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ABSTRACT Multiomic analyses reported here involved two lines of chickens, from a
common founder population, that had undergone long-term selection for high (HWS)
or low (LWS) 56-day body weight. In these lines that differ by around 15-fold in body
weight, we observed different compositions of intestinal microbiota in the holobionts
and variation in DNA methylation, mRNA expression, and microRNA profiles in the
ceca. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was the most up-
regulated gene in HWS ceca with its expression likely affected by the upregulation of
expression of gga-miR-2128 and a methylated region near its transcription start site
(388 bp). Correlation analysis showed that IGF2BP1 expression was associated with an
abundance of microbes, such as Lactobacillus and Methanocorpusculum. These findings
suggest that IGF2BP1 was regulated in the hologenome in adapting to long-term artifi-
cial selection for body weight. Our study provides evidence that adaptation of the hol-
obiont can occur in the microbiome as well as in the epigenetic profile of the host.

IMPORTANCE The hologenome concept has broadened our perspectives for studying
host-microbe coevolution. The multiomic analyses reported here involved two lines
of chickens, from a common founder population, that had undergone long-term
selection for high (HWS) or low (LWS) 56-day body weight. In these lines that differ
by around 15-fold in body weight, we observed different compositions of intestinal
microbiota in the holobionts, and variation in DNA methylation, mRNA expression,
and microRNA profiles in ceca. The insulin-like growth factor 2 mRNA-binding pro-
tein 1 (IGF2BP1) was the most upregulated gene in HWS ceca with its expression
likely affected by a methylated region near its transcription start site and the upreg-
ulation of expression of gga-miR-2128. Correlation analysis also showed that IGF2BP1
expression was associated with the abundance of microbes, such as Lactobacillus
and Methanocorpusculum. These findings suggest that IGF2BP1 was regulated in the
hologenome in response to long-term artificial selection for body weight. Our study
shows that the holobiont may adapt in both the microbiome and the host's epige-
netic profile.

KEYWORDS Artificial selection, body weight, ceca, coevolution, DNA methylation, gut
microbiota, holobiont, hologenome, microRNA

Although long-term artificial selection can alter the frequency of host genes and
variation in its genome, the host genome is highly conserved, and genetic altera-

tions within it are slow and rare. The response to selection may also depend on interac-
tions between the host and microbiome. Phenotypic changes in the host may be the
result of alterations of the hologenome, which is the sum of the genetic information of
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the host and its symbiotic microbes (1, 2). In this theory, the genomes of the holobiont
act in a consortium rather than in isolation and function as a distinct evolutionary en-
tity. Specifically, when subjected to selection, the evolution of a holobiont involves not
only changes in the genome of the host but also a possible shift in microbiota. The
microbes may allow the host to quickly adapt to the artificial selection (3, 4).

The synergistic phenotypes shaped for the holobiont under evolutionary forces
involve host-microbe and intermicrobial collaborations (1). Examples include symbiotic
microbiota that interact with their host and, thus, contribute to traits of the holobiont,
such as obesity (5, 6), development (7), temperature adaptation (8), and immunity (9).
Recently, researchers observed, in a long-term evolutionary study of Nasonia vitripen-
nis, that atrazine exposure over 85 generations mediated adaptive changes within the
microbiome and host genome, and the evolved microbiome metabolized atrazine
more efficiently, which conferred host resistance to atrazine toxicity (10). In addition,
the genetic selection of tropical tilapias for cold tolerance shaped the microbiome
composition and modulated the hosts’ response to temperature (11). These findings
imply that the host and its microbiota are not isolated from their counterpart in evolu-
tion but are interconnected and coregulated systems.

To date, coevolutionary mechanisms of the intestinal microbiota involved in
responses of the host to selection have not been fully explored on hologenome epige-
netic profiles in higher organisms. To study intimate biological cooperation between
animals and their associated intestinal microbiota during long-term selection, it is nec-
essary to apply a hologenome framework that integrates molecular data (Fig. 1A).
Here, we report an experiment with the chicken as the model organism. The chickens
were from lines that originated from a common founder population (12, 13) and were
divergently selected for a single trait (56-day body weight) for 56 generations (Fig. 1B).
Divergent selection resulted in a greater than 15-fold difference in body weight
between the high (HWS) and low (LWS) weight lines at selection age (Fig. 1B). Using
these chickens, we integrated molecular data of transcriptome, epigenome, and meta-
genome derived from either the host or symbiotic microorganisms into an integrative
multiomic framework (Fig. 1A). The results suggest that the hologenome, which
includes the microbiome composition and the epigenetic profile of the host, can be
dynamic and change in response to artificial selection, thus leading to the evolution of
the holobionts.

RESULTS
Characteristics of microbiota in the gastrointestinal tract. Intestinal contents

were collected from the duodenum, jejunum, ileum, ceca, and colon, respectively. A
total of 85 high-quality samples were obtained from 10 HWS and 10 LWS chickens
(Table S1). The microbiome of each segment from all 20 chickens was analyzed with
16S rRNA sequencing. A total of 8,918,125 reads with an average of 104,919 filtered
reads per sample were yielded from high-throughput sequencing. The length distribu-
tion of the sample sequences was 226 (Fig. S1A). The rarefaction curve for each seg-
ment was made based on the obtained OTU data and showed that the sequencing
depth was satisfied for the demand of analysis (Fig. S1B to F). These operational taxo-
nomic units (OTUs) were generated and characterized for different taxonomic levels,
including domain, phylum, class, order, family, and genus based on the Greengene
database using QIIME. Taxonomies present in at least ¼ of the total samples were con-
sidered common, and their relative abundance counts were used for further analysis. A
total of 21 phyla, 30 classes, 54 orders, 98 families, and 171 genera were characterized
in these samples.

We then compared the distribution of intestinal microbiota in five different gastro-
intestinal (GI) segments (duodenum, jejunum, ileum, ceca, and colon) and found that
Proteobacteria, Firmicutes, and Bacteroidetes were the 3 most dominant phyla,
accounting for 80% of the microbiota (Fig. 2B and Table S2). However, these phyla had
a dynamic pattern that differed among gastrointestinal segments. In intestinal
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segments (duodenum, jejunum, ileum, and colon), Proteobacteria was the most domi-
nant phylum (.42%), followed by Firmicutes (.24%) and Bacteroidetes (,2%) (Fig. 2B
and Table S2). Conversely, in the ceca, Proteobacteria accounted for only 6%,
Bacteroidetes replaced Proteobacteria to become the most dominant phylum (40%),
and the proportion of Firmicutes increased to 13% (Fig. 2B and Table S2). There was a
high proportion of Euryarchaeota in the ceca (2.4%). In addition, 14% of the OTUs
belonging to the Bacteria domain were annotated as unclassified (Fig. 2B and
Table S2).

