of the first principal component. By retaining a subset
of the most significant principal components, PCA can reduce
the dimensionality of the data while preserving the most
important information.
Another approach is neural networks.108−110 Compared to

shallow machine learning like SVM and Random Forest, the
advantage of neural networks is their ability to directly process
large data sets. Automatic feature extraction can be performed
on raw data to reduce the complexity of manual operations,
while effectively obtaining important information that is
overlooked due to human definition. Additionally, a large
number of high-performance two-dimensional data neural
network architectures have been designed based on the purpose
of image processing. A feasible solution for one-dimensional
single-molecule electrical data is to convert it into a two-
dimensional form (Figure 7e),111−113 thus networks for the
image can be transplanted to facilitate noncomputer profes-
sionals to quickly process and analyze data.
Given that many models rely on labeled data for training,

which may increase manual operation costs, some unsupervised
machine learning methods have also been developed. Huang et
al. utilized an Autoencoder for automatic feature extraction, as
shown in Figure 7f.114 Autoencoder is a type of unsupervised
neural network, typically consisting of an encoder and a decoder.
The encoder compresses input data to extract essential features
or structures, and the decoder reconstructs the original input.
The extracted features serve as the foundation for characterizing
data similarities, which can then be classified using clustering
algorithms. Clustering is a data mining technique used to group
similar data points into clusters based on their inherent
characteristics. The mostly utilized k-means clustering algo-
rithm115 starts by randomly selecting k initial centroids and
assigning each data point to the nearest centroid. The centroids
are then updated by recalculating the mean of the data points in
each cluster, and the process iterates until centroids converge.
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Besides, the concept of positive and unlabeled data classification
(PUC) was introduced.105 PUC first takes samples containing
signals as unlabeled data, while background noise signals are
positively labeled to train a two-class classifier. Next,
classification is performed on the data set containing the target
signal, and the noise is recognized as positive while the target
signal is in negative groups. (Figure 7g) This method can
effectively remove noise interference from measurement data.
Ryu et al. proposed a method for directly classifying unlabeled
data. (Figure 7h)116 Signal features are extracted and the
probability density functions of the feature space are computed.
Classification is achieved based on the high probability density
regions due to aggregation of parameters of similar molecules in
the feature space, which can be used to distinguish molecules in
mixed samples and estimate their concentration ratio.

3.2.3. Signal Enhancement. Noises inevitably exist in
single-molecule bioelectric sensing systems, especially high-
frequency noises generated by the coupling between the device
capacitance and the voltage noise in current amplifiers, which are
difficult to remove through ordinary low-pass filters.117 Tsutsui

et al. introduced a neural network based on the calculation of
convolution for signal denoising, as depicted in Figure 8a. The
method methodology revolves around treating signals as
essential features and background noise as nonessential
information. Through iterative convolution operations and
dimensionality reduction from the autoencoder, significant
features are retained, while the irrelevant noise is efficiently
eliminated.117

3.2.4. Modeling and Simulation. To enhance model
performance, training with diverse data sets is imperative. In this
regard, artificially generated data sets based on deep neural
networks provide a reliable approach. Ball et al. developed a
model based on a Generative Adversarial Network (GAN),
which only uses a small amount of real experimental data to
generate an infinite amount of simulated data and can
automatically add data labels, as shown in Figure 8b.118 In
addition, machine learning and deep learning can also help
optimize the design and characteristics of sensors, improving the
sensitivity and stability of systems. In order to efficiently prepare
sub-10 nm solid-state nanopore arrays with controllable

Figure 8. AI for simulation and optimization. (a) Neural network for denoising ionic current. The core information on the signal is preserved through
convolution and pooling.117 Reproduced with permission from ref 117. Copyright 2021Wiley VCHGmbH. (b) Neural network for generating single
molecule simulation data set.118 (c) Optimize the most suitable conditions for nanopore array etching through machine learning.119 (d) AI-assisted
nanopore design. At each time step, the network will decide whether to remove carbon atoms and which atoms to remove to achieve the best
performance of the pore.120 (e) Quality control of STM tips based on machine learning.121

