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Electroencephalogram (EEG) plays a crucial role in the study of working memory, which involves the complex coordination of
brain regions. In this research, we designed and conducted series of experiments of memory with various memory loads or
target forms and collected behavioral data as well as 32-lead EEG simultaneously. Combined with behavioral data analysis, we
segmented EEG into slices; then, we calculated phase-locking value (PLV) of Gamma rhythms between every two leads,
conducted binarization, constructed brain function network, and extracted three network characteristics of node degree, local
clustering coefficient, and betweenness centrality. Finally, we inputted these network characteristics of all leads into support
vector machines (SVM) for classification and obtained decent performances; i.e., all classification accuracies are greater than
0.78 on an independent test set. Particularly, PLV application was restricted to the narrow-band signals, and rare successful
application to EEG Gamma rhythm, defined as wide as 30-100Hz, had been reported. In order to address this limitation, we
adopted simulation on band-pass filtered noise with the same frequency band as Gamma to help determine the PLV binarizing
threshold. It turns out that network characteristics based on binarized PLV have the ability to distinguish the presence or
absence of memory, as well as the intensity of the mental workload at the moment of memory. This work sheds a light upon
phase-locking investigation between relatively wide-band signals, as well as memory research via EEG.

1. Introduction

Working memory (WM) [1] is a memory system that stores
and processes information for a short time. It plays a key
role in many complex cognitive tasks such as language com-
prehension, learning, and reasoning.

In addition to traditional psychoanalysis and behavioral
data analysis, the use of functional magnetic resonance
imaging (fMRI), electroencephalography, and other quantifi-
able techniques for working memory research has gradually
become the mainstream. Among them, electroencephalogra-
phy is more and more popular because it can capture dynam-
ics in memorizing activity time frame, which spans hundreds
of milliseconds to a few seconds, and it directly measures
neural electrical activities. Moreover, EEG provides critical
information from four dimensions, i.e., space, time, power,
and phase [2, 3].

Conventionally, EEG analysis includes time-domain
analysis, frequency-domain analysis, and time-frequency-
domain analysis. Time-domain methods extract features
directly from raw signals of EEG or a decomposed signal such
as empirical mode decomposition (EMD).Well-known time-
domain features (TDFs) include mean, variance, mode,
median, and kurtosis. For example, Koivisto et al. conducted
an ERP analysis on the EEG data and found that frontal
regions contributed to higher-level cognitive processes by
calculating the peak amplitude of the average waveform [4].
Frequency-domain analysis focuses on characteristics
extracted from power spectrum of EEG. Perlis et al. studied
the power spectrum of the EEG of insomnia patients and
confirmed that Beta/Gamma activity was increased in pri-
mary insomnia [5]. In research of young men’s working
memory, Guevara et al. reported that the EEG power of the
delta band was higher than the power of the Gamma band,
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and the right frontal area was more involved in the process-
ing of working memory [6]. Meltzer et al. found that the
memory loading effect of power spectral energy showed
different characteristics in different brain regions; for exam-
ple, Theta and Alpha wave energy increased mainly in the
front central region with a positive loading effect and
decreased in the occipital, dorsal frontal, and parietal lobes
with a negative loading effect [7]. Time-frequency analysis
combines time-domain with frequency-domain analysis by
sliding or scaling a time window. Schneider et al. used
time-frequency analysis named as event-related spectral per-
turbation to analyze EEG in working memory stage and
found that separate excitatory and inhibitory processes
underlay the deployment of attention on the level of working
memory representations [8].

In recent years, brain connectivity and brain network
analyses, which focus on coordinated functions of different
brain regions, have become more and more popular. As for
EEG, indices that measure relationship between signals col-
lected from different positions or leads are firstly extracted,
and then, connectivity or network attributes are further
investigated. The relationship measures vary from time-
domain linear correlation coefficient, frequency-domain
coherence, to nonlinear-domain phase synchronization
parameters. For example, Joudaki et al. experimented on
32 subjects, extracted functional networks of three different
sizes, and found that the network size should be considered
in any comparison of networks across studies [9]. Donner
and Nieuwenhuis have reported that postsynaptic potentials
and network connections evolved dynamically with positive
feedback over time during attention and learning, resulting
in “the rich getting richer” [10, 11].

The parameters in the time domain, frequency domain,
or time-frequency domain are all linear parameters and are
easily affected by signal amplitude, and the amplitude of
EEG is easily overwhelmed by interference due to its low
signal-to-noise ratios [2]. Whereas phase contains the non-
linear information of the signal and is independent of the
amplitude, therefore, it can provide an important supple-
ment [2]. Previous studies have shown that there is a wide-
spread phase-locking phenomenon in neural activities, and
phase-locking value (PLV), which measures phase locking,
has been successfully applied to LFP and spikes. For exam-
ple, based on the PLV difference between events, Gonugun-
tla and Kim presented a framework to find significant
functional network (SFN) corresponding to its event, then
applied it to the DEAP dataset, and obtained the SFNs asso-
ciated with emotions [12]. In this study, we adopted PLV to
measure the phase synchronization between two EEG series
from different leads.