We also measured the composition of intestinal microbiota at the genus level and
identified the 5 main genera of Bacteria and the main genus of Archaea. A total of 14
common genera were identified (Fig. 2C and Table S2). In the ceca, Bacteroides (21%),
Prevotella (5%), Faecalibacterium (4.9%), Clostridium (4.9%), and Ruminococcus (4.8%)
were the most abundant genera. Methanocorpusculum accounted for 2.1%. For intes-
tinal segments, Escherichia/Shigella was the most enriched genus (.28%), followed
by Lactobacillus (.18% for small intestinal segments) and Acinetobacter (17% for co-
lon). Taken together, these data demonstrated that the preponderant microbes dif-
fered among intestinal segments and reflect diverse functions among gastrointesti-
nal segments.

FIG 1 The holo-omic interactions in the holobiont and chicken model. (A) The holo-omic interactions
between the host and its intestinal microbiota. Biomolecular interactions between hosts and symbiotic
microorganisms triggered by artificial selection yield different holobiont phenotypes. Arrows indicate the
directionality of the effect. Analyses performed in our study are shown by solid arrows, while dotted
arrows represent associated relationships from other studies. Genome-wide association studies (GWAS),
metagenome-wide association studies (MWAS), and metagenome genome-wide association studies
(mGWAS). (B) Illustrations of chickens used in our study. The 56-day body weight of HWS and LWS
males (#) and females ($) are presented in parentheses.
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The canonical analysis of principal coordinates (CAP), a method that measures phy-
logenetic dissimilarities between microbial communities based on Unifrac metrics,
showed a separation between samples from the ceca and other sections of the GI tract
(Fig. 2D). Samples from the duodenum, jejunum, ileum, and colon tended to cluster
with each other. Furthermore, Shannon, ACE, Simpson, and Chao1 analyses for alpha
diversity showed greater diversity and abundance of cecal microbiota than other intes-
tinal segments (P , 0.0001, Tukey's multiple-comparison test; Fig. 2E and F and
Table S3). Correlation coefficients between the duodenum, jejunum, and ileum were
high, ranging from 0.56 to 0.95 (P , 0.05) and less than the 0.14 (P , 0.05) for those
between the ceca and these intestinal segments (Table S4). These results, when taken
together, demonstrate that the microbiota of the ceca is considerably more diverse
than those of the small intestinal segments.

The alteration of intestinal microbiota under artificial selection. Canonical anal-
ysis of principal coordinates based on UniFrac metrics showed that samples from HWS
and LWS ceca and other intestinal segments (duodenum, jejunum, ileum, and colon)
formed distinct groups (Fig. 3A). Adonis, a nonparametric permutational multivariate
analysis (P = 0.001, HWS versus LWS), and ANOSIM (analysis of similarities) test (P =
0.001) further confirmed significant differences between the HWS and LWS lines. In
addition, according to the analysis of alpha diversity for Shannon indices, small intesti-
nal segments (duodenum, jejunum, and ileum) were significantly different (P , 0.05,
Student's t test) between the two lines with alpha diversity substantially less in LWS
than HWS (Fig. 3B to D). The alpha diversity of ceca (mean 4.82 versus 5.25, P = 0.13)
and colon (mean 1.79 versus 1.86, P = 0.85) were also lower in LWS than HWS, but

FIG 2 Composition and abundance of microbiota in the gastrointestinal tract. (A) Anatomy of the chicken intestinal tract. (B) Relative abundance of
microbes at the phylum level among intestinal segments. (C) Relative abundance of microbes at the genus level among intestinal segments. (D) Canonical
analysis of principal coordinates based on unweighted UniFrac metrics for the intestinal segments. (E) Shannon and (F) Chao1 methods were used for
alpha diversity analysis of the microbiota of the intestinal segments. Quadruple asterisk (****) denotes P , 0.0001.
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these differences were not significant. Overall, these results indicate that the composi-
tion of the intestinal microbiota of LWS and HWS chickens are different.

To further measure the variation of intestinal microbiota in the intestinal segments
between these lines, comparisons were made at the phylum, class, order, family, and
genus levels. The difference in abundance of microbes for HWS and LWS at each classi-
fication level is shown in Fig. 3E. The ceca and ileum had the greatest variation in the
number of taxa, suggesting that the species of microbes that lived in these segments
were more affected by selection for high or low body weight than those in the other
intestinal segments. The difference between the microbiota of HWS and LWS jejuna
was the least. At the phylum level, only Proteobacteria and Firmicutes abundance were
significantly increased in the duodenum and ceca in LWS. In HWS, Euryarchaeota was
significantly enriched in the ileum and ceca (Fig. S3).

The greatest number of microbes changed at the genus level, which has a relatively
precise taxonomy. When we compared the microbes in each segment of HWS and LWS,
of 199 genera, 31 were significantly different in the ceca (P , 0.05, Table 1). Among
these, only the abundance of Collinsella was greater in LWS than HWS, while the other
30 genera were greater in HWS than LWS. Notably, included in these was the abundant
genus in the ceca, Bacteroides. In addition, 6 genera, Faecalibacterium (LDA = 3.56, P =
0.0002), Sporobacter (LDA = 3.07, P = 0.0003), Oscillibacter (LDA = 3.04, P = 0.0019),
Subdoligranulum (LDA = 2.86, P = 0.0025), Hydrogenoanaerobacterium (LDA = 2.21, P =
0.0156), and Butyricicoccus (LDA = 2.11, P = 0.0102) belonging to the Ruminococcaceae
family, and 2 genera, Dorea (LDA = 3.2, P = 0.0004) and Anaerosporobacter (LDA = 2.04,
P = 0.0012), in Lachnospiraceae were significantly greater in HWS than LWS. The

FIG 3 Altered microbiome in gastrointestinal tract under artificial selection. (A) Canonical analysis of principal coordinates based on
unweighted UniFrac metrics between ceca and other intestinal segments (duodenum, jejunum, ileum, and colon) of HWS and LWS. (B to D)
Comparisons of alpha diversity between HWS and LWS with the Shannon method. Single asterisk (*) denotes P , 0.05. (E) Significantly
different abundances of microbes observed at each classification level for each intestinal segment (LDA . 2, P , 0.05). (F) Comparisons of
functional microbial pathways in HWS and LWS.
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most abundant genus of Archaea, Methanocorpusculum, was also greater in HWS
than LWS. Overall, the microbiota of the ceca in HWS were most dramatically dif-
ferent during selection for high or low body weight than the other intestinal
segments.