Precision Chemistry pubs.acs.org/PrecisionChem Review

https://doi.org/10.1021/prechem.4c00048
Precis. Chem. 2024, 2, 518−538

528

https://pubs.acs.org/doi/10.1021/prechem.4c00048?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/prechem.4c00048?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/prechem.4c00048?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/prechem.4c00048?fig=fig8&ref=pdf
pubs.acs.org/PrecisionChem?ref=pdf
https://doi.org/10.1021/prechem.4c00048?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


morphology through metal-assisted chemical etching technol-
ogy, Chen et al. utilized SVM to establish a relationship model
between the nanopore structure and preparation conditions
such as etching time, doping type, and concentration, thus
obtaining a process parameter window for generating regular
nanopore arrays on silicon wafers with different doping types
and concentrations. (Figure 8c)119 Wang et al. designed a
reinforcement learning framework aimed at designing the
optimal geometry of graphene nanopores with high throughput
and high ion suppression under certain external pressures for
efficient seawater desalination (Figure 8d), and CNN is
introduced to predict the performance of a given nanopore.
Irregular shape with rough edges geometry of AI-created pores is
found to be the key factor to achieve efficient seawater
desalination. The network can design the shape of nanopores
with atomic accuracy.120 In addition, the quality of the STM tips
is crucial for subsequent measurements. The commonly used
method for preparing traditional STM tips is to repeatedly poke
the tip into the metal substrate to obtain a thin layer of substrate
atoms. Then, the dI/dV spectra of the substrate will be used as a
reference to determine whether the tip is suitable for tunneling
measurement. Due to the unpredictable geometric changes of
the needle tip during the pressing process, needle tip adjustment
is usually slow. A machine learning-based tip automatic control
model has been proposed, which can autonomously analyze the
surfacemorphology ofmetal substrates to find a sufficiently large
flat substrate area, which is conducive to tip formation and can
continuously monitor and feedback until the tip quality meets
the requirements. (Figure 8e)121

4. APPLICATIONS OF AI-INTEGRATED
SINGLE-MOLECULE BIOELECTRONIC SENSING

The fusion of AI with single-molecule bioelectronic sensing
offers a plethora of advantages and promising transformative
potential in the realm of biosciences and biotechnologies. It
capitalizes on the inherent strengths of single-molecule
bioelectronic sensors, which boast exceptional sensitivity,
unparalleled temporal resolution, and the capability to be
seamlessly integrated into various platforms, with the integration
of artificial intelligence has significantly enhanced the processing

of single-molecule bioelectrical sensing data, boosting the
efficiency of data analysis. These intelligent bioelectronic
sensors demonstrate extraordinary potential, including advance
high-throughput and accurate sequencing, provide the ability to
detect in low-abundance and capture real-time changes, as well
as promote the development of electronic devices with
biomolecules, as summarized in Table 1.
4.1. Single-Molecule Sequencing

Single-molecule sequencing technology, also known as third-
generation sequencing, is a revolutionary approach that has
significant importance in the field of genomics.135 Unlike
traditional techniques, it directly fetches the individual DNA or
RNA molecules without the need for amplification or
fragmentation. The advantage of single-molecule sequencing
lies in its ability to generate long reads, enabling the assembly of
complex genomes and the identification of structural variations
that were previously challenging to detect. It provides a holistic
view of the genome, including repetitive regions and epigenetic
modifications.136−138 Nanopore sequencing has experienced
significant development over the years, especially since the
successful inception of the first-generation Oxford Nanopore
MinION in 2014.139 The nanopore acts as a molecular-sized
gateway and DNA helicase has been introduced as a trans-
location controller. When a strand of DNA passes through the
pore, it induces a change in the electrical current flowing through
the pore, which varies due to different bases (Figure 9a).140

Nanopore sequencing generates large amounts of data with
high complexity, and solutions with AI techniques are crucial to
efficient information extraction. HMM122,123,125 has been used
for base sequence recovery. Assuming a nucleic acid moves
through the pore one nucleotide at a time and there are k
nucleotides present in the nanopore at the same time. The ionic
current signals generated by k nucleotides are considered a series
of observable events, while the corresponding nucleotide
sequence is regarded as the hidden state of HMM. Due to the
overlap between the first nucleotide of each state and the last
nucleotide of the previous state, the joint probability of the
nucleotide sequence can be calculated, and the path with the
highest total joint probability represents the final predicted
sequence. Furthermore, deep learning models based on CNN or

Table 1. Applications of AI-Integrated Single-Molecule Bioelectronic Sensing

Sensors AI Techniques Applications Refs

Single-molecule sequencing
Nanopore HMM, CNN, LSTM Base calling 122−126
Nanopore SquiggleNet Selective sequencing 127
Nanopore Sturgeon Sequencing and real time classification 128
Combined nanopore and quantum tunneling Regression Prediction of nucleotide transfer functions 129, 130