Support vector machine (SVM) [13] is a machine learn-
ing model with nonlinear classification ability and has been
successfully applied to EEG classification in various scenes.
For example, Turnip et al. used SVM separate lying subjects
from the innocent one based on signal P300 [14, 15]. In this
work, we tried SVM for classification.

In this work, we designed and conducted series of exper-
iments concerning memory and collected behavioral data as
well as 32-lead EEG simultaneously. Combined with behav-

ioral data analysis, we segmented EEG to slices; then, we cal-
culated Gamma rhythm PLV between every two leads,
conducted binarization, constructed brain function network,
and extracted three network characteristics of node degree,
local clustering coefficient, and betweenness centrality.
Finally, we inputted these network characteristics of all leads
into SVMs for classification and obtained descent perfor-
mances. Specifically, considering that PLV was restricted to
single-frequency or narrow-band signal analysis [16, 17]
and rare successful application to EEG Gamma rhythm
had been reported, we adopted simulation on band-pass fil-
tered noise with the same frequency band as Gamma to help
determine the PLV binarizing threshold. It turns out that
network characteristics based on binarized PLV have the
ability to distinguish the presence or absence of memory,
as well as the intensity of the mental workload at the
moment of memory.

2. Method

2.1. The Phase-Locking Value. Given two simultaneously col-
lected signals of length N, x1ðtlÞ, and x2ðtlÞ (l = 1, 2,⋯,N),
corresponding instantaneous phase series φ1ðtlÞ and φ2ðtlÞ
are first calculated via Hilbert transformation [18]. Then,
PLV which was originally proposed by Lachaux et al.
between x1 and x2 is defined as [19]

PLV12 =
1
N

〠
N

l=1
exp j Δφ12 tlð Þð Þð Þ

�
�
�
�
�

�
�
�
�
�
, ð1Þ

where Δφ12ðtlÞ = φ1ðtlÞ − φ2ðtlÞ represents the instantaneous
phase difference between x1 and x2 and j represents imagi-
nary unit. PLV ranges between 0 and 1, in which 0 indicates
Δφ randomly distributed on a unity circle, i.e., non-phase
locking, and 1 indicates Δφ keeping constant, i.e., perfect
phase locking. However, PLV works well only for single-
frequency or narrow-band signals [17]. For signals with a
wide frequency band, the ability of PLV to detect phase lock
greatly deteriorates; that is, a higher PLV is not available
even when there does exist phase locking [19]. As a result,
the threshold to determine whether there is a phase locking
or not, i.e., a binary judgment, is difficult to define. In this
manuscript, by generating simulating series using filtered
noises, which are consistent with EEG in frequency, we ana-
lyzed the distributions of simulating series’ PLVs for differ-
ent cases and then determined the binarization threshold
based on them. In following experimental data analysis, we
would focus on the binary PLV, denoted as aij, in which i,
j represent different EEG lead labels and the values 0 and 1
indicate non-phase locking and phase locking, respectively.

2.2. Brain Network Characteristics. After the binary PLVs
were obtained between every two EEG leads, we constructed
the network, treating each scalp electrode as a node and each
nonzero aij as a link (or edge) between lead i and lead j.

We mainly investigated three network characteristics:
node degree, clustering coefficient, and betweenness cen-
trality [2, 9].

2 Computational and Mathematical Methods in Medicine



The degree of the ith node, denoted as Di, is defined as
[20]

Di =〠
j∈G

aij: ð2Þ

As defined, Di represents the total number of edges con-
necting the ith node with others in graph G, which embraces
all leads and thus measures the connectivity of the node i
and partly reflects the importance of the node in the
network.

Ci, the local clustering coefficient of node i, is defined as
[21–23]

Ci =
Ei

ki ki − 1ð Þ/2 , ð3Þ

in which Ei represents the number of edges among the
neighbors of node i and ki is the number of neighbors of
node i. Herein, neighbors of node i refer to those nodes
connecting directly with node i, regardless of the spatial dis-
tance. In fact, Ei gets to the minimum of 0, when there is no
connection among the neighbors, and reaches the maximum
of ðkiðki − 1ÞÞ/2, when all neighbors are connected with each
other, i.e., full-connected. Therefore, clustering coefficient Ci
depicts the actual edge ratio to potentially most edges in the
neighborhood, thus reflecting local connectivity. Ci ranges
between 0 and 1.

