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Abstract

Manipulating the dynamics of neural systems through targeted stimulation is a frontier of

research and clinical neuroscience; however, the control schemes considered for neural

systems are mismatched for the unique needs of manipulating neural dynamics. An appro-

priate control method should respect the variability in neural systems, incorporating moment

to moment “input” to the neural dynamics and behaving based on the current neural state,

irrespective of the past trajectory. We propose such a controller under a nonlinear state-

space feedback framework that steers one dynamical system to function as through it were

another dynamical system entirely. This “myopic” controller is formulated through a novel

variant of a model reference control cost that manipulates dynamics in a short-sighted man-

ner that only sets a target trajectory of a single time step into the future (hence its myopic

nature), which omits the need to pre-calculate a rigid and computationally costly neural feed-

back control solution. To demonstrate the breadth of this control’s utility, two examples with

distinctly different applications in neuroscience are studied. First, we show the myopic con-

trol’s utility to probe the causal link between dynamics and behavior for cognitive processes

by transforming a winner-take-all decision-making system to operate as a robust neural inte-

grator of evidence. Second, an unhealthy motor-like system containing an unwanted beta-

oscillation spiral attractor is controlled to function as a healthy motor system, a relevant clini-

cal example for neurological disorders.

Author summary

Stimulating a neural system and observing its effect through simultaneous observation

offers the promise to better understand how neural systems perform computations, as

well as for the treatment of neurological disorders. A powerful perspective for understand-

ing a neural system’s behavior undergoing stimulation is to conceptualize them as dynam-

ical systems, which considers the global effect that stimulation has on the brain, rather

than only assessing what impact it has on the recorded signal from the brain. With this

more comprehensive perspective comes a central challenge of determining what require-

ments need to be satisfied to harness neural observations and then stimulate to make one

dynamical system function as another one entirely. This could lead to applications such as
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neural stimulators that make a diseased brain behave like its healthy counterpart, or to

make a neural system previously capable of only hasty decision making to wait and accu-

mulate more evidence for a more informed decision. In this work we explore the implica-

tions of this new perspective on neural stimulation and derive a simple prescription for

using neural observations to inform stimulation protocol that makes one neural system

behave like another one.

Introduction

Advances in recording technology are making it possible to gain real-time access to neural

dynamics at different length and time scales [1, 2], allowing us to consider the structure of the

brain’s operation in ways that were previously inaccessible. Central to that understanding of

neural dynamics is the widely-held belief that dynamical systems underlie all of the core opera-

tions of neural systems [3–6]. Dynamical systems are systems of time-independent dynamics

that drive the evolution of a set latent states that may or may not be direclty observable, which

in neural systems are proposed to account for motor function [7], cognitive processes [8–10],

and sensory processing [11]. The controlled stimulation of neural systems offers not only a

novel tool to perturbatively study the underlying dynamical systems; but also shows tremen-

dous potential to treat a host of brain disorders, ranging from movement diseases such as Par-

kinson’s disease and essential tremor [12, 13], epilepsy [14, 15], and even mood disorders such

as severe depression [16]. In particular, there has been recent success in combining real-time

neural data acquisition with closed-loop stimulation for treating Parkinson’s disease [17, 18].

Unfortunately, the current framework for manipulating neural systems is not structured to

deal with the unique challenges posed by controlling complex neural dynamics. One of the

central goals of control theory is to manipulate a system to mimic some or all characteristics of

a target system of dynamics, and nearly all control systems accomplish this by controlling the

system state to either track a specified target trajectory or to regulate to a known set point [19].

Closed-loop control systems specifically designed for neural systems also operate under this

paradigm [20–22], and clinical devices use even more simplistic open-loop or reactive proto-

cols [15, 17, 23]. If neural systems function as a dynamical system by nonlinearly filtering

signals [24, 25], then significant portions of the observed neural fluctuation would correspond

to relevant exogenous input signals to the system such as volition, memory or sensory infor-

mation. Such controls designed to move to or maintain a target state counteract any natural

fluctuation in neural trajectories, and create a rigid system that is no longer dynamically com-

puting. For example, when building neural prosthetics for an abnormal motor-related brain

area, it is crucial for the controlled neural activity to be close to normal; however, simply con-

trolling it to replay a fixed motor command would not allow flexibly changing one’s mind mid

action. Therefore, any control objective that only considers externally set constraints through

trajectory or set-point control would be limited both in their application for treating neurody-

namic diseases as well as for studying neural computations in cases where preserving dynamic

information processing capability is important.

Given this perspective, we propose a new control objective called myopic control that

respects the unforeseeable variability in neural systems. The objective of myopic control is for

the controlled system to behave as a target neural dynamical system. This is reminiscent of a

well-developed field in control theory known as model reference control (MRC) [19], though

MRC has been widely used for trajectory-tracking problems. Unlike MRC, myopic control is

independent of the past trajectory and does not account for the far future—given the current
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state of the system, it tries to behave as the target dynamical system instantaneously. Addition-

ally, our controller is constructed to be agnostic about the ideal behavior of the neural system.

Its only purpose is to generate the target dynamical system, and all of its emerging behaviors,

as accurately as possible. The controller does not assume the role of performing the bulk action

on the state, which is instead encompassed in the original dynamical system that presumably

perform some form of related dynamics well. This is especially important in the context of

neural dynamics performing a computation, where it would be undesirable for our controller

to first perform the computation itself by tracing out a predefined trajectory. Instead, myopic

control will assist that system’s natural ability to perform a neural computation.

The qualitative difference between our control scheme and trajectory-tracking methods is

depicted in Fig 1. Given some target dynamical system, utilizing trajectory control would force

the neural system to follow a target trajectory, although not through the true target dynamics.

Scenarios may arise where trajectory control and myopic control may be very similar (Fig 1A),

although there can be fundamental, qualitative differences in the presence of noise or large dis-

turbances due to exogenous inputs (Fig 1B). In that case, the trajectory resulting from trajec-

tory control would not be generated from the target dynamics, and forces the state to evolve

toward the pre-computed target state. In this way, our controller preserves the full neural vari-

ability of our target dynamics, ranging from potentially different trajectories towards the same

fixed point to even allowing for potentially different behavior than expected.

The paper is organized as follows. First, we formulate the goals of our control objective for

manipulating neural systems, then define myopic control for linear and nonlinear dynamics.