Low-abundance detection
Nanopore Classification Detection of virus 95, 99
Nanopore SVM Quantification and identification of glycosaminoglycans 6
Nanogapped electrode Random forest Tracking of cyclic adenosine monophosphate 7
Nanopore SVM Identification of acidic catecholamine metabolites 5
Single-walled CNT Neural network Recognition of the mixed ammonia/amine gases 131
Nanopore Classification Differentiation of protein markers 4
smFET PCA, k-NN Early diagnosis of pancreatic cancer precursors 132
Nanopore Classification Monitoring of particulates in the air 11

Real-time monitoring
Nanogapped electrode PUC, clustering Counting of base−ligand interactions 10
Nanogapped electrode PUC, XGBoost Resolution of neurotransmitters 103

Development of electronic devices with biomolecules
Break junction Clustering Single-molecule conductance analysis 12, 133, 134
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Figure 9.AI-integrated single-molecule bioelectronic sensing for sequencing. (a) Scheme of nanopore sequencing and the base sequence recovered by
HMM.125 Reproduced with permission from ref 125. Copyright 2015, Springer Nature America, Inc. (b) The flowchart of a deep neural network for
the detection of DNA base modification.124 (c) The neural network architecture for gene sequence restoration. The circles at the bottom represent the
time series of raw signal input data. ACNNdiscriminates local pattern information from the input, which is then fed into a LSTM to capture long-range
interaction information. A FC layer is employed to obtain base probabilities from the LSTM output. These probabilities are used by a CTC decoder to
generate the nucleotide sequence.126 (d) The SquiggleNet, employs 1D-ResNet-styled bottleneck blocks with increasing numbers of filters. The final
fully connected layer and average pooling are applied after the last convolutional block.127 (e) Schematic model of a monolayer gold nanopore
prototype device for transverse tunneling conductance-based DNA sequencing and atomic structure of four DNA nucleotides. (f) Changes in
transmission spectra due to in-plane rotation.129
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LSTM124,126 extract meaningful features, which are then
transformed into a sequence of probabilities, where each
probability corresponds to a specific nucleotide. The model is
trained on large data sets of known sequences and their
corresponding electrical signals, learning to associate signal
patterns with specific bases. Finally, the model predicts the most
likely base at each time step based on the current signal,
considering the context provided by the previous bases. The use
of machine learning and deep learning can greatly improve the
efficiency of nanopore sequencing data analysis while reducing
the error rate in base calling (Figure 9b, c). Besides, the benefits
of using deep neural networks lie in their ability to process
information at high speeds. Bao et al. proposed a SquiggleNet to
distinguish the DNA of humans and bacteria (Figure 9d).
SquiggleNet runs faster than DNA passes through pores,
allowing for real-time classification and targeted sequencing.127

Besides, a Sturgeon network classifier has been introduced for
analyzing sparse sequencing data in the early stages of surgery,
helping doctors judge tumors and assist in intraoperative
decision-making.128

A highly promising new idea proposed is to combine solid-
state nanopores with quantum tunneling sequencing, where
nanopores constrain an individual molecule and tunneling

currents provide higher spatial resolution.26,45 The nano-
electrodes of tunneling sensors are usually modified by specific
recognition molecules, and when a single nucleotide or amino
acid is captured between the electrodes, it can be recognized
through tunneling signals.93,97,98 Jena et al. proposed a graphene
and gold nanopore quantum tunneling model (Figure 9e) and
used density functional theory and nonequilibrium Green’s
function (DFT-NGF) method to calculate the transfer function
of nucleotides. Due to the changes and oscillations in the
orientation of nucleotides within the nanopores during the
translocation process, the position of atoms relative to the edge
of the pores changes, resulting in a change in the coupling
strength between nanopores and nucleotides, which further
affects the transmission performance of the device (Figure 9f).
Using machine learning regression models, three other
nucleotides were successfully predicted through the transfer
function of a single nucleotide, demonstrating the predictive
ability for unknown nucleotides. This will provide a reference
value for fast and more accurate sequencing.129,130

Proteins, as the fundamental facilitators of biological
processes, are defined by their primary amino acid sequences,
which are pivotal in determining protein functions and reflecting
genetic and disease signatures.141−144 The advent of single-