Betweenness centrality is an indicator of the centrality
size of nodes in the graph. In an undirected binary net-
work, the betweenness centrality of the ith node is defined
as [24, 25]

bi = 〠
m,n∈G,m≠n≠i

σmn ið Þ
σmn

, ð4Þ

where σmn is the number of shortest paths between node
m and node n and σmnðiÞ is the number of shortest paths
between node m and n that pass through node i. Between-
ness centrality also ranges from 0 to 1. The more times a
node acts as an “intermediary,” the greater its betweenness
centrality, which means that more information flows to
the node.

2.3. Classification. Various previous researches have demon-
strated the validity of SVM application to EEG [15, 25, 26].
Therefore, we adopted SVM to realize classifications in this
manuscript.

After obtaining aforementioned three network charac-
teristics for 32 electrodes, we input the 96-dimention vector
into a SVM with a RBF kernel for classification. Two crucial
hyperparameters, namely, the penalty factor C and the ker-
nel function parameter γ, were optimized by grid searching.
Model outputting is the classified label, the number of which
depends on the specific task, which will be described in
Section 5.2.

2.4. The Overall Flow Chart. The overall flow chart of our
method is shown in Figure 1.

3. Simulation

As aforementioned, for signals with wide frequency band, it
is difficult to obtain a low PLV even when there does exit
phase locking [17, 27]. In this manuscript, simulation was
used to resolve the problem, namely, to obtain the threshold
for PLV binarization. Without loss of generality, all simulat-
ing series in this manuscript, denoted as sðtÞ, were generated
by band-pass filtering normalized Gaussian white noise σðtÞ,
which has zero-mean and one-standard deviation. In order
to keep consistent with the subsequent experimental EEG
analysis, the sampling rate in simulation is set to 1KHz, and
the series length used to calculate the PLV is 1 s. Besides, the
selected frequency band depends on the EEG rhythm in fol-
lowing analysis. In this work, Gamma rhythm was concerned;
therefore, 30Hz-100Hz band-pass filtering was adopted.

Actually, there are alternative methods like constructing
surrogates by shuffling time series or shuffling phase infor-
mation of real EEG. We did not adopt the surrogate method
because thosemethods construct surrogate for every experimen-
tal data from every lead and thus are very time-consuming.
What is more, when we concern the phase information of sig-
nals, the meaning of conserving the same amplitude informa-
tion or the same power spectrum, which is the core of
aforementioned surrogate methods, is not that significant. In
fact, in our previous study, we found that the threshold
obtained via surrogate methods was almost the same as that
obtained via filtering noise method. Therefore, we choose the
filtering noise method in this manuscript. We believe that this

Preprocessing

Calculating PLV 

Binarization

Extracting network
characteristics

SVM classification

Class label

Raw signals

Figure 1: The overall flow chart of the method.

3Computational and Mathematical Methods in Medicine



method can be extended to other phase measures, and the most
important requisite is that the filtered noise simulating series
keep the same frequency band with the investigated signal.

Simulation 1. Cases of no phase locking.

x1ðtÞ and x2ðtÞ are, respectively, derived from s1 and s2,
which are filtered from two independent normalized Gaussian
white noises, that is,

x1 tð Þ = s1 tð Þ, ð5Þ

x2 tð Þ = s2 t − τð Þ, ð6Þ
in which τ represents time delay. Figure 2 represents two
instances of signal profiles and their corresponding phase
series in simulation 1 when τ = 0ms (Figure 2(a)), and τ =
100ms (Figure 2(b)), respectively. As shown in Figure 2,
although the oscillation frequencies are similar, maximums
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Figure 2: Two instances of signal profiles and corresponding phase series in simulation 1.
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of linear correlation functions between x1 and x2, as well as
between φ1 and φ2, are much less than 1, which means there
is no obvious phase locking between x1 and x2, whatever does
τ take. It is reasonable because x1 and x2 were derived from
two independent sources.

Simulation 2. Cases of phase locking.
x1ðtÞ and x2ðtÞ are derived from the same s, which is filtered

from Gaussian white noise, and x2ðtÞ is delayed by τ, that is,

x1 tð Þ = s tð Þ, ð7Þ

x2 tð Þ = s t − τð Þ: ð8Þ
Figure 3 presents two instances of simulation 2 in case of

τ = 0ms (a) and τ = 100ms (b). From both the waveform sim-
ilarity and the linear correlation function maximum 1 or close
to 1, we can see that there exits phase locking between x1 and
x2. That makes sense because x1 and x2 are actually generated
from the same source signal with a time delay.
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Figure 3: Two instances of signal profiles and corresponding phase series in simulation 2.
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In both simulation cases, τ varied from 0 to 500ms,
which is half of the series length, and PLVs between x1
and x2 were calculated for each τ. We independently
repeated 100 times for each τ in both simulation cases, and
the PLV statistics are listed in Table 1.