Next, we discuss some design features of how to construct the target dynamics of a desired

dynamical system to display expected or intended behavior, and what types of difficulties may

arise when trying to define healthy or desired neural dynamics. We then demonstrate this con-

trol’s ability to make dynamical systems act as though they were another system entirely

Fig 1. Qualitative difference between our proposed myopic control of dynamics and trajectory control. Here F is controlled

to perform an example target dynamics G (e.g., perform a motor command), where its gradient flow is given in gray and two

attractors are denoted as circles. A precomputed target trajectory xt through G is shown in black. A) In the presence of small

disturbances, the evolution of trajectory control forces the system back to xt, whereas myopic control allows for natural

deviations. B) A large disturbance away from xt corresponding to an exogenous input that changes the target attractor mid-

trajectory could lead to entirely different behavior between the two control methods. Only myopic control would capture the

response of this disturbance through the true dynamics of G, while trajectory control blindly follows xt.

https://doi.org/10.1371/journal.pcbi.1006854.g001

Myopic control of neural dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006854 March 11, 2019 3 / 24

https://doi.org/10.1371/journal.pcbi.1006854.g001
https://doi.org/10.1371/journal.pcbi.1006854


through two relevant examples. First, a winner-take-all decision-making model is transformed

to operate as a robust neural integrator of information when shown a stimulus in a forced,

two-choice decision-making task. Second, a “diseased” motor system containing an unwanted

beta-oscillation state is controlled to function as a healthy motor system, which is a motivating

example for the treatment of movement disorders or other diseases with an underlying neuro-

logical state.

Materials and methods

Myopic dynamics control

Here we discuss the control problem of utilizing a dynamical system to behave as a separate

dynamical system. Using a Bayesian state-space modeling framework [26], we are interested in

the time evolution of a posterior distribution of time-dependent, n-dimensional (latent) brain

state xt that are governed by (stochastic) dynamics F ½xt; ut� � F t with an m − dimensional

control signal ut,

xtþ1 ¼ xt þ F t þ wt; ð1Þ

where wt � N ð0;QÞ is the state noise upon the dynamics. A second set of target stochastic

dynamics G½xt� � Gt under which we would like our state to evolve, acts analogously on the

state as

xtþ1 ¼ xt þ Gt þ wt; ð2Þ

The noise in both dynamics is the same, as we are considering transforming F into G in the

same physical neural system. In general, the control acts upon the dynamical system latent

states x that may not be directly observable, and would need to be inferred from a set of

observable variable to which the latent states are linked through an observation model. The

influence of the controls would also be manifested in the observed neural observations that are

relevant to experiments (e.g., calcium image traces, local field potentials, etc.), though without

loss of generality we have chosen to simplify our dynamics by omitting an observation model.

While neural observations may contain much information about the system, generally speak-

ing they are not dynamical states. States of a dynamical system require no time dependence to

fully describe the system, unlike neural observations that may require a history to understand

the dynamics. These dynamics are in general nonlinear, and we denote their Jacobians (lineari-

zation at the current state and stimulus) as

At¼
@F ½x; u�
@x

�
�
�
�
xt ;ut

~At¼
@G½x�
@x

�
�
�
�
xt

Bt¼
@F ½x; u�
@u

�
�
�
�
xt ;u0

: ð3Þ

Arguably the most developed form of model-based control occurs for linear systems with

quadratic costs on the state and control, known as linear quadratic gaussian (LQG) control

[27]. Finite-time horizon LQG controllers are optimal for costs of the simplified form

J ¼
XT

t¼0

E
x
½kxt � xt k

2� þ guTt ut; ð4Þ

with linear dynamics F t ¼ Axt þ But þ wt, and a regularization penalty factor γ added onto

the control power. The goal of minimizing (4) is to balance tracking along a target trajectory xt

with the cost of implementing a control. The optimal LQG controller form u�t ¼ Ktðx � xtÞ
with gain Kt is found by solving the associated recursive Riccati equation from an end-point

condition, and is a time-dependent controller through the time-dependence on Kt [27].
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Generating target dynamics is similar in spirit to LQG-type costs, although instead we are

interested in minimizing the difference between the effect of target dynamics and controlled

dynamics alongside control costs. Requesting that the controlled dynamics of F t act as

through they are in fact Gt can be written in a regularized, stepwise quadratic form as

Jt ¼ Ex ½ðF t � GtÞ
T
ðF t � GtÞ� þ gu

T
t ut: ð5Þ

Note that this cost is defined at each time point t, and depends on the current state (poste-

rior) distribution over xt. Utilizing control to track a defined trajectory that is generated from

an uncontrolled set of target dynamics G is known as model reference control (MRC), [19]

although the costs associated with this control design are traditionally limited to regulation of

a controlled trajectory around a set point or tracking of a predefined target trajectory evolving

under G over a long time horizon. Our cost in (5) is equivalent to MRC with a time horizon of

T = 1, in which the control effectively recreates a single step of a target trajectory from G. To

our knowledge, this simplified form of MRC is a major departure from the typical use of

model reference control. By weighting the difference between dynamics over a single time

step, this myopic (i.e., one-step) form negates the need to solve the Riccati equations, and the

derivative @J/@ut can be straightforwardly calculated to identify the optimal myopic control.
Our work in this paper focuses primarily on designing a controller that optimizes Eq (5),

which would be optimal for generating target dynamics over a single step. Since the controller

would no longer contain any time dependence (the dynamics F t and Gt are indexed by their

current time, but are dependent upon the state xt only), it would generate a dynamical system

with the same state space. The qualitative advantages of myopic control are depicted in Fig 1,

in which the evolution of a trajectory-controlled system tracking a defined trajectory xt in a

target dynamical system G is compared to the evolution of a myopically controlled system

designed to perform the target dynamics. In a noiseless environment, both trajectories would

be identical; however, in the presence of small disturbances away from xt, tracking control

would correct the trajectory in a distinctly non-dynamical fashion, evolving not through G but

instead forcing the system back onto xt in an unnatural manner (Fig 1A). Myopic control

would instead lead the trajectory through the natural dynamics of G, which may lead to the

same stable point, but through a distinctly different trajectory. Some disturbances may lead to

different behavior between the two control methods, though. Fig 1B shows this scenario, in

which a disturbance is corrected by trajectory control back toward xt, while myopic control

followed the flow of G, which lead it to a different attractor point. If this target dynamics were

a decision-making computation, for example, myopic control may have lead to a “wrong”

decision; however, allowing a controlled neural system to operate imperfectly in the perspec-

tive of modern control is precisely the type of flexibility that should be achieved to maintain its

natural operation.

In the following sections we derive the form of our myopic controller. Ideally, the controller

formulation will be distinct from the state estimator providing the feedback signal, and leads

us to consider variants of the controller that rely upon different moments of the underlying

state distribution. We first begin with the case of linear dynamics to demonstrate the simplified

form of myopic control and its properties, then move the more applicable nonlinear case.

Linear dynamics. Here we demonstrate that the myopic controller for linear dynamics

depends only upon the mean of the state distribution, and thus the state estimator and control-

ler design are separable for myopic control.