Figure 10. Progresses in protein sequencing. (a) The nanogapped-electrode with ICA functionalization. (b) Features of the amino acid signal
clusters.98 Reproduced with permission from ref 98. Copyright 2014, Springer Nature Limited. (c) The functionalized biological nanopore. (d)
Representative signals of current blockade events of 20 amino acids. (e) The confusion matrix for classifying amino acids throughmachine learning.142
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molecule protein sequencing technology promises to revolu-
tionize proteomics by deepening our comprehension of life
systems. However, proteins exhibit higher complexity compared
to DNA or RNA. With proteins comprising 20 different amino
acids, each differing by as little as 0.001 nm3, detecting 20
distinguishable signals poses a significant challenge.141 In 2014,
Lindsay et al. made a pioneering contribution by employing
tunneling current to measure amino acids, using a tunneling
electrode functionalized with 4(5)-(2-mercaptoethyl)-1H-imi-
dazole-2-carboxamide (ICA). By extracting 106 features in both
temporal and spectral domains and integrating them with SVM
model, they successfully classified three groups of amino acids
with similar structures but minute differences (Figure 10a, b).98

Kawai et al. used small gap electrodes at 0.7 and 0.55 nm for
direct measurement, where 12 amino acids produced distin-
guishable signals.21 Benefiting from the breakthrough and
success of nanopore DNA sequencing technology, research on
nanopore-based protein sequencing has also garnered significant
attention.145,146 The advancements in nanopore DNA sequenc-
ing technology have catalyzed interest in nanopore-based
protein sequencing. Recent studies, employing functionalized
biological nanopores in conjunction with machine learning
algorithms, have exhibited high accuracy in identifying not only
the 20 amino acids but also their post-translational modifica-
tions. (Figure 10c, d, e)94,142

4.2. Low-Abundance Detection

The detection of low-abundance biomolecules is a significant
challenge in the field of molecular biology and biomedicine.
Traditional detection methods often suffer from low sensitivity,

making it difficult to identify rare biomolecules that are crucial
for understanding biological processes and diagnosing diseases.
Significantly, the advent of AI-integrated single-molecule
bioelectronic sensing has revolutionized this field by offering
unprecedented sensitivity and specificity. One of the key
applications of this technology is in the identification of viruses
with distinct allotypes. By utilizing nanopores in single-molecule
bioelectronic sensing (Figure 11a, b),95,99 it is possible to
distinguish between viruses based on subtle differences in size
and surface charge. This capability is particularly important for
emerging infectious diseases, where the ability to quickly identify
and track different strains of a virus can be critical for public
health. Furthermore, the detection of molecular markers and
metabolites, which play crucial roles in regulating human
physiological and pathological processes, has been greatly
enhanced by AI-integrated single-molecule bioelectronic
sensing. By analyzing the subtle differences in signal features,
these technologies can detect similar molecular markers and
track changes in specific molecules (Figure 11c, d).5−7,131 This
has significant implications for early disease diagnosis, which can
be crucial for recovery.4,132 Besides, AI-integrated single-
molecule bioelectronic sensing has also been applied to
environmental monitoring. A three-dimensional solid-state
nanopore has been developed for the identification and analysis
of small and medium-sized molecular particles in the air (Figure
11e, f).11 This breakthrough paves the way for effective
environmental monitoring and provides a viable solution for
assessing air quality.

Figure 11. AI-integrated single-molecule bioelectronic sensing in low-abundance detection. (a) Nanopore for virus detection. (b) Confusion matrix
obtained by machine learning corresponding to the four types of viruses.95 (c) Single-molecule measurement of nucleotide-type second messenger
which is relevant to the intracellular signal transduction, with nanogapped electrode fabricated by MCBJ. (d) Classification of cyclic adenosine
monophosphate and its similar nucleic acid molecules.7 (e) A 3D-integrated pore sensor to capture particles in air and ionic current traces of cedar and
cypress. (f) Recall Prec of pollen differentiation based on the characteristic parameters of each pulse.
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4.3. Real-Time Monitoring

The ability to monitor biological processes in real time is also a
key advantage of single-molecule bioelectronic sensing. This
technology offers extremely high time resolution, allowing for
the detection of molecular dynamics with high sensitivity. This
capability is particularly valuable in drug discovery, where the
ability to monitor interactions between biomolecules can
significantly enhance the efficiency and success rate of drug
development.9 By combining the high sensitivity and resolution
of single-molecule bioelectronic sensing with state-of-the-art
machine learning algorithms, it is possible to significantly reduce
the time and cost of drug research and optimize drug efficacy.
For example, Takashima et al. employed nanogapped electrodes
to detect nucleic acid-small molecule binding and introduced AI
algorithms to evaluate the binding effects of different ligands
with nucleic acid molecules. (Figure 12a, b, c)10 This approach
has the potential to accelerate the discovery of new drugs by
identifying potential drug candidates with high binding affinity
and specificity. Besides, the high time resolution of single-
molecule bioelectronic sensing has been used to study the
interactions between neurotransmitters and their receptors,
contributing to a better understanding of brain function and the
diagnosis of brain diseases. Komoto et al. utilized nanogapped
electrodes to study the interactions between neurotransmitters
and their receptors, providing valuable insights into the

mechanisms of neurotransmitter action and the development
of new treatments for brain diseases. (Figure 12d)103