Similar to the ceca, the microbiota of the ileum differed between the lines with 40
genera being significantly different (P , 0.05, Table S5). Among them, the abundance
of 14 genera was greater in HWS than LWS, while 26 genera were greater in LWS than
HWS. Psychrobacter, the microbe with the highest LDA effect (LDA = 4.70), increased in
the LWS ileum. However, in the duodenum, 14 genera differed between the lines with
12 significantly greater in HWS than LWS. Although Lactobacillus was the genus with
the greatest abundance in HWS with an LDA score of 5.31, the abundance of
Escherichia/Shigella and Pseudobutyrivibrio were significantly greater in LWS than HWS
(Table S5). In contrast, there were only 4 microbes with significantly different abun-
dance between the lines in the jejunum. These were Ruminococcus (LDA = 2.09, P =
0.03), Victivallis (LDA = 2.16, P = 0.03), Alistipes (LDA = 2.07, P = 0.03), and Turicibacter
(LDA = 2.11, P = 0.03). Colon microbes differed between HWS and LWS for 14 genera (P,
0.05, Table S5). Among them, 6 had greater abundance in HWS than LWS with LDA scores
for 3 genera greater than 4 (Lactobacillus, [LDA = 4.57, P = 0.001], Faecalibacterium
[LDA = 4.38, P = 0.041], and Aeriscardovia [LDA = 4.23, P , 0.001]). In contrast, 9 genera
had higher abundance in LWS than HWS with LDA scores for 3 genera being greater than

TABLE 1 Genera that differed significantly in the ceca of high (HWS) and low (LWS) weight
chicken lines

Phylum Family Genus Groupa LDAb P value
Actinobacteria Actinomycetaceae Actinomyces HWS 2.79 0.0223

Bifidobacteriaceae Aeriscardovia HWS 2.25 0.0002
Propionibacteriaceae Propionibacterium HWS 2.59 0.0306
Coriobacteriaceae Collinsella LWS 3.29 0.0306

Olsenella HWS 2.47 0.0002

Bacteroidetes Bacteroidaceae Bacteroides HWS 2.10 0.0126
Rikenellaceae Alistipes HWS 3.26 0.0012
Porphyromonadaceae Parabacteroides HWS 2.86 0.0306

Butyricimonas HWS 2.07 0.0032

Firmicutes Clostridiaceae Clostridium HWS 3.45 0.0007
Eubacteriaceae Alkalibacter HWS 2.82 0.0047
IncertaeSedisXIV Blautia HWS 2.17 0.0015
Veillonellaceae Veillonella HWS 2.39 0.0002
Lachnospiraceae Dorea HWS 3.20 0.0004

Anaerosporobacter HWS 2.04 0.0012
Lactobacillaceae Lactobacillus HWS 2.91 0.0002
Ruminococcaceae Faecalibacterium HWS 3.56 0.0002

Sporobacter HWS 3.07 0.0003
Oscillibacter HWS 3.04 0.0019
Subdoligranulum HWS 2.86 0.0025
Hydrogenoanaerobacterium HWS 2.21 0.0156
Butyricicoccus HWS 2.11 0.0102

Proteobacteria Caulobacteraceae Brevundimonas HWS 2.33 0.0464
Helicobacteraceae Helicobacter HWS 3.09 0.0284
Methylobacteriaceae Methylobacterium HWS 2.64 0.0265
Moraxellaceae Acinetobacter HWS 2.84 0.0002
Enterobacteriaceae Escherichia_Shigella HWS 2.79 0.0032

Thorsellia HWS 2.05 0.0130

Lentisphaerae Victivallaceae Victivallis HWS 2.49 0.0413
Euryarchaeota Methanocorpusculaceae Methanocorpusculum HWS 3.42 0.0002
Synergistetes Synergistaceae Cloacibacillus HWS 2.70 0.0009
aGroup: The line with the significantly greater relative abundance.
bLDA: Linear discriminant analysis.
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4 (Escherichia/Shigella [LDA = 4.13, P = 0.019], Sporosarcina [LDA = 4.76, P = 0.019], and
Paenibacillus [LDA = 4.39, P = 0.04]).

The association of cecal microbial function with body weight. When we ana-
lyzed the whole intestinal microbial genome at the broadest level, 11 pathways dif-
fered significantly between the lines (Fig. 3F). Enriched markers were frequently associ-
ated with the functional pathways of metabolism of terpenoids and polyketides,
carbohydrate metabolism, energy metabolism, infectious diseases, metabolism of
cofactors and vitamins, and nucleotide metabolism in HWS. In contrast, the cecal
microbiota of LWS exhibited enrichment in membrane transport, cancers, signal trans-
duction, and cell motility. Moreover, the pathways associated with carbohydrate and
energy metabolism were significantly enriched in HWS (Fig. 3F). When the more
focused subsystem levels were analyzed, 61 pathways were significantly different
between the lines (see Table S6 at https://doi.org/10.6084/m9.figshare.16830736.v7).
Among them, 5 (glycolysis/gluconeogenesis, citric acid cycle [TCA cycle], butanoate
metabolism, amino sugar, and nucleotide sugar metabolism, and pyruvate metabo-
lism) are involved in carbohydrate metabolism. Three pathways linked to energy me-
tabolism (oxidative phosphorylation, methane metabolism, and carbon fixation path-
ways in prokaryotes) were enriched in HWS. The PPAR signaling pathway was also
enriched in HWS (see Table S6 at https://doi.org/10.6084/m9.figshare.16830736.v7).
Taken together, microbial function analyses showed that HWS cecal microbiota pre-
sented higher activity associated with carbohydrate and energy metabolism than LWS.
As such, they may have contributed, in part, to the large differences in body weight
between these lines, which originated from a common founder population and were
selected for the same trait, 56-day body weight.

