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Organic nitrogen uptake is a 
significant contributor to nitrogen 
economy of subtropical epiphytic 
bryophytes
Liang Song1,*, Hua-Zheng Lu1,2,*, Xing-Liang Xu3, Su Li1, Xian-Meng Shi1,2, Xi Chen1,2, Yi Wu1,2, 
Jun-Biao Huang1,2, Quan Chen1,2, Shuai Liu1,2, Chuan-Sheng Wu1,2,4 & Wen-Yao Liu1

Without any root contact with the soil, epiphytic bryophytes must experience and explore poor, patchy, 
and heterogeneous habitats; while, the nitrogen (N) uptake and use strategies of these organisms 
remain uncharacterized, which obscures their roles in the N cycle. To investigate the N sources, N 
preferences, and responses to enhanced N deposition in epiphytic bryophytes, we carried out an in situ 
manipulation experiment via the 15N labelling technique in an Asian cloud forest. Epiphytic bryophytes 
obtained more N from air deposition than from the bark, but the contribution of N from the bark was 
non-negligible. Glycine accounted for 28.4% to 44.5% of the total N in bryophyte tissue, which implies 
that organic N might serve as an important N source. Increased N deposition increased the total N 
uptake, but did not alter the N preference of the epiphytic bryophytes. This study provides sound 
evidence that epiphytic bryophytes could take up N from the bark and wet deposition in both organic 
and inorganic N forms. It is thus important to consider organic N and bark N sources, which were 
usually neglected, when estimating the role of epiphytic bryophytes in N cycling and the impacts of N 
deposition on epiphytic bryophytes in cloud forests.

Bryophytes are the earliest land plants1–3, they have experienced nearly 450 million years of evolution, and they 
lack the supracellular transport systems of vascular plants4,5. In total, over 20,000 bryophyte species have been 
recorded worldwide, making them the second most diverse group of plants6. Bryophytes occur in many ecosys-
tems, from low to high latitudes and altitudes, and generally dominate montane, boreal, and arctic ecosystems 
where they can strongly influence the carbon and nitrogen (N) cycles7–9. Unlike vascular plants, bryophytes lack a 
cuticle barrier and there is the existence of large cationic exchange properties within the cell walls. They can there-
fore take up water and nutrients over the entire plant surface9,10. Thus, these organisms often serve as effective 
traps for environmental nutrients, such as N, which makes them very sensitive to atmospheric N deposition, and 
in recent years they have been proposed to be good bio-indicators for N pollution9,11,12. Bryophytes can also regu-
late the ecosystem N dynamic through biological N2 fixation by forming facultative symbioses with diazotrophs, 
such as Nostoc spp.7,13,14. However, the details of the N preferences and the N sources of bryophytes have been less 
of a concern, and they remain uncharacterized in natural ecosystems15, which prevents a proper evaluation of 
their roles in the N cycle and a reasonable prediction of their fates in a changing world.

Most higher plants primarily derive N from the soil16. In contrast, bryophytes lack roots and developed vascu-
lar systems, which is thought to limit their access to available nutrients from substrata and affect N transport to 
the shoots. Previous studies have suggested that bryophytes obtain most of their nutrients from the atmospheric 
deposition and throughfall17,18 and atmospheric N2 fixation through epiphytic cyanobacteria7,19; however, this 
is under debate because recent evidence suggests that bryophytes may use a certain amount of N from their 
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substrata15,20,21. For example, Ayres, et al.21 reported that some bryophyte species can obtain N directly from the 
soil. In addition to terrestrial species, many bryophytes grow on other plants as epiphytes in the canopy habitats 
in montane and subalpine forests8,22,23. The canopy habitats are usually considered to be harsh, with a variable and 
sporadic nutrient input, a limited storage capacity for available water and nutrients, and low physical stability, 
etc.24,25. Accordingly, epiphytic bryophytes must experience and explore poor, patchy, and heterogeneous environ-
ments. It remains unknown where and how these organisms obtain nutrients without root contact with the soil.