Furthermore, single-molecule bioelectronic sensing also enables
the monitoring of conformational changes in biomolecules like
enzymes,147 providing crucial insights into their functions within
organisms.
4.4. Development of Electronic Devices with Biomolecules
The integration of biomolecules into ultrasmall electronic
devices represents a promising direction in bioelectronic
research, with the potential to revolutionize the fields of
information and computing. By leveraging the unique character-
istics of biomolecules, these devices could play a pivotal role in
information storage and signal processing, offering new
paradigms for electronic devices.148 A key technique in this
context is the break junction, which enables the repeated study
of individual molecules, yielding a plethora of conductance
traces. Machine learning algorithms, particularly those capable
of handling high-dimensional data, play a pivotal role in
enhancing the analysis’s efficiency and in revealing hidden
patterns within the data.12,133,134 By integrating theoretical
calculations of molecules with machine learning techniques, our
comprehension of molecules and their electronic properties can
be profoundly enhanced, potentially leading to significant
technological advancements in electronics and sensing, and
facilitating the design of functional molecular devices.149,150

Figure 12. AI-integrated single-molecule bioelectronic sensing for real-time monitoring of molecules and molecular interactions. (a) Nanogapped
electrode for the detection of base-ligand combination. (b) Recognition of base-ligand combination by PUC. (c) Classification of five hydrogen
bonding modes in base-ligand combination based on clustering. The optimal number of clusters is determined by the Bayesian Information Criterion
(BIC), which shows a minimum of five clusters.10 (d) Utilizing nanogapped electrodes for time-resolved neurotransmitter detection and classification
through supervised machine learning.103
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5. SUMMARY AND FUTURE PROSPECTS
The integration of single-molecule bioelectric sensing and
advanced AI technologies has opened up a new perspective for
us to understand the micro world. In this review we introduce
highly sensitive biosensors such as nanogapped electrodes,
nanopores, and single-molecule FETs, detailing their principles,
fabrication methods, and recent advancements. Comprehensive
analysis and understanding of the data gathered by single-
molecule bioelectric sensors are essential but face challenges due
to large data volumes, noise interference, and low signal-to-noise
ratios. As a result, we have meticulously summarized the
enhancements brought about by AI algorithms in data
processing, encompassing automatic feature extraction, precise
interclassification differentiation, and noise reduction techni-
ques. AI also plays a crucial role in enhancing the stability and
reliability of experimental measurements and elevating data
quality through sensor design optimization. Moreover, we
explore the broad spectrum of applications of AI-integrated
single-molecule bioelectric sensing, including enabling efficient
and precise single-molecule sequencing, achieving early disease
diagnosis and environmental monitoring through low-abun-
dance detection capabilities, real-time monitoring of subtle
molecular changes and interactions for high-throughput drug
screening, in-depth investigation and comprehension of enzyme,
protein, and organism structure and function, and fostering the
future development of novel molecular electronic devices.
The collaborative optimization of single-molecule bioelectric

sensing and AI technology in the future holds the potential to
unlock further application capabilities. This relies on the
continuous enhancement of single-molecule bioelectric sensing
devices to improve their stability. Concurrently, emphasis
should be placed on how AI algorithms can uncover overlooked
rich information. A thorough understanding of noise sources
and signal generation mechanisms in the sensor measurement
process can facilitate more precise signal-to-noise separation.
Additionally, appropriate data transformations could be a viable
solution for subtle data differences in one-dimensional space. To
enhance model generalization capabilities, it is imperative to
evaluate their adaptability across various scenarios, with publicly
available data sets serving to foster the development of universal
algorithms. Furthermore, the introduction of cutting-edge AI
technologies and algorithms will further promote the develop-
ment of single-molecule bioelectric sensing, such as natural
language processing, computer vision, and robotic process
automation, may also find applications in single-molecule
bioelectric sensors. As these technologies evolve, their
integration into single-molecule bioelectric sensing could
further enhance our capabilities in data analysis, interpretation,
and sensor design. In conclusion, the fusion of AI and single-
molecule bioelectric sensing represents a transformative
frontier, offering both new opportunities and challenges. By
continually refining our sensors and AI algorithms, we can
expand the possibilities for unraveling the mysteries of the
molecular world, paving the way for innovative molecular
electronics and a deeper understanding of biosystems.
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