Variation in host gene expression under artificial selection. The results for
mRNA-Seq are shown in Table S19 at https://doi.org/10.6084/m9.figshare.16830736.v7.
There were 327 genes with .2-fold changes (P , 0.05), which we considered differen-
tially expressed genes (DEGs). Of these, 198 were upregulated and 129 were downre-
gulated in HWS compared with LWS (Fig. 4A, see Table S8 at https://doi.org/10.6084/
m9.figshare.16830736.v7). The most significantly upregulated gene in HWS was
IGF2BP1 (fold change = 51.33, P = 5.02 � 10219), and in LWS was ENSGALG00000022234
(fold change = 17.47, P = 5.71 � 10216) (Fig. 4A).

To better understand the functions of DEGs, we analyzed the functional distribution
of DEGs in the ceca of these chicken lines according to gene ontology (GO) enrichment
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyses. Of the 20
significantly enriched GO terms for biological processes, most were enriched in cyclic
AMP (cAMP) and muscle-related functions (Fig. 4C, see Table S9 at https://doi.org/10
.6084/m9.figshare.16830736.v7). The cAMP process included cAMP-mediated signaling
and G-protein signaling coupled to a cAMP nucleotide second messenger, which regu-
lates the cAMP biosynthetic and metabolic processes (Fig. 4C and E). In addition,
CALCR, ADCY1, CHRM5, MC4R, which belong to cAMP-related functions, had greater
expression in HWS than LWS (Fig. 4E). Moreover, muscle-related functions, which
include regulation of muscle contraction, muscle system processes, and striated muscle
contraction, were involved with 7 genes (Fig. 4C and F). Of them, 6 (KNG1, TNNC2,
MYBPC3, CASQ2, MYL2, KCNB2) were greater in HWS (Fig. 4F). In addition, negative reg-
ulation of biosynthetic processes was significantly enriched, which included IGF2BP1
that was upregulated in HWS (Fig. 5B). The KEGG pathways analysis showed that com-
plement and coagulation cascades (P = 0.007) and neuroactive ligand-receptor interac-
tions (P = 0.015) were the more enriched pathways (see Table S9 at https://doi.org/10
.6084/m9.figshare.16830736.v7).

Epigenetic changes under artificial selection. The MEDIPS package was employed
to quantify methylation levels, and edgeR was used to analyze the differentially meth-
ylated regions (DMR). Of the 4,779 DMRs throughout the whole genome, 3,430 and
1,349 were hypomethylated in HWS and LWS, respectively. The distribution of DMRs
per chromosome (Fig. S2A) showed that chromosome 1, the largest chromosome in
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FIG 4 Variation in host cecal gene expression under artificial selection. (A) Volcano map of differentially expressed genes for HWS and LWS. (B) Bar plot
shows the differentially expressed miRNAs for HWS and LWS. (C) Enrichment chart of GO terms enriched by significant differentially expressed genes
between HWS and LWS. The rich factor was the ratio of the differential genes versus all genes involved in specific pathways. (D) Enrichment chart of
pathway analysis of differentially methylated genes between HWS and LWS. (E and F) Network analysis of DEGs and their enriched functions, where
triangles, squares, and circles represent miRNAs, go terms, and genes, respectively, pink and green nodes represent the upregulated and downregulated
genes in HWS and LWS, respectively.
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the chicken genome, accounted for 883 DMRs, and the sex chromosome W had the
fewest DMRs with 3.

Of the 4,779 DMRs, 3,841 were located at intergenic regions and 938 were distrib-
uted in the promoter, exon, intron, 59, 39 untranslated region (UTR), and transcription
termination sites (TTS), which were considered differentially methylated genes (DMGs)
(see Table S11 at https://doi.org/10.6084/m9.figshare.16830736.v7). There were more
DMRs in the exon and intron than in the promoter and other gene regions. More
hypermethylated DMRs were distributed in an intron, exon, 39 UTR, and TTS in HWS
than LWS. In contrast, there were more hypermethylated DMRs in promoter and 59
UTR in LWS than HWS. When we identified the genes that contained the DMRs, 437
and 204 hypermethylated genes were characterized in HWS and LWS, respectively (see
Table S12 at https://doi.org/10.6084/m9.figshare.16830736.v7). The numbers of hyper-
methylated genes relating to promoter-TSS for HWS and LWS were 16 and 51, respec-
tively (see Table S13 at https://doi.org/10.6084/m9.figshare.16830736.v7). Genes SRP68,
SOX9, PRKRIP1, PPP2R4, and PDCD2 were continuously hypermethylated for more than
2 DMRs in LWS, and the promoter-TSS location was included in hypermethylated

FIG 5 IGF2BP1 interactions with intestinal microbes. (A) The regulation of IGF2BP1 expression through methylation and miRNA. (B) Gene expression levels
of IGF2BP1 in HWS and LWS (P = 5e-19). The error bars show the SE of biological replicates (n = 10). (C) The interaction network between significantly
upregulated genes and genera in the ceca. (D) The interaction network between IGF2BP1 and intestinal microbes at each classification level.
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regions. However, for HWS, only RPL3L was hypermethylated for more than 2 DMRs. In
addition, the CpG island involved in DMRs was identified. Of 22 DMGs characterized
(see Table S14 at https://doi.org/10.6084/m9.figshare.16830736.v7), all regions were
hypomethylated in HWS. Functional analysis revealed that 641 DMGs were significantly
enriched in 23 pathways (Fig. 4D). Involved were transport and catabolism, lipid me-
tabolism, glycan biosynthesis and metabolism, and digestion.

We observed 345 mature miRNAs. Of them, 12 differentially expressed miRNAs (DEMs)
were identified (Fig. 4B). Six (gga-miR-1684b-3p, gga-miR-1618-5p, gga-miR-1720-3p, gga-
miR-1736-3p, gga-miR-1682, and gga-miR-7460-3p) were upregulated and 6 (gga-miR-
1684a-3p, gga-miR-2128, gga-miR-1663-5p, gga-miR-1551-5p, gga-miR-3538, and gga-
miR-6582-3p) were downregulated in HWS relative to their expression in LWS (Fig. 4B).