The N preferences of epiphytic bryophytes remain uncharacterized. The preferences for ammonium (NH4
+) 

or amino acids over nitrate (NO3
−) have been observed in vascular plants when different N forms are supplied in 

equal doses26,27. Some researchers have suggested that bryophytes may not have a preference in N uptake because 
nutrients can enter moss tissues easily through cation exchange and the proton (H+) pump (e.g., NH4

+ and amino 
acids) and through cotransport (e.g., NO3

−) for positively charged ions10,15,28. Other researchers have suggested 
that the uptake of NH4

+ should be higher than that of NO3
−15 29. Current knowledge of N cycling in bryophytes and 

the effects of N deposition on bryophytes largely relates to inorganic N30–32. The ability of bryophytes, especially the 
epiphytic ones, to use organic N as a N source and the ecological significance of this has been largely neglected in 
past studies, although the preference of amino acids has been reported in several terrestrial bryophytes33,34.

Anthropogenic N deposition has been increasing globally since the 19th century, which has triggered major 
changes in the dynamics of carbon (C) and N, as well as floral diversity in terrestrial ecosystems35–37. Increasing 
concern has been focused on the effects of enhanced N deposition on bryophytes, which were suggested to be 
sensitive to N pollution11,18,38. A previous study indicated that species richness and the cover of the epiphytic bry-
ophyte community has significantly decreased because of increased N input. The growth and vitality of the inves-
tigated species have declined in locations with high N loads11. However, we still do not know the potential impacts 
of increased N deposition on the total N uptake and the N preference of epiphytic bryophytes. For example, do 
bryophytes absorb more N in response to increased N deposition, as has been suggested in some studies39,40? 
Do bryophytes shift their N preference to increased N deposition when N is much more easily obtained? This 
information may provide possible explanations for the detrimental effects of the high N loads mentioned above.

Due to their particular biological nature (no cuticle barrier, lacking roots and developed vascular systems, and 
growing on bark, etc.) and special habitats (poor, patchy, and heterogeneous in N supply), epiphytic bryophytes 
are likely to have different N uptake and use strategies under natural conditions and under increasing atmos-
pheric N deposition. Epiphytic bryophytes usually dominate the tree trunks and branches in montane forests on 
moist, undisturbed sites8,41. For example, the subtropical montane cloud forest located in the Ailao Mountain 
National Nature Reserve of Southwest China, which is generally characterized by persistent and frequent cloud 
cover at the canopy level, is especially rich in epiphytic bryophytes42. In total, 176 epiphytic bryophyte species 
have been recorded (accounting for ~30% of the total epiphytes in the study region)41 and the total biomass of the 
epiphytic bryophytes is 6.7 tons per hectare (accounting for ~63% of the total epiphytes in the study region)41,43. 
A multifactor in situ manipulation experiment was carried out via the 15N labelling technique in three coex-
isting and common epiphytic bryophyte species in the subtropical cloud forest. The main objectives were to:  
1) Determine whether epiphytic bryophytes can take up N from tree bark or bark surface; 2) Confirm the capacity 
of epiphytic bryophytes to absorb organic N and quantify its amount in the total N economy of the bryophytes; 
3) Address the potential impacts of increased N deposition on the N uptake dynamics of epiphytic bryophytes.

Results and Discussion
Direct uptake of N from bark. Using a 15N labelling approach, we confirmed that epiphytic bryophytes 
indeed relied more on N from the air than from the bark of their hosts, but the contribution of the N from the 
bark should not be neglected (Tables 1 and 2; Fig. 1). Cryptogams, such as bryophytes, which can absorb water 