Theorem 1. If target and controlled dynamics are linear in state x and control u, then myopic
control depends only upon state mean E½x�.

Myopic control of neural dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006854 March 11, 2019 5 / 24

https://doi.org/10.1371/journal.pcbi.1006854


Proof. Let the linear dynamics under control and the target dynamics be

F t ¼ Axt þ But þ wt ð6Þ

Gt ¼
~Axt þ wt; ð7Þ

where the state distribution over x has first and second central moments E½xt� ¼ mt,
E½ðxt � mtÞ

2
� ¼ St, and the state noise is normal with wt � N ð0;QÞ. Expanding the dynamics

cost in (5) gives

J ¼ E
x
½jðA � ~AÞxt þ ButÞj

2
� þ guTt ut

¼ Tr½jðA � ~AÞj2St� þ m
T
t ðA � ~AÞTButþ

uTt B
TðA � ~AÞmt þ uTt ðB

TBþ gImÞut;

ð8Þ

where Im is the m ×m identity matrix. By examining (8) it is clear that regardless of the distri-

bution over x, the cost depends only upon the first two moments of the distribution of x. Maxi-

mizing (8) yields the optimal linear myopic controller form u�tlin , which depends only upon the

state mean,

u�tlin ¼ � 2ðBTBþ gImÞ
� 1BTðA � ~AÞmt: ð9Þ

Nonlinear dynamics controller with a moment expansion approximation. For nonlin-

ear dynamics, simply differentiating (5) leads to an ill-suited expression for a controller, since

there is an implicit dependence of the controller upon itself through F . One approximation to

alleviate this is to expand the nonlinear dynamics about null control (u0 = 0) to first order,

with the form

F ½xt; ut� � F ½xt; u0� þ Btðut � u0Þ

� ft þ Btut
ð10Þ

where ft � f ½xt� � F ½xt; u0� and for the remainder of the work Bt� B[xt, x0] is the Jacobian of

F as in Eq (3). This leads to an expression for the derivative of J and myopic controller as

@J
@ut
� E

x
½2ðf Tt þ uTt B

T
t ÞBt � 2GT

t Bt� þ 2guTt ð11Þ

u�t ¼ � ðEx ½B
T
t Bt� þ gImÞ

� 1 E
x
½BT

t ðft � GtÞ�: ð12Þ

The expectations in (12) depend upon the state distribution of xt, although it would be

desirable if akin to LQG that the controller was separated from state estimation, and only

depended upon low-order moments of x. To construct such a controller we will expand Ex½��

in terms of the mean and covariance of xt; in general, the terms in this expansion will contain

Jacobian matrices, higher order derivatives, and state vectors that are all evaluated at the distri-

bution mean μt, multiplied by the covariance St in some form. For example, the Jacobian Bt is

expanded as

B½xt� ¼ B½mt þ ðxt � mtÞ�

� B½mt� þ B0½mt�ðxt � mtÞ þ
1

2
ðxt � mtÞ

TB00½mt�ðxt � mtÞ;
ð13Þ
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and would follow similarly for the other terms in Ex½��. Such an approximation is valid when

the deviations from our estimated state μt are small, and in this regime only low-order

moments are necessary. It is assumed that state estimation to obtain μt and St can be per-

formed regularly enough in practice to operate in the regime such that (13) is valid, and we

will consequently consider two forms of nonlinear myopic control. First-order myopic control

will include only terms dependent upon state mean, just as in the linear dynamics case of the

previous section. Second-order myopic control will analogously depend upon both μt and St.

In each controller the terms f, G, B and derivatives B0t ¼ @Bt=@xt;B00t ¼ @
2Bt=@x2

t , will all be

evaluated at the distribution mean μt and null control u0 = 0, so we will temporarily drop the

functional dependence of these terms in the notation. The prime notation will indicate a deriv-

ative with respect to state.

The first expectation in (12) includes only terms relating to B. Expanding and keeping

terms up to second order gives

E
x
½B½x�TB½x�� ¼ E

x
½B½mþ ðx � mÞ�TB½mþ ðx � mÞ��

� BTBþ
1

2
BTTr3;4½B

00S�þ

1

2
Tr3;4½B

00TS�Bþ Tr3;4½B
0TB0S�;

ð14Þ

where Tr3,4 denotes the partial trace over dimensions 3 and 4. For an (n ×m × n × n) tensor T
this operation maps to an (n ×m) matrix M = Tr3,4[T] as

Mj;k ¼
X

i

Tj;k;i;i: ð15Þ

Similarly, expanding Ex½BT
x ðf ½x� � G½x�Þ� up to second order yields

E
x
½BT½mþ ðx � mÞ�ðf ½mþ ðx � mÞ� � G½mþ ðx � mÞ�Þ�

¼ BTðf � GÞ þ
1

4
BTTr2;3½ðf

00
� G00ÞS�þ

BTTr2;3½B
0Tðf 0 � G0ÞS� þ

1

2
Tr3;4½B

00TS�ðf � GÞ:

ð16Þ

(12), (14), and (16) define our second-order nonlinear myopic controller u2nd, and simply

omitting the covariance-dependent terms gives first order controller expansions,

E
x
½B½x�TB½x��1st order ¼ B½m�TB½m� ð17Þ

E
x
½BT

x ðf ½x� � G½x�Þ�1st order ¼ B½m�Tðf ½m� � G½m�Þ: ð18Þ

First-order control u1st is attractive for its simplicity, and it is important to ask under what

circumstances would first-order control outperform second-order control? First, if Tr(St) is

very small (i.e., small uncertainty about the state xt), then second-order terms are negligible.

Second, by noting that nearly all second-order terms contain derivatives of B, f and G, another

regime in which first-order control may be superior is under “super smooth” dynamics in

which the magnitude of successive derivatives is smaller than the previous one (e.g.
kBk> kB0k> kB0 0k). Moreover, if the control portion of the Jacobian B is state-independent,

Myopic control of neural dynamics
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then second-order control only has one covariance-dependent term in Ex½BT
x ðf ½x� � G½x�Þ�,

B½m�Tðf ½m� � G½m�Þ þ
1

4
B½m�TTr2;3½ðf

00
½m� � G00½m�ÞS�: ð19Þ

Evaluating controller performance

The performance of a myopic controller is formally benchmarked by the regularized cost in

(5), although it is important to isolate a cost describing the performance of only the dynamics.

