

Contents lists available at ScienceDirect

Data in brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data concerning AED registration in the Danish AED Network, and cardiac arrest-related characteristics of OHCAs, including AED coverage and AED accessibility

Lena Karlsson ^{a, b, *}, Carolina Malta Hansen ^{b, c}, Mads Wissenberg ^{a, b}, Steen Møller Hansen ^d, Freddy K. Lippert ^b, Shahzleen Rajan ^a, Kristian Kragholm ^{d, e}, Sidsel G. Møller ^a, Kathrine Bach Søndergaard ^a, Gunnar H. Gislason ^{a, f}, Christian Torp-Pedersen ^{d, g}, Fredrik Folke ^{a, b}

^a Department of Cardiology, Copenhagen University Hospital Gentofte, Hellerup, Denmark

^b Emergency Medical Services Copenhagen, University of Copenhagen, Denmark

^c Department of Cardiology, Nephrology, and Endocrinology, Copenhagen University Hospital Hillerød, The Region of Northern Zealand, Denmark

^d Unit of Epidemiology and Biostatistics, Aalborg University Hospital, Aalborg, Denmark

^e Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark

^f The National Institute of Public Health, University of Southern Denmark, Copenhagen Denmark

^g The Department of Health Science and Technology, Aalborg University, Aalborg, Denmark

ARTICLE INFO

Article history: Available online 29 April 2019

Keywords: Cardiac arrest Resuscitation Automated external defibrillator Survival

ABSTRACT

The data presented in this article is supplemental data related to the research article entitled "Automated external defibrillator accessibility is crucial for bystander defibrillation and survival: a registry-based study" (Karlsson et al., 2019). We present detailed data concerning: 1) the type of location for deployed and registered automated external defibrillators (AEDs) in the nationwide Danish AED Network; 2) the number of registered AEDs in the nationwide Danish AED Network, and changes in AED registration (according to year and type of AED location); 3) the number of AEDs being withdrawn from the AED network between the years 2007–2016. We also report data on baseline cardiac arrest-related characteristics of out-of-hospital cardiac arrests (OHCAs) that

* Corresponding author. Department of Cardiology, Copenhagen University Hospital Gentofte, Hellerup, Denmark. *E-mail address:* lena.ingrid.marie.karlsson.03@regionh.dk (L. Karlsson).

https://doi.org/10.1016/j.dib.2019.103960

^{2352-3409/© 2019} The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

occurred in Copenhagen, Denmark, between 2008 and 2016. Cardiac arrest-related characteristics are further described according to AED accessibility (accessible vs. inaccessible AED at the time of OHCA) for OHCAs covered by an AED (AED \leq 200 m route distance of an OHCA). Finally, we report data on distance to the nearest accessible AED for bystander defibrillated OHCAs covered by an AED \leq 200 m route distance where the AED was inaccessible at the time of OHCA.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/).

Specifications table

Subject area	Public access defibrillation.
More specific subject area	AED registration, location and accessibility of AEDs in cardiac arrests.
Type of data	Tables.
How data was acquired	Retrospective from the Danish AED Network, and the Emergency Medical Services in Copenhagen, Denmark.
Data format	Descriptive and analysed.
Experimental	Data on registered AEDs within the nationwide Danish AED Network was used to categories
factors	AEDs according to type of AED location for placement and analysed according to 1) the total number of AEDs withdrawn between 2007 and 2016, and 2) year of registration. Data on OHCAs that occurred in the city of Copenhagen was analysed to investigate 1) associations between cardiac arrest-related characteristics and whether an AED ≤ 200 m route distance was accessible or not at the time of OHCA, and 2) distances to the nearest accessible AED among bystander defibrillated OHCAs where the nearest AED ≤ 200 m route distance was inaccessible at the time of OHCA. Statistical analyses performed in SAS (software version 9.4, SAS institute Inc., NC, USA), and distance calculations with the network analyst feature in ArcMap 10.5 [2].
Experimental features	Registry-based, cohort study.
Data source location	Copenhagen, Denmark.
Data accessibility	Data available in the present data article and the main article [1].
Related research	Karlsson et al. Automated external defibrillator accessibility is crucial for bystander
article	defibrillation and survival: a registry-based study. Resuscitation, 2019 [1].

Value of the data

• The extensive information provided on classification of type of AED location in a nationwide AED registry can serve as a benchmark for other countries and communities enabling comparison between AED registries internationally.

- Data on temporal changes in AED registration within an AED network according to type of location can set the basis for new initiatives to improve AED use within communities.
- The given data provides information of baseline characteristics among OHCAs occurring after implementation of an AED network.
- The data provides information of associations between cardiac arrest-related characteristics and whether an AED <200 m was accessible or not at the time of OHCA.
- The data provides information regarding longer distances to an accessible AED where the AED ≤200 m of the OHCA victim was inaccessible at the time of OHCA but the OHCA patient was bystander defibrillated.

1. Data

The data presented in this article is supplemental data to the study on AED accessibility and associations with bystander defibrillation and 30-day survival [1].

Table 1 describes the classification of AED location type for deployed and registered AEDs in the nationwide Danish AED Network. Table 2 describes newly registered AEDs in the Danish AED

Table 1

Specific types of locations for AEDs deployed and registered with the nationwide Danish AE
--

D location	
mpanies/offices	
nool/education facilities (elementary and intermediate schools, universities, and other education facilities and	libraries
orts facilities (sports facility/centres, fitness centres, public swimming pool)	,
opping malls/shops/banks (shopping malls/centres, grocery stores, banks, pharmacies)	
ions/associations	
tractions/recreational areas (fair, playground, summer housing area, parks, golf courses, harbour)	
sidential settings (private home, nursing home, elderly housing/activity centre, housing association, apartment support)	s, housing
alth clinics (general and dental practitioners, public and private hospitals)	
blic buildings	
urch/community centre	
tels and conference venues (including restaurants)	
ansportation facilities (bus terminal, train station, airport)	
her (e.g., retrieval plant, utility, waste management stations, fire/police station)	

AED, automated external defibrillator.