DF MS F-value p-value

Species (S) 2 134.85 5.676 0.006

N sources (Ns) 1 1648.107 69.371 < 0.001

N forms (Nf) 2 463.654 19.516 < 0.001

S ×  Ns 2 72.625 3.057 0.055

S ×  Nf 4 29.531 1.243 0.304

Ns ×  Nf 2 19.09 0.804 0.453

S ×  Ns ×  Nf 4 56.872 2.394 0.062

Species (S) 2 0.262 2.309 0.106

N levels (Nl) 2 42.254 371.933 < 0.001

N forms (Nf) 2 4.805 42.294 < 0.001

S ×  Nl 4 0.137 1.209 0.314

S ×  Nf 4 0.274 2.41 0.056

Nl ×  Nf 4 0.633 5.574 0.001

S ×  Nl ×  Nf 8 0.411 3.622 0.001

Table 1.  Results from an ANOVA analysis evaluating the effect of species, nitrogen (N) sources, N forms, 
N levels, and their interactive effects on N uptake rates during treatment periods. Italics indicates p < 0.05. 
DF refers to degree of freedom and MS refers to mean square.
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directly through their surfaces, have been traditionally suggested to be largely independent of their substrate and 
were thought to absorb N mostly from precipitations and biological N fixation19,44 as well as the relocation of 
nutrients from dead moss tissue45. It is surprising that epiphytic bryophytes could use the bark N because bryo-
phytes possess rhizoids rather than roots, which reach only a few cm into the bark surface. However, the recovery 
of the label in the bryophyte tissue (Fig. S1) does not necessarily reflect active uptake by the bryophyte, since the 
added N could have reached the bryophyte via passive diffusion along the bryophyte shoots. Endophytic fungi 
could have retained the added label and get some amino N mineralization and uptake as NH4

+. It is also possible 
that not all bacteria have been killed by the ampicillin once it was injected into the bark. Nevertheless, the 15N 
enrichment in the bryophyte shoots suggest that the epiphytic bryophytes can acquire N from the bark and trans-
locate it to their shoots via various pathways, e.g. passive diffusion, endophytic fungi, bacteria. Therefore, this still 
need further investigations in the future.

During the injection procedure, we observed a small amount of leakage of the solution that had been injected 
into the bark. This was probably due to the limited water-holding capacity of the bark during the injection pro-
cess. A spot of the leaked solution may flow directly onto the bryophyte shoots, and thus may have been taken 
up at that point, which obscure the interpretation of our results. Nevertheless, the proportion of 15N recovered in 
the trunk-dwelling bryophyte P. assamica after 24 h incubation was 3.2% for NO3

−, 6.4% for NH4
+, and 5.4% for 

glycine, respectively (Fig. S1). Similar results were found in the other two species, H. flabellatum and H. scalpelifo-
lium (Fig. S1). Although lower than the air deposition counterparts (Fig. S1), the proportion of 15N recovered in 
the three bryophyte species through bark injection was comparable with previously reported data on the recovery 
from soil by the Antarctic moss Sanionia uncinata (2% for alanine and 4% for NH4

+)46. Thus, the fact that a small 
amount of liquid leaked out of the bark may not significantly impact the conclusion that epiphytic bryophytes can 
take up N from bark.

Yet it has been demonstrated that bryophytes can take up N from bark when it is added, but is there actually 
a significant amount of available N in bark for bryophytes to take up? The average total N concentration in barks 
of the three dominant host species, i.e. Lithocarpus xylocarpus, L. hancei, and Castanopsis wattii are 7.85 ±  0.61, 
8.92 ±  1.33, 8.52 ±  0.49 g kg−1, respectively, which are higher than the average total N concentration in the sur-
face soil (0–20 cm: 6.53 ±  0.83 g kg−1) (Song et al. unpublished data). Mean concentrations of total N, NH4

+–N, 
and NO3

−–N in the stemflow in the study region are 2.39 ±  1.11, 1.14 ±  0.50, and 0.42 ±  0.21 mg l−1, respectively, 
which are significantly higher than that in the precipitation (0.49 ±  0.14, 0.11 ±  0.05, 0.04 ±  0.01 mg l−1)47. The 
above data indicate that there is actually a significant amount of available N in bark for epiphytic bryophytes to 
take up, which is comparable to N availability from atmospheric deposition and other substrates in the subtrop-
ical cloud forest.