Regulatory network analysis of DEMs and DEGs. In HWS, the lower expressed
DEMs consisted of gga-miR-2128 and gga-miR-1684a-3p and targeted 58 DEGs, which
were upregulated (see Table S10 at https://doi.org/10.6084/m9.figshare.16830736.v7).
Of the 58 DEGs, CALCR, ADCY1, and CHRM5 were enriched in related cAMP functions
(Fig. 4E). One gga-miR-2128 target was IGF2BP1 (Fig. 5A). Biological process (BP) func-
tions of O-glycan processing (P = 0.08) were associated with MUC1 and ST3GAL4 that
were putatively regulated by gga-miR-2128. Moreover, the upregulated DEMs in HWS,
including gga-miR-1682, gga-miR-1618-5p, and gga-miR-1684b-3p, targeted 44 DEGs
whose expression was downregulated (see Table S10 at https://doi.org/10.6084/m9
.figshare.16830736.v7). In addition, the BP functions of actin binding (P = 0.03) and
motor activity (P = 0.06) were enriched by targeted DEGs, including DNASE1, MYO3A,
CSRP3, and KIF18B.

Integration analysis of DNA methylation data with DEGs. Methylation of DNA in
both promoter and gene coding regions is associated with gene expression (14). To
identify potential functionally relevant DNA methylation changes, we integrated gene
expression data and DNA methylation profiles in HWS and LWS. A total of 938 differen-
tially methylated genes were selected to investigate concomitant changes in expres-
sion. Among the 327 DEGs, 16 were associated with changes in methylation (see
Table S15 at https://doi.org/10.6084/m9.figshare.16830736.v7). Of these, DRD4 expres-
sion was differentially downregulated in the HWS and hypermethylated in the region
of TTS. The exon of CSRP3 in HWS was hypermethylated and showed upregulated
expression. The methylation of 13 genes (FSTL4, SMAD1, EDNRB2, LOC769357, PRKAA2,
HHATL, IGF2BP1, ST6GALNAC2, LRRTM3, ZPBP2, CD8B, F7, and KIFC1) occurred in the
intron region. The DMR location for IGF2BP1 in LWS was involved in the CpG island,
and its distance to TSS was only 388 bp (Fig. 5A) with the expression of IGF2BP1 most
differentially downregulated (Fig. 5B).

The association between DEGs and intestinal microbiota in ceca. To measure the
associations between host and intestinal microbiota in the ceca, 19 upregulated and 19
downregulated DEGs in the HWS (FDR , 0.01, see Table S8 at https://doi.org/10.6084/m9
.figshare.16830736.v7) and cecal microbes annotated at each level were analyzed to-
gether to form a correlation network. The focus on the genus level showed 90 and 37
edges between cecal microbes and upregulated genes in HWS and LWS, respectively
(jrj.0.6, P, 0.01, Pearson method) (see Table S16 and S17 at https://doi.org/10.6084/m9
.figshare.16830736.v7). In the network of upregulated DEGs in HWS, Growth Arrest
Specific 2 Like 2 (GAS2L2) was connected to the Alkalibacter genus with the highest r
being 0.8 (P = 0.00003) and the degree of GAS2L2 and Alkalibacter in the network were
the major 4 and 9, respectively (Fig. 5C). Parabacteroides and Methanocorpusculum were
the nodes of genera with the top 1 and 2 degrees and were significantly more abundant
in HWS (Fig. 5C and Table 1). IGF2BP1 was connected to Veillonella (r = 0.65, P = 0.002),
Lactobacillus (r = 0.62, P = 0.004), and Methanocorpusculum (r = 0.61, P = 0.004) (Fig. 5C
and Table 1). In addition, the Lactobacillus salivarius species was positively correlated with
IGF2BP1 (r = 0.65, P = 0.002) (Fig. 5D). All these IGF2BP1-related microbes were highly
enriched in HWS (Table S5).

For the correlation of upregulated DEGs in LWS and cecal microbes, Collinsella was sig-
nificantly abundant and connected to upregulated ENSGALG00000011906. Anaerotruncus
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was the genus with the highest connected degree in all nodes, and the correlation of
Anaerotruncus and GFAP was the highest in the 74 pairs of genera and upregulated genes
(degree = 8, r = 0.73, P = 0.0003, see Table S17 at https://doi.org/10.6084/m9.figshare
.16830736.v7). Overall, these findings demonstrated different patterns for the microbiota
in HWS and LWS ceca. Moreover, several genes influenced the abundance of certain cecal
microbes.

DISCUSSION

The microbiota in the gastrointestinal tract have an important function in improv-
ing food absorption and boosting the immune system, thus influencing both host de-
velopment and health (15, 16). Recent studies reported that the chicken microbiome
varies in different intestinal segments (17–20). The most densely inhabited microbial
community within the chicken intestine was observed in the ceca, a pair of blind-
ended sacs that open at the junction between the small and large intestine (21). The
ceca has an essential role in nutrition via the production of short-chain fatty acids,
nitrogen recycling, and amino acid production, influencing both the health and devel-
opment of chickens (20, 22). In the present study, the structures and composition of in-
testinal microbiota distributed in the duodenum, jejunum, ileum, ceca, and colon from
HWS and LWS chickens were investigated. Observed were large differences in micro-
biota between samples obtained from the ceca and those from other intestinal seg-
ments. Alpha diversity analysis showed greater diversity and richness of cecal micro-
biota than in the duodenum, jejunum, ileum, ceca, and colon. In addition, we found
that while Bacteroides, Prevotella, Faecalibacterium, and Ruminococcus were the pre-
dominant genera in ceca, their presence was rarer in other intestinal segments. Similar
findings were reported in studies performed in commercial broilers (17) and layers (18,
20). Bacteroides spp. are recognized to degrade a wide range of ordinarily indigestible
dietary plant polysaccharides, such as amylose, amylopectin, and pullulan (23, 24), and
Ruminococcus is linked to polysaccharide degradation and utilization in chicken intes-
tines (17). Bacteroides and Faecalibacterium have been suggested to influence the sup-
pression of regulatory T cell expansion and the promotion of anti-inflammatory cyto-
kine production (25–27). These findings reveal roles that Bacteroides, Ruminococcus,
and Faecalibacterium have in the growth and health of chickens. These characteristics
infer that the ceca are an integral area for host-microbe interactions and coadaptation
research.