From Table 1, it can be seen that in simulation 1, when
the two signals originate from independent sources, i.e., no
phase locking, whatever the delay takes, the mean + SD of
PLV is below 0.16, and there is no significant difference
between different delays (two-sample t-test p > 0:05).

In simulation 2, when two signals originated from the
same source signal, i.e., existing phase locking, PLV is greatly
affected by the delay. To be specific, when τ = 0ms, PLV
exactly equals to 1, and it can be definitely differentiated
from PLV obtained in simulation 1 with the same τ. As
the delay increases, the PLV rapidly decreases, though, sta-
tistically significant difference between phase locking and
non-phase locking keeps until τ = 25ms (two-sample t-test
p < 0:01). When the delay reaches 50ms, PLV no longer
takes significant difference between phase locking and non-
phase locking (two-sample t-test p > 0:01). It shows that

for signals with wide frequency band, PLV detects phase lock
only when the delay is relatively short.

Then, we adopted the 95th percentage of PLV in simula-
tion 1, i.e., 0.179, as the threshold for PLV binarization, and
any PLV greater than this threshold will be considered phase
locking. The underlying premise is that, with the support of
simulation results, if PLV is greater than the threshold, there
is only less-than-0.05 probabilities that there is no phase
locking between the two signals of the same frequency band.

This method has a defect that it cannot identify phase
locking with longer delay, e.g., delay longer than 25ms in
Gamma frequency band. Nevertheless, it sheds a light to
phase-locking investigation between relatively wide-band
signals.

4. Experiments

4.1. Experiment Design. The experiment was designed to
investigate memory activities. Each subject sequentially
underwent seven experimental steps, which took roughly
an hour in total, as shown in Table 2.

Table 2: Experimental process.

Step Operator activities Subject activities
Rough
duration
(min)

(1) Information
Inform subjects of the general aim and rough

content of the experiment
Sign the consent and fill the questionnaire. 3

(2) Setup
EEG cap placement with gel infusion, acquisition

setup, and time calibration
Be seated. 20

(3) Rest baseline EEG monitoring and acquisition
Be seated in quiet and relaxed manner, with eyes

open.
2

(4) Control
instruction

Inform subjects of what they are expected to do in
the immediately following step

Understand the instruction and communicate, if
necessary, to avoid ambiguousness.

2

(5) Control
experiment

EEG monitoring and acquisition Act as instructed. 15

(6) Memory task
instruction

Inform subjects of what they are expected to do in
the immediately following step

Understand the instruction and communicate, if
necessary, to avoid ambiguousness.

2

7.Memory task
experiment

EEG monitoring and acquisition Act as instructed. 15

Table 1: PLV statistics of 100 independent experiments in simulation.

τ (ms)
PLV (mean ± SD)

Simulation 1: no phase lock
PLV (mean ± SD)

Simulation 2: phase lock
p value of two-sample t-test
between simulation 1 and 2

0 0:094 ± 0:049 1:000 ± 0:000 1:985 × 10−127

5 0:094 ± 0:043 0:729 ± 0:026 6:459 × 10−145

10 0:095 ± 0:047 0:338 ± 0:060 3:081 × 10−59

25 0:089 ± 0:048 0:155 ± 0:066 0.004

50 0:096 ± 0:045 0:098 ± 0:055 0.062

100 0:096 ± 0:049 0:101 ± 0:051 0.367

200 0:098 ± 0:049 0:096 ± 0:051 0.843

500 0:097 ± 0:054 0:089 ± 0:051 0.740
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In memory task experiment, we adopted the delayed
match paradigm [28, 29], in which a target was first pre-
sented for three seconds, namely, memorization block, and
then, after one-second gray screen with a cross at the center
inducing still sight fixation, namely, retention block, a stim-
ulus was presented for three seconds, i.e., match block. The
subject was required to memorize the first target, retrieve it

shortly to determine whether the stimulus was exactly the
same as the memorized target, and click the corresponding
option button, i.e., “yes” or “no,” as soon as the decision
was made [30]. A sequence of a memorization block, a
retention block, and a match block comprises a section,
and 16 successive sections with 2 s break between two adja-
cent comprise a trial. Therefore, a trial lasts for 142 s.