Field investigations have indicated that bryophytes are the dominant epiphytic plants in this ecosystem, as 
they account for approximately 63% of the total biomass, which is more than any other epiphytic vegetation type 
(orchids, ferns, and lichens, etc.)41. This indicates that epiphytic bryophytes may be significant competitors for N 
in the stemflow and throughfall, which could have potential consequences for the plant community structure and 
nutrient cycling at the ecosystem level47,48. Since all three bryophyte species included in this study have the capac-
ity to absorb the available N from the bark, according to the δ 15N signals of the shoots (Fig. 1), this uptake may be 
common among epiphytic bryophyte species in general. Increasing evidence indicates that both the substratum 
and the atmosphere are important mineral sources for bryophytes, even in ‘feather mosses’, which have poor 
soil-moss contact46,49. Recently, Liu, et al.15 estimated that soil N accounted for approximately 40% of the total N 
in terrestrial bryophytes. If N absorption from bark is common among epiphytic bryophytes, this could partially 
explain their widespread distribution and importance in many montane and moist ecosystems. If this is the case, 
the N cycle in the studied forest ecosystem should be modified.

Organic N as important component of N input. Bryophytes have the ability to absorb organic N besides 
mineralized, inorganic N (NH4

+ and NO3
−). In this study, the contribution of organic N (glycine) ranged between 

28.4% and 44.5% of the total N uptake, which was comparable with NH4
+, but significantly higher than NO3

− 
(Tables 1 and 2; Fig. 2). This was probably due to the greater cation-exchange capacity than the anion-exchange 
capacity of the cell walls29,50. No significant differences were detected for the acquisition of different N forms 

Species

Low N addition (air) Medium N addition (air) High N addition (air) High N addition (bark)

NO3
− NH4

+ Glycine NO3
− NH4

+ Glycine NO3
− NH4

+ Glycine NO3
− NH4

+ Glycine

Plagiochila assamica
25.3 ±  3.3 36.5 ±  0.6 38.2 ±  3.0 26.6 ±  5.9 41.3 ±  3.9 32.1 ±  2.4 23.1 ±  2.2 43.7 ±  4.8 33.2 ±  3.2 21.1 ±  5.0 40.3 ±  4.6 38.6 ±  6.4

Aa Ba Ba Aa Ba ABa Aa Ba ABa A B B

Homaliodendron 
flabellatum

21.0 ±  2.7 39.7 ±  2.9 39.3 ±  5.4 27.7 ±  4.6 27.7 ±  1.7 44.5 ±  3.6 21.2 ±  4.3 50.4 ±  5.0 28.4 ±  4.1 27.7 ±  6.9 40.0 ±  8.0 32.3 ±  5.1

Aa Bab Bab Aa Ab Ba Aa Ba Ab A A A

Homaliodendron 
scalpellifolium

23.1 ±  3.2 40.6 ±  3.1 36.3 ±  4.3 23.3 ±  3.1 39.1 ±  5.5 37.5 ±  6.4 20.0 ±  3.2 31.5 ±  4.4 48.5 ±  7.5 20.5 ±  2.5 41.4 ±  6.0 38.1 ±  3.6

Aa Ba Ba Aa Aa Aa Aa ABa Ba A B B

Table 2.  Percentages of nitrogen (N) absorbed in forms of NO3
−, NH4

+, and glycine by three bryophyte 
species under air deposition and bark injection at low, medium, and high N addition levels. Means ±  SE 
are presented (n =  4). Capital letters after values indicate significant differences at 0.05 error probability levels 
among different labelled-N forms under same N levels, while lowercase letters indicate significant differences 
among different N levels under same labelled-N forms.
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between air deposition and bark injection for all three epiphytic bryophyte species (Table 2), which demonstrated 
that these organisms do not shift their N preference from air to bark N sources. Our study indicated that amino 
acids, a small but important organic N component, as well as NH4

+–N and NO3
−–N can serve as important N 

sources for epiphytic bryophytes. Previous laboratory and field studies have also revealed that amino acids can 
be absorbed and utilized at substantial rates, which greatly contribute to the total N uptake and effects the N 
metabolism of bryophytes15,34,51,52; however, this has not been studied in epiphytic bryophyte species. For exam-
ple, Forsum, et al.33 applied 15N labelled solutions to Hylocomium splendens (Hedw.) and found that this species 
preferred amino acid N over NO3

−, although the assimilation of glycine remained lower than that of NH4
+. The 

mean uptake rates were 1.8 μ mol g−1 DW h−1 for NO3
−, 3.6 μ mol g−1 DW h−1 for NH4

+, and 3.4 μ mol g−1 DW 
h−1 for glycine, which indicated that the amino acids could be absorbed by the bryophytes50. The preference for 
amino acid N or NH4

+ over NO3
− observed could be partially explained by their differences in assimilation costs. 