The cost of expected mean performance is denoted by ~Jmt , and is given by

~J mt ¼ ½ðF ½m̂t; u�t � � G½m̂t�Þ
T
ðF ½m̂t; u�t � � G½m̂t�Þ�: ð20Þ

This cost is easy to compute and provides information about the mean behavior of the con-

trol, although it ignores the variability of the state distribution St. A more informative cost

incorporates the impact of the entire distribution of x, denoted by ~J t as

~J t ¼ Ex ½ðF ½xt; u
�

t � � G½xt�Þ
T
ðF ½xt; u

�

t � � G½xt�Þ�: ð21Þ

This is simply the log-mean squared error of the controlled dynamics. We estimate (21)

through Monte Carlo integration assuming the maximum entropy distribution at each time

point given the first two moments, i.e., a normal distribution Nðm̂t; ŜtÞ.

Design principles for targeted dynamical systems

Myopic control omits the requirement of supplying a target neural trajectory or set point in

the neural state space, which resonates with our design requirement of a future-agnostic

controller that need not prescribe what the brain should be doing precisely. Balancing the sim-

plicity and ease of myopic control, though, is the relative complexity in designing a target

dynamical system Gt . At first glance, it may seem as though we have merely shifted complica-

tions of controlling neural dynamics. However, this perspective more clearly frames the goal of

neural dynamics control, and we believe that it identifies a general design question yet to be

seriously considered by the neural processing community: Given a rough sketch of neural

dynamics and a desire to change them, what is an appropriate target dynamical system?

The choice of G can roughly be broken down into three design problems for dynamical sys-

tems: i) removal or avoidance of an unwanted feature, ii) addition of a desired feature, and iii)

modification of an existing feature. For example, there may be attractors (representing macro-

states) in F indicative of a dysfunctional behavior that should be avoided for healthy brain

function, such as limit cycle attractors. Or, one may wish to introduce additional attractor

macrostates in a decision-making system in order to support robust neural integration of evi-

dence [28]. We will consider both of these scenarios in the following sections. Our ideal design

approach used here is summarized in Fig 2, which is to use multiplicative filters upon the con-

trolled dynamics F to preserve desired features, with the addition of either barrier functions

to remove undesirable aspects of F or to prevent access into that region of state space. Alterna-

tively an additive function could be utilized to introduce new features. Care must be taken

with the shape and positioning of the additive barrier or extra feature though, as any zero

crossings of this additive term will introduce fixed points into the dynamics. In the example

case in Fig 2, a barrier function is used to remove an undesirable feature of the dynamical sys-

tem by producing a net rightward gradient flow in the low x1 region of state space, where the

zero crossing of the barrier function is aligned with other fixed points of the system that are

Myopic control of neural dynamics
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denoted in blue. Under this strategy, we can also view modification of an existing feature as

simply a removing it and replacing it with the desired one.

Numerical methods

In the follow sections we detail the dynamics of each dynamical system in the examples. Since

the primary objective of this work is to understand the performance of the myopic controller,

in both examples we used a simple state estimator to calculate x̂t and Ŝt , employing extended

Kalman filtering (EKF) within Tensorflow assuming a noisy observation of the state as yt =

xt + vt, where vt* N(0, R) and R is a diagonal covariance matrix. For lags in observations and

control signal calculation, state prediction was performed by propagating x̂t via,

x̂tþ1 ¼ x̂t þ F ½x̂t; ut�; ð22Þ

and covariance was estimated through sampling of time-evolved state predictions

xðiÞt � Nðx̂t; ŜtÞ that also evolve in time using (22),

Ŝtþ1 ¼
1

M � 1

XM

i¼1

xðiÞtþ1 � mtþ1

" #
XM

j¼1

xðjÞtþ1 � mtþ1

" #T

ð23Þ

mtþ1 ¼
1

M

XM

k¼1

xðkÞtþ1: ð24Þ

Beta oscillation disease states. The diseased state dynamics are a modification of a

dynamical system used to describe linear integrate-and-fire neurons as a limit cycle attractor

[6]. The specific limit cycle attractor is based upon the post-saddle-node bifurcation behavior

at large current in the INa,p + IK model from Ch. 4 of [6] (eqs. 4.1-4.2). The high-threshold

parameters in [6] were utilized to generate the attractor, and the external current was tuned to

Fig 2. Design strategy for creating target dynamics G. Green and blue regions represent features of the original dynamics F that

are to be maintained, while an undesirable feature is denoted with orange. A multiplicative filter removes the unwanted feature,

while an additive barrier function prevents access to unwanted state space by enforcing a gradient flow toward desirable regions with

well-behaved dynamics.

https://doi.org/10.1371/journal.pcbi.1006854.g002
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generate a beta oscillation. The beta oscillation dynamics of state X = [X1, X2]T (omitting state

and observation noise, for succinctness) are

F limit cycle ¼
@

@t
X1

X2

� �

ð25Þ

@ ~X1

@t
¼
C1

C0

ðI � glð~X1 � ElÞ � gNam1ð~X1 � ENaÞ � gkX2ð
~X1 � EkÞÞ ð26Þ

@X2

@t
¼ C2

n1 � X2

t
ð27Þ

p1 ¼
1

1þ exp ð Vp1�
~X1

kp1
Þ
; p 2 ½m; n� ð28Þ

with parameters C0 = 1, I = 10, El = −80, ENa = 60, Ek = −90, gNa = 20, gk = 10, gL = 8, τ = 1,

Vm,1 = −20, Vn,1 = −25, km1 = 15, kn1 = 5. The original dynamics for X2 corresponded to an

activation variable in an integrate-and-fire model, and as such were scaled to operate at the

order of magnitude X2 2 [0, 1]; however, X1 was originally a voltage variable, and we rescaled

it such that ~X1 ¼ 180X1 � 80. The magnitude of these dynamics were also scaled with C1 =

0.88 and C2 = 160 to reflect this change in X1.

The three stable points of the dynamics were added to the limit cycle attractor dynamics as

two sets of gaussian-weighted Gabor functions centered at the three stable points m1 = [0.9,

0.25], m2 = [0.9, 0.50], m3 = [0.9, 0.75] with a width of the gaussian envelope L = 0.2. This por-

tion of the dynamics was structured and scaled as

F a ¼
X3

i¼1

�

200 sin pðX1 � mi;1Þ

L

� �

100 sin pðX2 � mi;2Þ

L

� �

2

6
4

3

7
5e�

2ðX� miÞ
T ðX� miÞ
L2 : ð29Þ

To combine the stable attractors and limit cycle attractors in a smooth fashion we adopted

our design strategy of filtering out regions of the limit cycle attractor in the stable attractors

regions around m1, m2, and m3, and added in the stable attractors. Finally, the state-indepen-

dent control signal was added linearly to give the controlled dynamics with Δt = 10−4 s as

F diseased½X; u� ¼ DtðF limit cycleP
3

i¼1
BiðXÞ þ F aÞ þ uðtÞ ð30Þ

BiðXÞ ¼ 1 � exp �
2ðX � miÞ

T
ðX � miÞ

ð1:5LÞ2

 !