Trial-1

Trial-2

Trial-3

Trial-4

…

Time (s)

Time (s)

Time (s)

Time (s)

Time (s)

Memorization block
3 s

Retention block
1 s

Match block
3 s

Memorization block
3 s

Retention block
1 s

Match block
3 s

Memorization block
3 s

Retention block
1 s

Match block
3 s

Memorization block
3 s

Retention block
1 s

Match block
3 s

7 s 2 s 7 s 7 s2 s

Time (s)

Memorization block
3 s

Retention block
1 s

Match block
3 s

Time (s)

Memorization block

Time (s)

Memorization block
3 s

Retention block
1 s

Match block
3 s

…

Time (s)

Memorization block
3 s

Retention block
1 s

Match block
3 s

3 s
Retention block

1 s
Match block

3 s

Figure 4: Illustration of the memory task experiment paradigm. Every experiment consists 4 trials, each trial includes 16 sections, and each
section includes 3 blocks of 3 s memorization block, 1 s retention block, and 3 s match block sequentially. In trials 1-3, both the target and
the stimulus are colored digit series, with lengths 1, 2, and 3, respectively, corresponding to ascending memory loads. In trial 4, both targets
and stimulus are colored English characters, representing a different target modality.
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The entire memory task experiment consists of four tri-
als. In the same trial, the target and stimulus belong to the
same category, e.g., colored digit series or colored character
series, with fixed length. Furthermore, we modulate the
memory load with series length. That is, in trials 1-3, in
which both targets and stimulus were colored digit series,
the series lengths were 1, , and 3, respectively. We took the
assumption that the longer the series is, the heavier the
memory load is. In addition, in trial 4, we used a colored
English character as target as well as stimulus to investigate
the difference between different target modalities, i.e., digit
and character. The memory task experiment paradigm is
illustrated in Figure 4.

As we can see, we cannot simply compare memory task
experiment with rest condition to draw conclusion about
memory, because subjects accept visual stimulus and make
finger movement besides memorizing. Therefore, in order to
focus on the memorizing activity as purely as possible, we also
conducted the control experiment under the same paradigm
as aforementioned. The only difference is that in the control
experiment, the subject was not informed of the delayed
match task but only asked to randomly click one of the two
buttons, both with blank caption, every time the colored series
following the cross showed up. We deliberately arranged the
control experiment prior to memory task experiment, when
subjects had no idea about the specific memory task, in order
to get control states as pure as possible.

During experiments, both subjects’ click moments and
their choices (yes or no) were recorded by a background
program, and then, each click was labeled “valid” or “non-
valid”; therein, a valid click was defined as the click happen-
ing after the stimulus showed up and before it faded away.

4.2. EEG Acquisition. The experiment was approved by the
Ethics Committee of the Institutional Review Committee
of the School of Electronic Science and Engineering of Nan-
jing University. All subjects were informed of the purpose as
well as the content of the experiment and signed a consent.
All experiments were carried out in the morning, between
09:00 and 12:00 am.

19 healthy subjects were enrolled in the experiment,
including 18 male and 1 female with age of 23 ± 0:8 years
old (mean ± SD). All of them were undergraduates or grad-
uates; thus, they could understand the experiment instruc-
tion well. All subjects reported no drugs or alcohol taken
in the last 24 hours. All subjects claimed right-handed and
used their right hand to click the option button when neces-
sary. Except that, other motions were discouraged.

During the experiment, the subject was seated in front of
a 14′ monitor with a distance of approximate 40 cm, and
both the target and the stimulus are presented at the center
of the screen. All subjects reported clear sight with naked
eyes or glasses on.

The Neuracle’s 32-channel wireless EEG acquisition sys-
tem (Neuracle Corp.) was used for 32-lead synchronized
EEG acquisition. The electrode location conforms to the
international 10-20 system, as shown in Figure 5. Sampling
frequency was set 1000Hz, and the impedance kept below
5kΩ during the experiment.

4.3. EEG Preprocessing. The original signals were first 0.5-
100Hz band-pass filtered by “Basic FIR filter (new)”
(Hamming window sinc FIR) in EEGLAB [31–33]. Then,
the common mode interferences as well as artifacts were
removed based on independent component analysis (ICA)
[34]. In detail, we first adopted “run ICA” in EEGLAB [35],
which is based on infomax algorithm. Then, for each decom-
posed component, we investigated vector angle α (method
proposed by Li et al.) [36, 37] and kurtosis and removed
those components with jcos ðαÞj ≥ 0:9 or kurtosis greater
than 3. We also adopted amplitude threshold for spotting
outliers based on interquartile range. Subsequently, 30-
100Hz Gamma rhythms were extracted through a fourth-
order Butterworth filter with zeros ± 1. Following is segmen-
tation, in which 1 s durations immediately prior to each valid
clicking moment were extracted for following analysis. After
preprocessing, we obtained 1 s slices of EEG which accom-
pany the brain activity prior to finger clicking, and we
expected them to reveal memorization activities. Preprocess-
ing flow chart, as well as the EEG profile pre- and post-pre-
processing, is presented in Figure 6.