A diverse distribution of cecal microbiota was observed between lines of chickens
that had undergone long-term divergent selection for high and low body weight at
56 days of age. These lines, HWS and LWS, originated from a common founder popu-
lation and were fed common diets throughout. CAP analysis showed that the intesti-
nal microbiota were significantly influenced by the selection for high or low juvenile
body weight. Six genera (Faecalibacterium, Sporobacter, Oscillibacter, Subdoligranulum,
Hydrogenoanaerobacterium, and Butyricicoccus) from the Ruminococcaceae family and 2
genera (Dorea and Anaerosporobacter) from the Lachnospiraceae family were greater in
HWS than LWS. These bacteria possess abundant and diverse glycoside hydrolases (GH)
and carbohydrate-binding modules (CBM), which can decompose cellulose and hemicel-
lulose components of plant material that are indigestible by the host. These compounds
are then fermented and converted into short-chain fatty acids (SCFAs) (mainly butyrate,
acetate, and propionate) that can be absorbed and used for energy by the host (28). For
animals who prefer fiber diets, SCFAs are the important energy substrate for metabolic
energy production (29). High SCFA content produced by intestinal microbiota are
thought to have a key role in increasing the capacity of the host to utilize excess energy
from the diet, which can promote weight gain. This has been reported in the chickens,
piglets, rabbits, and calves (30–33). In addition, humans with high Prevotella-to-
Bacteroides ratios have lower body weight and less body fat than those with low
Prevotella-to-Bacteroides ratios (34, 35), indicating that the proportion of Bacteroides may
be associated with changes in body fat and muscle. In our study, Bacteroides were
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significantly more abundant in HWS than LWS, while the distribution of Prevotella was the
same in both lines. Taken together, these results showed that the selection for high or
low body weight dramatically altered the composition of microbiota in the intestine. In
essence, these altered microbes, through variation of microbial amplification or reduction
modifies the composition of the hologenome, which may contribute to the regulation of
the host’s growth. The functional analysis of the intestinal microbiota of HWS and LWS
provides additional support for this conclusion.

The TCA cycle is an important metabolic pathway that coordinates carbohydrate,
lipid, and protein metabolism. Its activity was enhanced in chickens with increased
weights of the abdominal fat pad (36), which supports the hypothesis that the path-
way is highly associated with fat content. In our study, the TCA cycle was the most
enriched pathway involved in the carbohydrate metabolism of HWS. Gluconeogenesis,
a metabolic pathway involved in the production of glucose from specific noncarbohy-
drate carbon substrates was greater in HWS than LWS. This is in accordance with the
observation that gluconeogenesis was more active in the intestinal microbial commun-
ities of rabbits with high finishing weight (33). Our results showed that cecal micro-
biota may have an important role for the host in extracting energy from its diet.
Therefore, the shifting of cecal microbes induced by artificial selection may functionally
contribute to differences in body weight.

In addition to its effect on the microbiota, artificial selection could directly affect
the evolution of the other component of the hologenome, the genome of the host.
The HWS and LWS lines that were generated by artificial selection from a common
founder population provided a model to explore the evolutionary mechanisms of the
hologenome. Previously, using the same chicken model, several studies were carried
out to identify the effect of selection on the host genome. Many regions of differentia-
tion between HWS and LWS were identified to contribute to body weight (37–41).
Rubin et al. reported a deletion located on the first exon of the gene SH3RF2 that was
fixed in the HWS chickens and occurred at a low frequency in the LWS chickens (37).
SH3RF2 expressed in the hypothalamus of LWS chickens, but not in that of HWS chick-
ens, resulted in a genetic defect in hypothalamic appetite regulation (37). In addition,
more recently, several adaptive selective sweeps of the host genome in response to
body weight selection were identified (39–41). With more detailed analyses of the
selective sweeps, a region located in the growth1 QTL was reported to be close to fixa-
tion in LWS but showed multiple haplotypes segregated in HWS. These findings dem-
onstrated that the host genome was adaptively altered during long-term divergent
selection for body weight. However, these known associated regions can only explain
part of the variation in body weight (41). Therefore, we studied the differential DNA
methylation, mRNA expression, and microRNA profiles in the ceca of HWS and LWS
and investigated the effect of the host epigenetic profile on the body weight under
long-term artificial selection.

Metabolites, such as SCFAs produced by the intestinal microbiota, induced epige-
netic alterations in the intestine of the host (42, 43). This was because the DNA methyl-
transferases were highly sensitive to the availability of nutrients that can be influenced
by the metabolic activities of the present microbial communities in the intestine (44). For
example, some of the major SCFAs, such as butyrate, can affect DNA methylation proc-
esses through inducing phosphorylation of MAPK1 (45, 46). In our study, bacteria that
are known for butyrate production (46), such as Faecalibacterium and Subdoligranulum,
were highly enriched in the intestine of HWS. This may be partly responsible for the
4,779 DMR throughout the HWS and LWS genomes. We speculate that epigenetic
modification is another way for microbes to interact with the host genome during
the evolution of the holobiont. However, more in-depth research is necessary to elu-
cidate the complex relationships between intestinal microbiota and host genome
methylation.

Additionally, in the cecal transcriptome analysis, four GO terms related to the func-
tions of cAMP were enriched by DEGs. cAMP, a second messenger involved in intestinal
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epithelial cell homeostasis (47), can regulate the transcription of genes involved in glu-
cose and lipid metabolism. Gluconeogenesis in the intestine is mediated by glucose-6-
phosphatase which is transcriptionally regulated by cAMP levels in the enterocytes
(48). Lipid metabolism in the intestine is also regulated by cAMP via the cAMP-respon-
sive element-binding protein H (48). Therefore, 5 DEGs, such as ADCY1 and DRD4,
involved in cAMP synthesis and metabolism may affect the functions of lipid metabo-
lism and gluconeogenesis in the ceca and indirectly influence the growth and develop-
ment of chickens. Here, the expression of KNG1, TNNC2, MYBPC3, CASQ2, MYL2, and
KCNB2 were greater in the ceca of HWS relative to LWS. These 6 genes have been
annotated to GO terms of muscle contraction-related functions that were significantly
enriched and, thus, suggest that the ceca of HWS and LWS may have influenced differ-
ent patterns of muscle contractions. This is because muscle contractions of the intes-
tine contribute to the coordinated digestion, absorption of food and nutrients, and,
thus, may partly be indirectly associated with the differences in body weight of HWS
and LWS.