: ð31Þ

The healthy dynamics were designed to encourage the dynamics to stay near stable attrac-

tors, and avoid the limit-cycle attractor. We designed a hyperbolic tangent filter function FF to

preserve the stable points, and a barrier function B to encourage state movement away from
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the limit cycle

FF ¼
1

2

tanh ðaðx � mi;1ÞÞ þ 1 0

0 tanh ðaðx � mi;1ÞÞ þ 1

" #

ð32Þ

B ¼
1

2

tanh ð� aðx � mi;1ÞÞ þ 1

0

" #

: ð33Þ

Both the filtering function and barrier function have their zeros at the intersection of the

stable points, to avoid introducing additional unwanted stable points. The scale factor a = 20π
creates a steep barrier. The healthy dynamics are then calculated by filtering on null-controlled

unhealthy dynamics as

F healthy ¼ FFðF diseased½X; u ¼ 0�Þ þ B: ð34Þ

The state noise covariance Q = 10−5I2 was chosen to allow for noise-assisted departure of

the uncontrolled dynamics from the stable points an into the limit cycle attractor. Observation

noise covariances R 2 [10−6I2, 10−5I2, 10−4I2] were used.

Winner-take-all and robust neural integrator dynamics. The winner-take-all dynamics

are based upon the state-space description in [29], in which two sub-populations of excitatory

neurons X1 and X2 have a reduced-state dynamical description for decision-making of the

direction of a random moving dot visual stimulus. The dynamics for the two-dimensional

state driven by control signals u(t) = [u1(t), u2(t)]T are given by

dXi

dt
¼ �

Xi

ts
þ að1 � XiÞHi ð35Þ

Hi ¼
axi � b

1 � exp ½� dðaxi � bÞ�
ð36Þ

x1 ¼ J11X1 � J12X2 þ I0 þ u1ðtÞ þ I1 ð37Þ

x1 ¼ J22X2 � J21X1 þ I0 þ u2ðtÞ þ I2: ð38Þ

The visual stimulus is represented as input current I1 and I2 to each population with stimu-

lus strength μ0 = 30Hz and directional percent of coherence c0,

Ii ¼ JAm0 1�
c0

100

� �

: ð39Þ

High activity of a state X1 corresponds to decision due to activity of that sub-population of

neurons with positive-signed coherence of the stimulus, and X2 alternative has high activity for

negative-sign coherence of the stimulus, indicating the direction of the stimulus. Parameter

values reported in [29] were used. The controls to the system u1(t) and u2(t) were modeled as

additional input currents to the sub-populations.

The target neural dynamics of a robust neural integrator are based conceptually upon [28],

and their state space description is modeled as a set of hyperbolic tangents that generate
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interwoven nullclines. The two states X1 and X2 have gradients given by

dXi

dt
¼ t tanh

p

a
½�u � 2ð~X2 � 0:5Þ�

� �
þ BCi

h i
þ Ii

u ¼ a sin
ðn � 1Þp

L
~X1 þ p

� �

; i 2 ½1ðþÞ; 2ð� Þ�:
ð40Þ

The nullcline shapes u are defined by n − 1 nodes over a length L, and have a hyperbolic

tangent on each side in state space. (40) use a rotated set of state-space coordinates ~Xi given by

a rotation matrix ½~X1;
~X2�

T
¼ Mð½X1;X2�

T
� R0Þ, where M rotates by the angle π/4 and R0 =

[L/2, 1]T. The boundary conditions BC1 and BC2 enforce the final fixed points of the neural

integrator line to be global attractors, and are given by additional hyperbolic tangents of the

form

BC1 ¼ 10 tanh �
ðn � 1Þp

b
ðX1 þ cÞ

� �

�

10 tanh �
ðn � 1Þp

b
ðX1 � ½cþ Lþ a=4�Þ

� � ð41Þ

BC2 ¼ 10 tanh �
p

d
ðX2 þ cÞ

� �
þ

10 tanh �
p

d
ðX2 � ½Lþ c�Þ

� �
:

ð42Þ

The parameters of the model were chosen to roughly match the magnitude and fixed-point

locations of the winner-take-all dynamics. τ = 1e−3 (i.e., 1ms timesteps), a = 0.2, n = 7, L = 0.7,

b = 4/3, c = 0.083, d = 1.2. The stimuli to the robust neural integrator I1 and I2 were given by

½I1; I2� ¼ signðc0Þ½dð1þ jc0j=100Þ; � dð1þ jc0j=100Þ�; ð43Þ

where δ = 7.5e−4. The state noise covariance Q = 5 × 10−5I2 was chosen to allow the robust neu-

ral integrator to utilize the state noise to transition from one stable point to another, and obser-

vation noise covariances R 2 [10−6I2, 10−5I2, 10−4I2] were used.

Results

In the following examples we demonstrate the ability of myopic control to match the dynamics

of several relevant dynamical systems for neural computations. Simulations to benchmark the

performance of myopic control were conducted using Tensorflow (Python API). System

details can be found in the methods section, and code for the myopic controller is available at

https://github.com/catniplab/myopiccontrol.

Robust neural integration from winner-take-all dynamics

We first deal with controlling neural computations for decision making, and demonstrate how

myopic control can be used to change a winner-take-all (WTA) decision-making dynamics

and convert it into a robust neural integrator (RNI). WTA dynamics for a simple, forced two-

choice decision-making process function through a dynamical system where stimulus modu-

lates the dynamics to flow toward one of two stable attractors. As time progresses, the neural

state is driven toward one of the two stable attractors, each comprising a separate decision. In

contrast, a robust neural integrator has multiple fixed points in between those two final stable
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attractors that allow for a stable, intermediate representation of accumulated evidence—creat-

ing robustness against uncertainty in stimulus and small internal perturbations.

We implemented a well-known approximation of a WTA dynamical system underlying

two populations of spiking, excitatory neurons connected through strong recurrent inhibitory

neurons, and our control for this system is an external injected current into each excitatory

population [29]. Our target dynamics embody a low-dimensional analogue of the robust neu-

ral integration model suggested by Koulakov and coworkers [28]. Our RNI dynamical system

is conceptually quite simple: Two sinusoidal nullclines that are interwoven can generate alter-

nating stable and unstable fixed points, and with the addition of boundary conditions on the

final stable fixed points can generate a dynamical system with a line of stable fixed points. The

phase portraits for each system are shown in Fig 3.