Both in control and memory experiments, there were
occasional missing clicks when the subject did not click
any button during the required period. For these occasions,
we not only left those missing clicks unsegmented but also
discarded their counterpart in control or memory experi-
ment of the same trial, considering the match demands in
following analysis. And then, for every trial, we pooled all
subjects together. The amount of valid EEG slices we finally
retained is shown in Table 3.

5. Results and Discussion

5.1. Behavioral Data Analysis. We mainly investigated two
behavioral indicators: memory accuracy (MA) and reaction
time (RT), wherein the memory accuracy is defined as the
percentage of correct choices made by the subject in each
trial. And the reaction time is obtained through subtracting
the stimulus moment from clicking moment.

We list the statistics of MA across 19 subjects in Table 4.
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It can be seen that for all trials, MAs in memorization
experiments are significantly higher than those in control,
which indicates that subjects indeed focused on memoriza-
tion tasks as required.

Then, we list the statistics of RT across 19 subjects in
Table 5. Note that visual targets in the control and memory
experiment were exactly the same; subject- and section-
matched RT variations from control to memory task, as well
as p values of t-tests for subject- and section-matched RT
variations, are listed in the last two columns of Table 5.

From Table 5, it can be seen that in trials 2 and 3, it took
significantly shorter time for subjects to act under control
conditions than under memorization ones, with t-test p
values being less than 0.01. It implies less mental effort of
subjects under control than memorization, as the experi-
ment was designed. Nevertheless, as for trial 1 and trial 4,
RTs under control were not significantly shorter. A potential
reason is the start or switch effect; that is, trial 1 was the very
beginning of all behavioral experiments, when subjects were

Table 3: The amount of valid EEG slices in each trial.

Control Memory experiment Row total

Trial 1 286 286 572

Trial 2 287 287 574

Trial 3 285 285 570

Trial 4 288 288 576

Column total 1146 1146 2292
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not yet skilled enough with what they were expected to do;
thus, it took time to get familiar, and in trial 4, we converted
the visual target from digits to letters, which also demanded
the subject’s adaption.

We also conducted two-sample t-test of RTs between
every two trials and listed p values in Table 6.

It can be seen that under control, except for trial 1 vs. 2
and 3, there is no significant difference in RT (p > 0:01), and
even the significant differences between trial 1 vs. 2 and trial
1 vs. 3 might result mainly from the start effect aforemen-
tioned. As for memorization condition, there is no signifi-
cant difference in RT between different trials observed
(p > 0:01). It implies that, although the memory load or tar-
get form varied, RT was not affected significantly, at least
under temporary precision of this research. In fact, under
current experimental paradigm, subjects’ activities of recol-
lecting, decision, and finger movement cannot be clearly
separated in temporal axis that is a potential reason for sig-
nificant difference absence in Table 6.

5.2. EEG Classification Results. For each temporary slice,
treating each channel (electrode or lead) in 32 channels as
a separate node, we calculated the PLV between every two
channels. Then, based on the threshold setup in simulation,

we conducted the binarization, resulting in 0 representing no
phase locking and 1 representing phase locking. After that,
brain functional networks were constructed and the node
degree, clustering coefficient, and betweenness centrality
for each lead were extracted; thus, we obtained 96 features
for each EEG slice. Subsequently, they were used as a 96-
dimention inputting vector and inputted into the SVM for
classification. We took four classification tasks:

Classification task 1
After pooling all trials together, we tried to distinguish

memorization from control, regardless of different memory
loads or target forms. As shown in Table 3, sample size in
this task is 2292, with one-half memorization and one-half
control.

Classification task 2
Focusing on trial 3, in which the memory load was

designed heaviest and differences between control and mem-
orization experiment were expected greatest, we tried two-
category classification, i.e., memorization or control. As
shown in Table 3, sample size in this task is 570, including
285 for each category.

Classification task 3
For memorization experiments in trials 1 and 4, we tried

to discern difference between different target forms, which
was still a two-category classification, i.e., digit target or
character one. As shown from Table 3, sample size in this

Table 4: Statistics of MA across 19 subjects.

MA under control condition
(mean ± SD)

MA under memorization
(mean ± SD)

Subject-matched MA variation
(memory-control) (mean ± SD)

p of t-test for subject-matched
MA variations

Trial 1 0:536 ± 0:138 0:984 ± 0:027 0:448 ± 0:135 2:74 × 10−7

Trial 2 0:552 ± 0:137 0:932 ± 0:069 0:380 ± 0:126 7:44 × 10−7

Trial 3 0:573 ± 0:127 0:984 ± 0:027 0:411 ± 0:143 1:19 × 10−6

Trial 4 0:563 ± 0:165 1:000 ± 0:000 0:438 ± 0:165 2:68 × 10−6

Table 5: Statistics of RT across 19 subjects.