According to Liu, et al.15, and references therein, the assimilation cost of amino acids is expected to be lower than 
that of NH4

+ and much lower than that of NO3
−, which is due to the requirement that NH4

+ must be attached to 
a C skeleton before use while NO3

− requires additional reduction steps to NH4
+. These studies demonstrated that 

amino acids should be one of the most cost-effective N forms that can be utilized by bryophytes. Considering that 

Figure 1. Abundance of nitrogen (N) isotope signatures (δ15N) in three epiphytic bryophyte species. Capital 
letters after values indicate significant differences at 0.05 error probability levels among different labelled-N 
forms under same N levels, while lowercase letters indicate significant differences among different N levels 
under same labelled-N forms.
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amino acids account for only a small proportion of organic N, the bioavailable fraction of organic N is expected 
to be much larger than that found in amino acids53. Although the organic N input in the studied forest has never 
been directly measured, the fact that the annual input of total N through precipitation (10.5 kg N ha−1 y−1) was ca. 
threefold of the sum of the two main inorganic-N forms (NO3

−: 0.91 kg N ha−1 y−1, NH4
+: 2.69 kg N ha−1 y−1)47, 

implies that organic N may be an important N form in the studied region. The contribution of organic N to the 
N economy of epiphytic bryophytes might have been seriously underestimated in the past, although uncertainty 
exists considering some organic N, e.g. amino acids may have been mineralized and been took up as NH4

+.

Impact of enhanced N deposition on N uptake. In this study, the shoot 15N concentration and the N 
uptake rates increased significantly with increasing N concentrations (Table 1; Figs 1 and 2), but the N preferences 
of the three bryophyte species shifted only slightly in response to the addition of N, except for Homaliodendron 
flabellatum that preferred glycine under medium N addition, but shifted to NH4

+ under high N addition (Table 2). 
This implies that increased N deposition increases the total amount of N absorbed by the epiphytic bryophytes, 
but it does not alter the N preference over a short time. Due to N limitations in many ecosystems dominated by 
bryophytes, a slight increase in N can increase the absorption of N, which enhances the chlorophyll content of the 

Figure 2. Comparisons of nitrogen (N) uptake rates by three bryophyte species from NO3
−, NH4

+, and 
glycine under air deposition and bark injection at low, medium, and high N addition levels. Capital letters 
after values indicate significant differences at 0.05 error probability levels among different labelled-N forms 
under same N levels, while lowercase letters indicate significant differences among different N levels under same 
labelled-N forms.
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bryophyte cells, thus increasing the photosynthetic capacity54,55. However, excessive N supply is detrimental to 
these sensitive organisms. For example, it has been demonstrated that the oversupply of N can result in an excess 
uptake of NH4

+ in the cell, which threatens the cell homeostasis and causes toxicity, and thus a subsequent reduc-
tion in the growth of the bryophytes55,56. Increased N deposition can alternatively cause increased amino acid 
accumulation in bryophyte tissues, which may deplete reserves of soluble carbohydrates necessary for growth54. 
As indicated in this study, high N loads resulted in excessive N uptake, which may induce biochemical disorders 
in bryophytes57.

In conclusion, this study provides clear evidence that epiphytic bryophytes can uptake N from the bark and 
can translocate it to their shoots. The ability to translocate the absorbed N to their shoots is of particular impor-
tance, since shoots typically have greater N demands for photosynthetic enzymes. This study highlighted that 
organic N, as opposed to inorganic N, contributed remarkably to the N economy of the epiphytic bryophytes. 
High N loads may result in excessive N uptake, which may induce biochemical disorders in bryophytes. Thus, 
it is important to consider organic N and bark N sources when estimating the role of epiphytic bryophytes in N 
cycling and the impacts of N deposition on epiphytic bryophytes in cloud forests.