A comparison between first-order myopic control and a trajectory control approach (i.e., a

control optimized for (4)) is presented in Fig 4. Specifically, we show that trajectory control

possess shortcomings when dealing with particular decision-making tasks. Trajectory control

approaches have an additional hurdle above myopic control in that there must be some policy

in place to decide to which target xt should evolve. The only way that trajectory control can

help the neural system make an informed decision is by integrating the stimulus, itself, which

assumes a role in the neural computation. Here, we allow the controller to observe and inte-

grate 20ms of coherence at the beginning of the trial, and then use that information to pre-

scribe a target point in state space (either the final + or − coherence decision points in Fig 3).

In this simulation the time-varying stimulus c0 is initially uncertain, beginning with a small

positive coherence for 500 ms and then changing to negative coherence for 500 ms, finally set-

tling to a stronger negative coherence of c0 = −12% for the remainder of a 2s trial, shown inset

in Fig 4. Both the target dynamics of robust neural integrator and myopic control to mimic it

can adequately handle this “change-of-mind” in stimulus and eventually evolve its neural state

to the negative coherence choice, but the trajectory control system instead incorporates only

Fig 3. Phase portraits for the A) winner-take-all dynamics and B) robust neural integrator. The magnitude is plotted on a

logarithmic scale for easier visualization, and arrows give gradient direction. Streamlines are depicted in cyan. The nullclines of each

dynamical system are shown in black. The RNI system is formulated as an extension of the tangling of nullclines in the WTA

dynamics, where additional crossings of the nullclines result in stable points.

https://doi.org/10.1371/journal.pcbi.1006854.g003
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the initial stimulus to incorrectly choose the positive coherence choice. Furthermore, it then

holds it there with control, in spite of receiving new stimulus information that in some cases

could have even been caught in the WTA system (Fig 4, green).

An intuitive way to compare the performance of trajectory control vs. myopic control for

decision making is to count the number of correct decisions made, which is summarized in

Table 1, alongside the total power of the controls, calculated as

P ¼
X

i;m

jumðtiÞj
2
: ð44Þ

Fig 4. Example trajectories of controlled dynamics for an initially uncertain stimulus (inset). Trajectory controls

with a policy to decide which decision to make by integrating the initial few ms of coherence signal not only steal the

role of computational integration from the dynamical system, but in the presence of an initially uncertain stimulus

perform poorly by making the wrong decision (red) where even a WTA system (green) can somewhat cope with a

changing stimulus. Myopic control (blue) can integrate the incoming information just as the target RNI dynamics

(black). inset: coherence for the change of mind stimulus. a final decision would be made by integrating the signal,

signified by the gray region. Vertical line at 20ms indicates the portion of the signal integrated to decide on a target

point for trajectory control.

https://doi.org/10.1371/journal.pcbi.1006854.g004

Table 1. Accuracy of decision making for an uncertain stimulus.

Dynamics Accuracy % decisions made control power P (mean ± std)

1. RNI 91% 91% -

2. Myopic control 92% 92% 2.05 ± 0.87

3. Uncontrolled 41% 89% -

4. Trajectory control 0% 99% 1.65 ± 0.42

https://doi.org/10.1371/journal.pcbi.1006854.t001
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Accuracy for each control type calculated as percentage of correct fixed points chosen

(noted in Fig 3), and percentage decided as number of trials in which the state evolved to

within a close radius of a decision point (radius = 0.15). Examining the accuracy of each

method in the table, it is clear that this is an extreme case of how poorly trajectory control can

perform, where even uncontrolled dynamics sometimes was able to change its mind and

choose the correct stimulus. This is a specific example of our qualitative arguments against tra-

jectory control that were shown in Fig 1, in which markedly different behavior can be artifi-

cially enforced. Moreover, the total power required by the control signals is comparable,

indicating that myopic control did not require substantially more power to perform the target

dynamics.

Quantitative performance of myopic control of a sample of 500 trials is summarized in Fig

5. Sample trajectories for uncontrolled, first-order controlled, and healthy dynamics are

shown in Fig 5A under the influence of an increasingly stronger time-dependent stimulus,

denoted by coherence c0. Both the RNI and controlled system linger at an intermediate stable

nodes before coherence has increased enough to make a more informed decision, indicated by

the progression to the decision node. In contrast, the uncontrolled trajectory evolves straight

to the decision without any intermediate stability at low coherence.

Importantly, the controlled dynamics demonstrate the intermediate stability behavior

found in robust neural integrators. Fig 5B summarizes the log-cost of 500 trials of first-order

control with a fixed stimulus coherence of c0 = −6%, where prototypical trials are shown in

gray alongside the trial average in black. The control signals for the increasing coherence dem-

onstration (Fig 5A) and for the benchmark trajectories (Fig 5B) are plotted in Fig 5C and 5D,

respectively. Again, promising and modest control amplitudes are observed in both cases.

Finally, Fig 5E and 5F show the time-averaged, log-performance for varying observation lag

and noise strengths. Comparable to the previous section we see that second order control per-

forms equivalently to first order across increasing observation lag and noise. However, the

time-averaged distributions at low observation lag have quite long-tailed, unimodal distribu-

tions, and have negligible performance at a lag of 50 steps (note that Δt corresponds to a 50ms-

ahead prediction). There is some change to a bimodal distribution for increasing observation

noise in this system, but the notable feature is the increasingly long distribution tail for sec-

ond-order control, which gives the opportunity for inferior performance as compared to first-

order control.

Avoiding beta-oscillation disease states

Here, we aim to preserve an original set of dynamical features in F while avoiding an

unwanted regime of state space containing undesirable dynamics. This paradigm can act as

the basis of state-space control for neurological disorders, where regions of state space may be

associated with disease symptoms [30, 31]. Utilizing myopic control as a therapy for neurologi-

cal disorders lends itself to considering which features of neural dynamics are undesirable,
rather than discerning which features of the dynamical system are lacking. For example, trem-

ors in Parkinson’s disease (PD) are associated with a characteristic beta oscillation (i.e., 13-30

Hz) of the local field potential in the subthalamic nucleus, and state-of-the art feedback control

strategies use this signal to trigger deep brain stimulation (DBS) until the beta oscillation sub-

sides [18]. Similar neural signatures are also present for epilepsy [14, 15]. A model “diseased”

system with three stable fixed points representing three possible voluntary movement com-

mands was constructed with an additional, unwanted spiral attractor representing the beta

oscillation macrostate. Difficulty in initiating voluntary motion (bradykinesia) in PD patients

could be due to strong attractive macrostate [32, 33]. Using myopic control, we manipulated
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Fig 5. A) Example trajectory of controlled dynamics for evidence accumulation. Nullclines and stable points (dots) of the neural integrator shown in black, with

unstable nodes shown as diamonds. B) Average time dependence of log-performance of expected cost in Eq (20) for winner-take-all to robust neural integrator

dynamics with first-order control, SNR of 7dB, and fixed coherence c0 = −6%. Example trials are shown in gray, and trial-averaged mean plotted in black. C)

Control signals during the evidence accumulation with first-order control. D) Similar control signals for fixed-coherence trial. E) Violin plots showing

distribution of time-averaged, log-performance for a lag in observations. F) Similar violin plots as in E), but for for varying observation noise strength, shown by

signal-to-noise ratios (SNR) of system noise to observation noise, and including null control (ct = 0). In both E) and F) � indicates p< 0.001 for a two-sample t-

test. Unless otherwise noted, samples are not significantly different. ��: p = 0.009.

https://doi.org/10.1371/journal.pcbi.1006854.g005
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the dynamics to match the target dynamics of a healthy system structured to avoid the avoid

beta oscillation state while preserving the fixed points of the system. The phase portrait of the

target dynamics are shown in Fig 6.