In the present study, the expression of several DEGs of the ceca was significantly
associated with microbes that were differentially enriched in HWS and LWS. The shift-
ing of the genes and cecal microbes may have both contributed to the variation of
body weight. We observed that IGF2BP1 was most significantly upregulated in HWS.
IGF2BP1, a receptor of IGF2, is key in regulating the translation of IGF2 (49), which has
important roles in cell proliferation and differentiation, muscle development, and bone
growth (50). A greater expression of IGF2BP1 in ducks, caused by a genetic mutation,
increased body size by 15% and feed efficiency by 6% (51). IGF2BP1 has also been asso-
ciated with growth or fat deposition traits in chickens (52), goats (53), and mice (54).
Dwarfism and impaired intestine development have been demonstrated in IGF2BP1-
deficient mice (55). The deletion of IGF2BP1 in intestinal epithelial cells was shown to
compromise barrier function and ameliorate experimental colitis in mice, thus suggest-
ing a role for IGF2BP1 in maintaining intestinal homeostasis (56, 57). More recently,
Wang et al. confirmed the association of IGF2BP1 with chicken body weight by large-
scale genomic screening and functional studies (58). However, the way IGF2BP1 affects
the weight of the host is still poorly understood. In our study, the high expression of
IGF2BP1 in HWS may be regulated by both a DEM, gga-miR-2128 and a DMR located in
CpG island and whose distance to TSS of IGF2BP1 was only 388 bp. Correlation analyses
of IGF2BP1 expression and cecal microbes showed that IGF2BP1 was significantly asso-
ciated with microbes, such as Lactobacillus, more specifically, Lactobacillus salivarius,
which were highly abundant in HWS. As a growth promoter, Lactobacillus salivarius
additives could increase the size and weight of young animals, such as chickens (59,
60), mice (61), and pigs (62). Meat-type chickens fed a Lactobacillus salivarius mixture
isolated from their intestines increased populations of beneficial bacteria, such as
Lactobacillus and Bifidobacterium in the intestine and, thus, increased body weight
(59). Overall, results suggest that IGF2BP1 collaborated with these microbes to influ-
ence holobiont traits and support the theory that holobiont phenotypes are affected
by both the host and its associated intestinal microbiota.

Long-term divergent selection for 56-day body weight in chickens has not only
altered the composition of intestinal microbiota, but also modified host epigenetics,
genes, and microRNA profiles of the ceca. The structure of the cecal microbiome was
distinct from those of other segments of the GI tract. Functional analyses of cecal
microbiota revealed that pathways, such as carbohydrate and energy metabolism, dif-
fered significantly between the HWS and LWS lines, indicating an important role that
the ceca played during the 56 generations of divergent selection for body weight.
Furthermore, several cecal DEGs, such as IGF2BP1, were significantly positively corre-
lated with the abundance of cecal microbes, suggesting that IGF2BP1 mediated the
interaction between the host and its intestinal microbes. Overall, our findings demon-
strate that the host and its intestinal microbiome both contribute to the evolution of
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the holobiont and provide evidence to support that the intestinal microbiome cooper-
ates with the host for adaptation as a hologenome.

MATERIALS ANDMETHODS
Animals and sampling. All procedures were approved by the Virginia Tech Institution Animal Care

and Use Committees (IACUC 18-151). The chickens utilized in this experiment were from generation 56
of the Virginia high (HWS) and low (LWS) body weight lines. These lines were established in 1957 from a
common founder population obtained by crossing 7 partially inbred lines of White Plymouth Rock chick-
ens (63) (Fig. 1B). Since then, they have been subjected to divergent selection for high or low 56-day
body weight, respectively. After 56 generations of selection, the high and low weight lines differed
approximately 15-fold. The 56-day body weights (mean 6 SD) of HWS females and males were
1510 6 88 g and 1848 6 160 g, respectively. For LWS, the values (mean 6 SD) were 92 6 26 g for
females and 130 6 23 g for males. (Fig. 1B). At 245 days of age, 10 HWS and 10 LWS chickens were eu-
thanized by cervical dislocation, and the intestinal contents of the duodenum, jejunum, ileum, ceca, and
colon were collected and stored at 4°C with long-term storage at 270°C. In total, 85 high-quality micro-
bial genomic DNA samples (14 duodena, 11 jejuna, 20 ilea, 20 ceca, and 20 cola) were obtained from
these intestinal contents (Table S1). In addition, 20 cecal tissues collected from 10 HWS chickens and 10
LWS chickens were immediately flash-frozen in liquid nitrogen and stored at 270°C until further use for
DNA and RNA extractions. The husbandry conditions of sampled chickens and protocols of DNA and
RNA extraction are presented in Text S1.

Multiomics sequencing summary.We performed the 16S rRNA gene sequencing for the 85 intesti-
nal (duodenum, jejunum, ileum, ceca, and colon) microbiota samples (Table S1). Twenty microbial
genomic DNA samples from ceca were used to construct whole-genome shotgun sequencing libraries
(Nextera DNA Library Preparation kit, Illumina). The mRNA sequencing was performed for 20 cecal
mRNA samples using the Illumina Truseq RNA sequencing kit. In addition, 20 cecal RNA samples were
extracted for small RNA sequencing based on Illumina TruSeq Small RNA Sample Preparation protocol.
Genome-wide DNA methylation patterns for 20 cecal DNA samples were quantified using MBD protein
capture (MethylMiner kit, Invitrogen). The detailed protocols of the sequencing technology are provided
in Text S1.

Intestinal bacterial 16S rRNA data analysis. The 16S rRNA raw data were filtered as in our previous
study (64). Briefly, barcodes and sequencing primers were trimmed from sequencing reads. Trimmed
and assembled sequences were uploaded to the QIIME (v.1.9) (65) and MG-RAST (v.3.6) (66) pipelines for
further analysis. The trimmed sequence of each sample was compared to the Greengenes databases (v.
13.8) using the best hit classification option to classify the abundance in QIIME (v.1.9) (65) and MG-RAST
(v.3.6) (66), respectively. For QIIME, data on the OTU level were generated using the uclust script (http://
qiime.org/scripts/pick_otus.html), and then according to these OTUs, QIIME automatically generated
phylum to genus level data for the different intestinal segments and genotypes. To ensure an even sam-
pling depth, data were rarefied to 25,840 sequences per sample (the lowest read number in samples) for
the subsequent diversity analyses. Alpha diversity (Shannon, ACE, Simpson, and Chao1) was calculated
by mothur (v.1.30) (67). Beta diversity was analyzed using unweighted UniFrac distance and visualized
by Canonical analysis of principal coordinates (CAP) using the R package “BiodiversityR” (v.2.8-4, https://
cran.r-project.org/web/packages/BiodiversityR/index.html). Linear Discriminant Analysis (LDA) effect size
(LEfSe) (v.1.0) (68), an algorithm to robustly identify features that were statistically different among bio-
logical classes, was applied to identify microbes from different taxa between lines using the default pa-
rameters (LDA . 2, P , 0.05). Correlation analyses among different intestinal segments were conducted
in Excel using the Pearson method.