Methods
Study site. We conducted this study in the Xujiaba region of Yunnan Province (24° 32′  N, 101° 01′  E), China, 
in a protected section of a 5,100 ha pristine subtropical cloud forest in the Ailao Mountain National Nature 
Reserve (23° 35′ -24° 44′  N, 100° 54′ -101° 01′  E), with an altitude range between 2000 m and 2600 m58. The mean 
annual temperature is 11.6 °C, with the lowest value in December (6.0 °C) and the highest in July (15.8 °C). The 
mean annual rainfall is 1859 mm, with 86% of the rain falling during the rainy season (May to October), and a 
pronounced dry period from December to April42. The forest is primarily co-dominated by Lithocarpus hancei 
(Benth.) Rehder, Castanopsis rufescens (Hook.f.et Th.) Huang et Y.T. Chang, and Lithocarpus xylocarpus (Kurz) 
Markgr58. Annual input of total N through precipitation and throughfall were 10.5 and 12.1 kg N ha−1 y−1 47 in the 
study region, with expectations of increased reactive N deposition with time59.

On account of the persistent, frequent cloud/fog cover, the presence of large, old trees, and long-term effective 
protection, the forest harbors abundant epiphytes, and is especially rich in epiphytic bryophytes41,42. The most 
dominant epiphytes growing on tree trunks including Homaliodendron flabellatum (Sm.) Fleisch., Plagiochila 
arbuscula (Brid. ex Lehm.) Lindenb., H. scalpelifolium (Mitt.) Fleisch., and P. assamica Steph. are bryophyte spe-
cies41. Epiphytes comprise one of the most diverse and are a conspicuous element of the subtropical cloud forest, 
and they are also extremely important in carbon, water and nutrient cycling in these ecosystems47,48. For example, 
epiphytes in the subtropical cloud forest can fix a significant amount of N2; the latest estimated annual N input 
fixed by epiphytic bryophytes reaches 3.89 kg N ha−1 y−1 60,61.

Experimental design and treatments. Two mosses (H. flabellatum and H. scalpellifolium) belonging to 
Neckeraceae and one liverworts (P. assamica) belonging to Plagiochilaceae were selected for this manipulation 
experiment as they were abundant, representative trunk-dwelling species in the study region41,42. In November 
2014, four areas (two hectares each) in the cloud forest in Xujiaba were chosen as the experimental plots. In 
each plot, 48 square quadrats (20 cm ×  20 cm) that were dominated by each single species (16 quadrats for each 
species) were marked on large trunks (Diameter at breast height > 20 cm) that were located between 1.0 m–2.0 m 
above the forest floor. The average total biomass of H. flabellatum, H. scalpellifolium, and P. assamica collected 
from each experimental quadrat were 1.01, 1.13, and 1.46 g, respectively (Fig. S2).

To study the N preference of the three epiphytic bryophytes, four treatment groups were established. In each 
treatment, equal proportions of glycine, NH4

+, and NO3
− (1:1:1) were used. Glycine was adopted because it has 

been widely used as a model amino acid for studies of organic N uptake by plants62. The first treatment was con-
sidered to be the control (Control), and no 15N-labelled N was added. In the other three treatments, only one of 
the N forms was labelled with 15N, i.e., 15N–glycine (20 atom% 15N) mixed with unlabelled (NH4)2SO4 and KNO3 
(Glycine–N labelled); (15NH4)2SO4 (20 atom% 15N) mixed with unlabelled glycine and KNO3 (NH4

+–N labelled); 
and K15NO3 (20 atom% 15N) mixed with unlabelled glycine and (NH4)2SO4 (NO3

−–N labelled).
The experiment was divided into two parts. First, we aimed to determine if epiphytic bryophytes could absorb 

the available N directly from the tree bark. For this, a subset of high N solutions (total N concentration of 12 mM: 
each N form at 4 mM) with the four treatment groups mentioned above (CK, Glycine-N labelled, NH4

+–N 
labelled, NO3

−–N labelled) were injected uniformly into the bark of the trees in the 48 marked quadrats (four N 
forms ×  three species ×  four replicates) with 5 mL syringes. Before the injection process, a steel needle (15 cm in 
length and 3.5 mm in diameter) was used to squeeze through the bryophyte layer and set up injection holes on 
barks. The trees were then injected at nine injection points (three rows ×  three columns) each on the bark of all 
quadrats to approximately a 5 mm depth using special metal frame sheets (20 cm ×  20 cm) to ensure uniformity 
and consistency. The total amount of N injected to each quadrat corresponded to a dose of 0.21 kg N ha−1.