The overall performance of myopic control is summarized in Fig 7. A sample of 500 trials

points was initialized in the asymptotic distribution of the PD limit-cycle attractor, and state

estimation was performed for 100ms in the absence of control before the control was switched

on. Monitoring log ½~J t� in Fig 7A, individual trials reflect the initial oscillatory behavior of

being in the disease state before sharply declining, whereas the trial-averaged behavior shows

the overall improvement due to control. This remarkable removal of disease-state behavior is

further demonstrated in state-space trajectory of a typical trial (Fig 7B). Once control is

switched on the target dynamics successfully lead it out of the limit cycle and into a stable

attractor point. A spectrogram of the state X1 for an analogous, longer simulation is shown in

Fig 7D. There, a beta oscillation endured for 1s, and then myopic control was switched on to

evolve to a stable point. The spectrogram reflects the oscillations during the uncontrolled

period, and once the control is switched on it subsides and leaves only low-frequency compo-

nents as it moves toward the stable point. The optimal control signal for the colored trajectory

in Fig 7A in shown in Fig 7C. it is modest in amplitude relative to the magnitude of the dynam-

ics, and has a straightforward waveform, demonstrating that given only minimal additional

consideration to constraints on the control signal that myopic control could feasibly, effi-

ciently, and safely be implemented in living subjects.

Finally, we benchmarked the performance of first- and second-order control as compared

to uncontrolled dynamics by calculating distributions of the time-averaged log-cost
PT

i¼1
log ð~J tÞ for varying lags between state observation and control signal calculation (Fig 7E),

and for different observation noise strength (Fig 7F). While there is a interesting trend in the

stretching of bimodal distribution into a near unimodal one at high observation lag, we

observed no impactful difference between first- and second-order control with an increasing

delay of observations. Similarly, there is a transition to a distinct bimodal distribution at large

signal to noise, though both controllers perform similarly.

Fig 6. Phase portraits for diseased and healthy dynamical systems. Color denotes the magnitude of the dynamics F and G, and

the direction is shown by the arrows. Streamlines are shown in cyan. The diseased system contains three stable points, but also a

spiral attractor at small values of X1 and X2. The target healthy dynamics has been designed to contain slightly repulsive dynamics in

the original spiral attractor region, but still maintains its stable points.

https://doi.org/10.1371/journal.pcbi.1006854.g006
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Fig 7. A) Time-dependent performance of first-order control for small observation noise (SNR 10dB). Instances of simulations are shown in gray, while the mean

behavior is given in black. A representative trial has been singled out in blue and red for additional analysis. Initial trajectories are uncontrolled (blue), and allowed to fall

into the asymptotic distribution of the limit cycle before control is switched on (red). Costs are plotted as time-locked 100ms before the control is switched on. B)

Trajectory of typical trial through state space shown before and after the control is implemented, demonstrating a move back towards healthy state space. C) Control

signal of a representative trial. D) Spectrogram of X1 for an analogous, longer simulation of uncontrolled evolution for 1s (noted by vertical line), and myopic control for

final 1s. E) Violin plots showing distribution of time-averaged log-performance for a lag in observations, requiring state prediction. Horizontal line corresponds to the

average log-loss of null control. F) Similar violin plots as in E), but for for varying observation noise strength, and including null control (ut = [0, 0]). In both E) and F)
� indicates p< 0.001 for a two-sample t-test. Unless otherwise noted, samples are not significantly different.

https://doi.org/10.1371/journal.pcbi.1006854.g007
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Discussion

Here we developed a perspective on what features are necessary for a flexible control of any

dynamical system underlying neural computation. The controller should function to assist the

dynamical system performing the computation, not taking on the role of a dynamical system,

itself. In order for the controlled dynamics to function as a separate dynamical system on its

own, we proposed a myopic control scheme that alternatively manipulates the dynamics to

function as a set of target dynamics over a single time step, as opposed to trajectory-tracking

controllers that function over a finite time horizon and must first perform the neural computa-

tion on their own. We developed an approximation of this control for nonlinear dynamics that

is separable from state estimation, provided direction about design principles for how to con-

struct a targeted dynamical system, and demonstrated its application in two varied scenarios.

In both examples, first order control performed comparably to second-order control, showing

the potential to generate feasible control signals that function under practical conditions.

The base of our controller formulation is reminiscent of model-based control and model

reference (adaptive) control (MRAC). Utilizing model-based control alongside quality state

estimation [30] to manipulate neural dynamics is an attractive strategy that can harness

machine learning methods to build effective, patient-specific statistical models of the brain by

using real-time patient data, which could then be used as precision medical treatment [34, 35].

The initial efforts of MRAC focused heavily on adaptive update rules for estimating the param-

eters of different forms of target plants (dynamics, in our work), and predominantly one adap-

tive controller form was utilized: strictly positive real (SPR) Lyapunov design. This form of

controller depended on a SPR transfer function formulation of its plant dynamics, as was

designed to guarantee bounded control signals that can track target trajectories or regulate to a

fixed point from a target plant. Our controller structure is similar in form to SPR control and

could benefit from the similar extensions that took place in MRAC, such as analysis of the Lya-

punov stability to rigorously establish safe bounds on the control [19] and the use of neural

networks capable of handling nonlinear plant dynamics [36, 37].

This is not the first neural controller to consider neural variability as an important compo-

nent to preserve in neural systems. Todorov and Jordan suggested a “minimal intervention

principle” for neural systems that allows for deviations from a target trajectory, provided that

they do not interfere with the target task [38]. The target was considered as a single point in

state space, and their formulation allowed for high redundancy in the number of optimal tra-

jectories that reached the target with the same cost. Their controller only corrects the trajectory

when failing to act would result in a worse-than-optimal cost. While this is the only instance of

control that acknowledges and respects neural variability during control, even prescribing a

single point in state space as a target falls short of the general goals accomplished by myopic

control to generate an entire target dynamics. For example, returning to the qualitative opera-

tion of myopic control in Fig 1B, minimal intervention control would perform comparably to

trajectory control by forcing state evolution in a non-dynamical fashion, while also restricting

the neural variability that leads to an alternative fixed point.