RT under
control condition
(mean ± SD) (ms)

RT under
memorization condition

(mean ± SD) (ms)

Subject- and section-matched
RT variation

(mean ± SD) (ms)

p of one-sample t-test
for subject- and section-matched

RT variations

Trial 1 687:5 ± 689:0 692:7 ± 695:5 5:200 ± 904:3 0.937

Trial 2 484:4 ± 661:0 692:7 ± 563:0 208:3 ± 720:5 9:180 × 10−5

Trial 3 411:5 ± 663:3 828:1 ± 893:6 416:6 ± 868:0 3:280 × 10−10

Trial 4 531:3 ± 816:0 661:4 ± 641:4 130:2 ± 871:3 0.040

Table 6: p values of two-sample t-test of RTs between every two
trials.

Control Memorization

Trial 1 vs. 2 0.003 1.000

Trial 1 vs. 3 8:000 × 10−5 0.099

Trial 1 vs. 4 0.044 0.648

Trial 2 vs. 3 0.283 0.077

Trial 2 vs. 4 0.538 0.613

Trial 3 vs. 4 0.116 0.037

Table 7: Performance evaluations for two-category classification of
tasks 1, 2, and 3.

Task c γ
Accuracy
in test set

Precision
in test set

Recall in
test set

AUC_ROC
in test set

1 5 1 0.782 0.788 0.782 0.857

2 50 1 0.830 0.798 0.864 0.910

3 5 0.5 0.895 0.870 0.904 0.946
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task is 574, including 286 digit-target cases and 288 letter-
target cases, respectively.

Classification task 4
For memorization experiments in trials 1, 2, and 3, in

which the same kind of target forms was represented, i.e.,
colored digit series, we tried three-category classification to
distinguish different memory loads. As drawn from
Table 3, sample size in this task is 858, specifically 286,
287, and 285 for light, medium, and heavy memory load,
respectively.

For all four classification tasks, we first pooled all slices
from all subjects together, randomly shuffled them, and then
randomly split them into training set and testing set accord-
ing to ratio 7 : 3. Subsequently, we trained our model on
training set with tenfold cross-validation. Grid-searching
was adopted in tenfold cross-validation in training to help
determine penalty factor C and kernel function parameter
γ. It turned out that best parameter set varied from task to
task. Then, we applied the obtained best models to corre-
sponding test sets. Performance evaluations [38, 39] for tasks
1, 2, and 3 are listed in Table 7, and those for task 4 are listed
in Table 8.

From Tables 7 and 8, it can be seen that our models
achieve satisfactory performance in general. Specifically,
the classification accuracy in task 1 is the lowest while that
in task 3 is the highest. Considering that in task 1, we
included all four trials with no regard of memory loads or
target forms, it is quite reasonable that the complex data-
comprising would complicate the classification. On the con-
trary, as for task 2 as well as 3, when datasets comprise fewer
variable factors, the model works better.

It is also inspiring that the model has a decent perfor-
mance when distinguishing different memory loads. In BCI
or neural feedback, quantification of brain effort is really
important, although it is difficult. Our model provides a
promising solution to brain effort quantification.

5.3. Most Important Characteristic Visualization and
Interpretation.We then investigated the permutation impor-
tance [41] in SVM of 96 characteristics and found that their
distribution is significantly different from a uniform or nor-
malization distribution (p of KS tests far less than 0.01), and
certain characteristics that ranked within top 10 are far away
from the rest. It implies that these characteristics are much
more crucial than the other in classification. It is interesting
that almost all most important characteristics are node
degrees. We infer that the small-world-network traits, repre-

sented by local clustering coefficient and betweenness cen-
trality, do not dominate the difference between
memorization and control, neither among different memory
loads or target forms, considering that all features input into
SVM have been normalized. In order to get a visualization,
in Figure 7, we presented the topographic maps of differ-
ences of these most important characteristics (a) between
control and memorization under memory load 3, (b)
between memorizing English character and memorizing
digit, and (c) between memory load 1 and load 3, respec-
tively, with exaggerating the circle size of the node and color
representing the difference intensity, in more detail.

For data in task 2, we calculated variations from control
to memory with the heaviest memory load for each matched
section, i.e., subtracting values under control from values
under memorization of exactly the same visual presentation.
Then, we took the arrhythmic means across the dataset and
mapped them to colors in the circle representing the lead/
node location, resulting in Figure 7(a).

For data in task 3, we calculated difference of the most
important node degrees between trial 1 (digit target) and
trial 4 (English character target), i.e., subtracting group-
average under trial 1 from that under trial 4. Then, we
mapped them to colors in the circle representing the lead/
node location, resulting in Figure 7(b).