The second experiment was designed to study the treatment effect of increased N addition on the N preference 
and uptake. Three N levels, i.e., low (total N concentration 3 mM: each N form at 1 mM), medium (6 mM: each 
N form at 2 mM), and high (12 mM: each N form at 4 mM), of each treatment were added. In this experiment, 
5 ml of the experimental solutions with different N concentrations were sprayed uniformly over 144 experimental 
quadrats (three N levels ×  four N forms ×  three species ×  four replicates) with small pressure sprayers. The total 
amounts of N added were 0.05, 0.11, and 0.21 kg N ha−1 (equal to 18.25, 40.15, 76.65 kg N ha−1 y−1) for the low, 
medium, and high N levels, respectively. The above treatment levels in our simulations of N input were imple-
mented based on background rate (10.5 kg N ha−1 y−1) in the study region47 and a predicted rate measured in a 
comparable region, i.e. southern China: 30–73 kg N ha−1 y−1 63. Spraying was conducted within special metal frame 
cubes (20 cm ×  20 cm ×  20 cm) to avoid the loss of the solutions through air movement. Ampicillin (10 mg L−1)  
and CaCl2 (100 μ M) were added into the solutions to avoid the rapid decomposition of the amino glycine. 
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Bryophyte shoots were harvested one day after the injection or spraying events, following the procedures of Krab, 
et al.51 and Rousk, et al.46. According to the method used by Warren64, all bryophyte shoots were rinsed in 50 mM 
KCl to remove any remaining 15N that was still adhering to their surface, and then they were rinsed with ultrapure 
water, oven-dried (70 °C), and ground for 15N isotope analysis. The total biomasses of the three target bryo-
phyte species are shown in Fig. S2. N contents and 15N/14N ratios were determined using an isotope ratio mass 
spectrometer (Isoprime 100, Isoprime Ltd., Cheadle, UK) coupled with a vario PYRO cube elemental analyzer 
(Elementar Analysensysteme GmbH, Hanau, Germany) with a continuous flow mode. The atom% excess 15N 
(APE) was calculated as the atom% 15N difference between the bryophytes from the 15N treated plots and from 
the control plots.

Data analysis. According to Xu, et al.65, the uptake of the 15N (mg 15N m−2) by the bryophyte shoots was 
calculated by multiplying the N content (mg N g−1 d.w.), APE, and biomass (g m−2). The uptake of the available N 
forms corresponding to the 15N treatment was calculated as in the following:

=U U (m /m ) (1)unlabelled labelled unlabelled labelled

where mlabelled is the total mass (g m−2) of the 15N-labelled N injected or sprayed per quadrat and munlabelled is the 
mass of available N forms measured in solution. Ulabelled is the uptake (g m−2) of 15N from the source mlabelled and 
Uunlabelled is the uptake of the available N from the source munlabelled.

All data were subjected to normality and homoscedasticity tests before statistical analysis. Two different 
ANOVA models were adopted: one focused on the N source and the other focused on the N level. To compare 
N sources, only the high N treatment groups through both air spraying and bark injecting were compared. To 
compare the treatment effects of the N levels, only the air spraying treatment groups, including low, medium, and 
high N levels, were considered.

Multiple comparisons of the shoot δ 15N, N uptake rates, and contributions of different N forms (percentages 
of N absorbed in the forms of NO3

−, NH4
+, and glycine) among the labelled-N forms under the same N addition 

levels and among different N addition levels under the same labelled-N forms were conducted using LSD’s or 
Game-Howell’s post hoc tests. All the analyses mentioned above were conducted in SPSS 16.0 (SPSS, Chicago, IL, 
USA), and all figures were made using SigmaPlot 12.5 (Systat Software Inc., San Jose, CA, USA).
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