An important feature of myopic control was its modular design. We studied a form in

which only low-order moments of the state distribution were used in the controller, which

decoupled the controller form from state estimation and allowed for any state estimator to be

implemented. First-order control is considerably more straightforward to use because of its

lack of higher-order derivatives on the dynamics, which may also come with a benefit being a

more robust controller during practical instances in which the dynamics must be inferred

from data. Operating in the perturbative regime x � x̂t through regular state estimation small

would ensure that first-order methods are successful.
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A key issue that dictates myopic control’s qualitative success is the choice or design of target

dynamics. Target dynamics could be designed by modifying the current dynamics through

either addition, removal, or modification of specific features in the state space. There is an

appeal to omitting features, as this approach resembles lesioning studies that aim to infer

causal importance to behavior. In our beta oscillation example, omitting the limit cycle

appeared to be the safest and most practical approach. However, if more experimentally accu-

rate understanding of the Parkinsonian dynamics suggests that omitting a limit cycle could

introduce unwanted behavior, it may be more prudent to modify the limit cycle with an exit

pathway. Still, one may wish to study the extent of a neural system’s computational flexibility

by adding features as we did with our decision-making example.

It should be noted the adding in new features can be a tedious process in practice, as it took

considerable parameter tuning to create our robust neural integrator system. Additionally, we

considered only two-dimensional systems, but interesting dynamical systems may in fact lie in

higher dimensions [8]. Our design approach of filtering functions is general enough to extend

to high dimensions, though implementing them in practice may take additional care. Remov-

ing features with smoothed versions of step functions would still work, as would adding stable

points with gabor functions, though they would need to be high-dimensional analogues. Visu-

alization and analysis tools for high-dimensional spaces could help determine the hypervo-

lumes to omit, and how (an)isotropic the features must be.

Myopic control is certainly not the only form of controlled stimulation of neural systems,

and it is important to note how these methods differ from our perspective. One of most suc-

cessful applications of neural stimulation is in the field of neuroprosthetics, where implants

mimic afferent sensory inputs such as cochlear or retinal implants, or translate efferent outputs

into motor actions for artificial limbs [39]. The control strategies behind these technologies are

complex and varied compared to myopic control [20], though this is required in part because

the goal of neuroprosthetics is distinctly different: the controlled (de)coding of these neural

signals do not constitute a dynamical system, but rather interacts with the pre-existing normal

neural dynamics of the area as inputs. Neural prosthetics for cognitive function, for example,

memory processing in hippocampus [40], are much more amenable to myopic control

scheme, since the normal function of the neural system constitutes a dynamical system.

Deep brain stimulation (DBS) for neurological disorders (e.g., Parkinson’s disease) is a con-

trol application within the scope of myopic control, as we demonstrated with our second

example study. A recent approach to DBS that harnesses neural recordings uses a model-free

method to simply reduce beta-band oscillations seen in local field potential recordings in the

basal ganglia [18], a potential neural signal related to PD symptoms [41, 42]. The disadvantage

to such a heuristic approach is that the link between beta oscillations in basal ganglia and cor-

tex, let alone its relationship to actual PD symptoms, is still not fully understood. Moreover,

other feedback targets are being actively considered as well [17, 31]. Myopic control allows us

to causally investigate the role of neural signatures correlated with the disease—we can specifi-

cally target fixes to the abnormal dynamics for beta oscillations, for example, and improve our

understanding of the disease and also improve treatments.

Our first example was motivated from a position of understanding neural dynamical sys-

tems for evidence accumulation and decision making, and more generally to demonstrate its

application as a tool to causally investigate cognitive processes. Several models of evidence

accumulation have been considered in the context of using variability in spiking dynamics of

lateral intraparietal cortex (LIP) in monkeys [43–45], and one future experiment could attempt

myopic control using different models for the control systems to produces a given target sys-

tem, say RNI. Performing myopic control in that context would be a more powerful approach

than perturbative, random stimulation of the system to simply infer parameters of an
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underlying dynamical model represented in LIP. Additionally, a more sophisticated experi-

ment could attempt to utilize controlled stimulation to force the opposite decision of a target

dynamics; the success of which would not only provide evidence that the controller is operat-

ing based upon the correct dynamical systems model, but would also constitute a substantial

advance in the control of cognitive dynamics.

The history of advances in model reference adaptive control (MRAC) provides a strong

template for how myopic controllers for neural dynamics control could be developed. Our

work here assumed a known model for the controlled dynamics, and future work should

integrate adaptive estimation of the controlled dynamics, themselves, into the controller. In

particular, as an extension of the initial neural network structures used to perform MRAC

[36, 37], there is opportunity to utilize deep networks that accomplish adaptive estimation

these dynamics and their states within a neural-network myopic controller architecture [46–

48].

A larger and more immediate question is what steps must be taken to implement myopic

control experimentally? The most important underlying component is access to quality neural

measurements. That is why recent work combining neural stimulation and observation as in

[49] is so vital. In our work we assumed that the ground-truth neural dynamics for both the

controlled dynamics F and the target dynamics G were known, but in practice they must be

estimated from neural measurements. We demonstrated that first-order myopic control can

function well, which necessitates estimation of only the state mean over higher order

moments, but first order control also requires estimating the full dynamics in (18).

The timescale of the underlying neural computation also suggests practical consideration.

Since myopic control is designed as an online control, the state estimations and estimation

of the dynamics must be fast in order to implement in real time. Longer time constants for

processes that are characterized by a smaller total dynamics F t lead to slower changes in neu-

ral state, which allow for more accurate online state estimation, and thus a more accurate

control signal. Akin to a slower moving target in state space, the less the dynamics have

progressed, the more up-to-date that state information will be, and the better the control per-

formance for slower dynamical processes. This motivated our demonstration that myopic

control can still function well with a lag between neural observations and control

implementation.

Moreover, estimating latent state dynamics is a difficult task altogether [3], and would likely

need to be performed prior to control use, with adaptive updates to the dynamics estimation

occurring online. Taking into consideration a generic framework i) signal processing (e.g.,
spike sorting), ii) control signal calculation, and iii) delivery of stimulation; it seems reasonable

to assume *5 ms of time required for myopic control, which is comparable to other closed-

loop control estimates [50]. In this regime of time lags of less than 5 ms, myopic control was

demonstrated to perform well, which is promising for its implementation.
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