For data in task 4, we also present difference between dif-
ferent memory loads in Figure 7(c); that is, we subtract
group average of the most important node degree under
memory load 1 from that under load 3; then, we mapped
them to colors in the corresponding circle.

We did not visualize task 1 because it is hard to interpret
considering that in task 1, we mixed together different vari-
ables, i.e., memory targets as well as memory loads.

From Figure 7, we find some interesting and meaningful
phenomenon.

Under the heaviest memory load with digit target form,
node degrees of Cz and F8 are most obviously enhanced
when memorization compared with the control stage, and
node degrees of FP1 and F7 are most obviously weakened.
Considering that Cz has been widely applied to attention
feedback/training to track attention level in real time [42],
it is reasonable that Cz functions more actively in memory
than in control, resulting in node degree of Cz increasing.
In addition, according to Okamoto and colleague’s work
on correlation between the international 10–20 system and
Brodmann Area (BA) [43]; FP1, F7, and F8 correspond to
BA9 and BA10, which are believed responsible for working

Table 8: Performance evaluations for three-category classification of task 4.

Task C γ Indicator type Accuracy in test set Precision in test set Recall in test set AUC_ROC in test set

4 50 0.5

class0

0.808

0.828 0.750 0.903

class1 0.772 0.830 0.926

class2 0.825 0.855 0.945

Micro∗ 0.808 0.808 0.923

Macro∗∗ 0.808 0.812 0.925
∗Micro evaluators are globally calculated by counting the total true positives, false negatives, and false positives. ∗∗Macro evaluators are directly obtained by
unweighted averaging metrics from all classes [40].
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memory, attention, and task management and planning [44,
45]. Therefore, topography (Figure 7(a)) shows consistency
with the underlying brain function during memory task in
certain degrees. As to the opposite variation between F7
and F8, we speculate that it might result from the ipsilateral
increment and the contralateral decrement, since all subjects
reported right-handed.

When comparing character memorization with digit
memorization (Figure 7(b)), the node degree enhancement
in T7 is most impressive. It is interesting that T7 corre-
sponds most to BA 21 [43], which is in charge of semantic
memory processing and language processing besides visual

perception [44, 45]. Therefore, it partly supports that the
brain does process character and digit in different ways
and treat character as language even there is only one
character.

As to variation from the lightest memory load to the
heaviest with the same target form of digit (Figure 7(c)),
node degree increments of T8, P8, CP6, and C4 combined
with decrement of F7 are most obvious. Corresponding to
T8, P8, CP6, and C4 are BA 19-22, as well as BA39 [43],
in which BA19-22 are related with visual perception, pro-
cessing, and memory [44, 45]. It is worth noting that
BA39, which only resides in the right hemisphere, is believed
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Figure 7: Three representative topographic maps of differences between two states for node degrees ranking the most important in
permutation importance. (a) Difference between control and memorization under memory load 3. (b) Difference between memorizing
English character and memorizing digit. (c) Difference between memorization under memory load 3 and under load 1. Circle sizes of
these most important nodes are exaggerated for clear sight. Warm color represents increment, while cool color represents decrement.

14 Computational and Mathematical Methods in Medicine



responsible for number processing. We infer that the longer
the digit series length is, the more active the BA39 function
is, which is represented by the higher node degree.

Nevertheless, since there are only 19 subjects and the
memory task design needs further improvement, e.g., differ-
ence between adjacent memory loads should be designed
greater, more experiments are required for further uncover-
ing the neural mechanism of memory.

6. Conclusion

In this work, we designed and conducted series of experi-
ments concerning memory and collected behavioral data as
well as 32-lead EEG signals simultaneously. Combined with
behavioral data analysis, we segmented EEG signals into
slices; then, we calculated Gamma rhythm PLV between
every two leads, conducted binarization, constructed brain
function network, and extracted three network characteris-
tics of node degree, local clustering coefficient, and between-
ness centrality. Subsequently, we inputted these network
characteristics of all leads into SVMs for classification and
obtained decent performances. Based on the result, we
believe that network characteristics based on binarized
PLV have the ability to distinguish the presence or absence
of memory, as well as the intensity of the mental workload
at the moment of memory. Finally, we tried visualizing the
difference of those characteristics ranking top in SVM per-
mutation importance for three representative contrasts and
obtained intuitive topographic maps. The obtained topo-
graphic maps provide information that is consistent with
neurophysiology in certain degrees.

It is worth noting that PLV was not suitable for wide-
band signals, which is the case for Gamma rhythm. In order
to resolve this problem, we proposed using filtered noise of
the same frequency band with Gamma rhythm as simulating
series to obtain the binarization threshold. This method can
sensitively detect phase locking with temporary delay no
longer than 25ms. However, it is also the limitation of the
method.
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