Microbial metagenome data analysis. After sequencing, a data cleaning process applied to each
sample removed low-quality and low-compositional-complexity reads. On average, 37.9 million reads
per sample were used in the analysis. Quality-filtered reads were submitted to MG-RAST (v.3.6) (66) and
compared to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (v.88.1) (69). We followed
the criteria of the ‘all annotation’ option for functional annotation with a maximum E value cutoff of
1025, a minimum percent identity cutoff of 90%, and a minimum alignment length cutoff of 20 amino
acids. Functional pathways, which had a relative abundance greater than 0.1%, for at least 5 samples,
were selected for further analysis. Normalization was performed based on the relative abundance of
each functional pathway within each sample. Differential analysis was calculated by STAMP (v.2.0) (70)
between HWS and LWS for normalized abundance data of each functional pathway using the two-side
Welch’s t test and false discovery rates (FDR) correction (FDR, 0.05). Taxonomic assignments at the spe-
cies level for the metagenomic data were carried out using Metaphlan2 (v.2.7.0) (71).

mRNA sequencing data analysis. To obtain clean data, adapter trimming and removal of low-qual-
ity reads (reads with ambiguous bases N and Q , 20) and poly (A/T) and short sequences (,50 bp)
were performed. The quality of filtered reads was then analyzed using FastQC (v. 0.11.4, http://www
.bioinformatics.babraham.ac.uk/projects/fastqc/). Then, each clean read was mapped to the Galgal4 ref-
erence genome (http://hgdownload.cse.ucsc.edu/goldenPath/galGal4/bigZips/) using TopHat2 (v. 2.1.0)
(72). To estimate the expression level of mapped genes, read counts of annotated unigenes were sum-
marized by HTSeq (v. 0.6.1) (73). The RPKM (reads per kb of exon model per million mapped reads) val-
ues were calculated based on the number of reads that mapped to each gene and the length of the
gene (74). The DEseq program (v.1.18.0, https://www.bioconductor.org/packages/3.0/bioc/html/DESeq
.html) was used to analyze differential expression genes (DEG), and those genes with P , 0.05 and .2-
fold change in value were considered significantly different. The Gene Ontology (GO) (http://www
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.geneontology.org/) and KEGG enrichment (http://www.genome.jp/kegg/) analyses were performed by
the Database for Annotation, Visualization, and Integrated Discovery (DAVID) (v.6.8) (75).

Small RNA sequencing data analysis. To obtain clean reads, the raw reads generated from small
RNA sequencing were processed by removing the low-quality sequences and trimming the adapters.
Then, clean reads, ranging from 15 to 35 bp, were used for further analysis. After identifying the unique
reads, each was mapped to Galgal4 reference genome using Bowtie (v. 22.1.0) (76) and BLAST (v.2.2.28,
https://blast.ncbi.nlm.nih.gov/Blast.cgi), and they were searched against the ncRNA database Rfam
(v.10.1, http://rfam.xfam.org/) to obtain the distribution of reads in the genome and ncRNA annotation.
The unique reads were first matched against the chicken miRNA database in miRbase (v. 20.0) (77) to
confirm known chicken miRNAs, then against the databases of other species in miRbase to identify those
miRNAs homologous to known miRNAs in other species. Then, the program mireap (v.0.2, http://
sourceforge.net/projects/mireap/) was used to predict potentially novel chicken miRNAs and their pre-
cursors. The differentially expressed miRNAs (DEM) were identified on the base of a fold change
either $ 2 or # 0.5 and P , 0.05 using the DEseq program (v.1.18.0). After we obtained the DEMs,
miRanda software (v.3.3a) (78) was used to predict the targets genes of DEMs. Then GO and KEGG analy-
ses of the target genes were performed using DAVID (v.6.8) (75).

Whole-genome methylation sequencing data analysis. After the raw data obtained from Illumina
sequencing were processed to filter out reads containing adapters, unknown or low-quality bases qual-
ity control was performed using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).
Clean reads were then aligned to the Galgal4 reference genome by Bowtie (v. 22.1.0) (76). The distribu-
tion of the aligned data in different components of the genome and chicken chromosomes were ana-
lyzed using RseQC (79) (v. 2.3.7). Then, the bam files containing unique aligned reads were performed to
detect peaks using R package MEDIPS (v.1.22, http://www.bioconductor.org/packages/release/bioc/
html/MEDIPS.html). The default parameters of MEDIPS were applied as follows: uniq = TRUE, extend =
300, shift = 0, window size = 100. To identify the differentially methylated regions (DMR), MEDIPS runs
an edgeR analysis (80), which is an empirical Bayes method. The FDR was used for multiple test correc-
tions. The threshold utilized was 0.1. Significant regions (FDR , 0.1) were used for downstream analysis.
After confirming genomic windows that showed a significant differential coverage between conditions,
the DMRs were annotated with HOMER software (v.4.10, http://homer.ucsd.edu/homer/). HOMER pro-
vided detailed information about the location of regions, including exon, intron, 5’UTR, 3’UTR, TSS, TTS,
and intergenic. Genes that overlapped with DMRs were identified.

Correlation analyses between microbiota and host. To measure relationships between DEGs and
cecal microbes, correlation analyses were carried out using the Pearson method provided by R packages
psych (v. 1.8.12, https://CRAN.R-project.org/package=psych). Test analyses for correlation coefficients
were performed by corr.test using the FDR method for multiple tests. The upregulated DEGs with
FDR , 0.01 in HWS and LWS were the inputs for the correlation analyses with all cecal microbes anno-
tated at each level. Those genes and microbes with jrj.0.5 and P , 0.01 were used to construct the net-
work. The method used for correlation analyses between DEMs and microbes was the same as that used
for DEGs.

Data and materials availability. The sequencing data of small RNA, mRNA, DNA methylation, and
metagenome analyzed during this study are available in the Sequence Read Archive (https://www.ncbi
.nlm.nih.gov/sra) with the accession codes PRJNA601115. The 16S sequences are publicly available in
MG-RAST (http://www.mg-rast.org/) under the project name “Chicken_HW_LW_16S”. All other relevant
data are available from the authors.
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