Network according to the year of registration and AED location type (2007–2016). Table 3 reports the number of AEDs withdrawn from the Danish AED Network, including type of AED location (2007–2016). Table 4 shows the cardiac arrest-related characteristics of the OHCA population in Copenhagen, Denmark, (2008–2016). Table 5 shows differences in cardiac arrest-related characteristics between OHCAs covered by an AED \leq 200 m route distance and whether the AED was accessible or not at the time of OHCA. Table 6 reports within which route distances the nearest accessible AED was located for bystander defibrillated OHCAs that were covered by an inaccessible AED \leq 200 m route distance.

2. Experimental design, materials, and methods

This data article includes information on (1) registered AEDs within the nationwide Danish AED Network (2007–2016), and (2) OHCAs in the city of Copenhagen, Denmark (2008–2016).

A description of the data collected from the Danish AED Network, and how the specific type of location for AEDs deployed and registered in the network was determined can be found in the related main research article [1]. In the present data article, the number of newly registered AEDs is described per year and type of AED location (2007–2016). The number of withdrawn AEDs between the same period in time is reported overall and according to type of AED location.

OHCAs included in this data article were OHCAs of presumed cardiac cause not witnessed by the emergency medical service (EMS), and with known location and addresses, known bystander defibrillation status, and calculated route distances to registered AEDs in Copenhagen, Denmark (the OHCA population in the related main article [1]). OHCAs were registered by the Copenhagen physician-manned mobile emergency care unit in the municipality of Copenhagen (2008–2016), a method used previously [3,4]. Distance calculations were made using road/pedestrian routes from OHCAs to AEDs in the software ArcMap 10.5 (network analyst feature) [1,2]. An AED was defined as covering an OHCA if the OHCA occurred \leq 200 m route distance from an AED that had been deployed before the date of OHCA. AED accessibility was assessed for every OHCA-AED pair [1].

Categorical variables are presented as absolute numbers and percentages, and continuous variables as medians with interquartile range (IQR). Cardiac arrest-related characteristics were investigated according to whether the nearest AED \leq 200 m route distance of the OHCA was accessible or not at the time of OHCA. Categorical variables were compared with the chi-square test, and continuous variables

Newly registered AEDs per year, n (% of all AEDs registered in 2007–2016)	Year of registration									Total,	
	2007, n (%)	2008, n (%)	2009, n (%)	2010, n (%)	2011, n (%)	2012, n (%)	2013, n (%)	2014, n (%)	2015, n (%)	2016, n (%)	n (%)
Type of AED location	140 (0.8)	506 (3.0)	926 (5.4)	2228 (13.0)	1842 (10.8)	2152 (12.6)	2252 (13.2)	2258 (13.2)	2115 (12.4)	2687 (15.7)	17 106 (100.0
Companies/offices School/education facility	21 (15.0) 10 (7.1)	125 (24.7) 41 (8.1)	250 (27.0) 95 (10.3)	700 (31.4) 345 (15.5)	568 (30.8) 225 (12.2)	669 (31.1) 254 (11.8)	610 (27.1) 315 (14.0)	645 (28.6) 261 (11.6)	635 (30.0) 277 (13.1)	780 (29.0) 294 (10.9)	5003 (29.2) 2117 (12.4)
Sports facility Residential settings	56 (40.0) 2 (1.4)	134 (26.5) 12 (2.4)	154 (16.6) 24 (2.6)	325 (14.6) 66 (3.0)	205 (11.1) 70 (3.8)	174 (8.1) 144 (6.7)	164 (7.3) 172 (7.6)	144 (6.4) 224 (9.9)	109 (5.2) 289 (13.7)	158 (5.9) 515 (19.2)	1623 (9.5) 1518 (8.9)
Shopping malls/shops/ banks	0 (0.0)	21 (4.2)	68 (7.3)	127 (5.7)	129 (7.0)	151 (7.0)	252 (11.2)	238 (10.5)	77 (3.6)	173 (6.4)	1236 (7.2)
Union/association Attractions/ recreational areas	0 (0.0) 16 (11.4)	17 (3.4) 58 (11.5)	72 (7.8) 73 (7.9)	87 (3.9) 147 (6.6)	115 (6.2) 104 (5.7)	128 (6.0) 140 (6.5)	190 (8.4) 107 (4.8)	164 (7.3) 104 (4.6)	184 (8.7) 110 (5.2)	69 (2.6) 161 (6.0)	1026 (6.0) 1020 (6.0)
Health clinics	13 (9.3)	27 (5.3)	43 (4.6)	111 (5.0)	96 (5.2)	114 (5.3)	121 (5.4)	89 (3.9)	81 (3.8)	86 (3.2)	781 (4.6)
Public building Church/community centre	12 (8.6) 1 (0.7)	19 (3.8) 0 (0.0)	47 (5.1) 6 (0.7)	107 (4.8) 26 (1.2)	68 (3.7) 37 (2.0)	83 (3.9) 79 (3.7)	54 (2.4) 65 (2.9)	98 (4.3) 106 (4.7)	81 (3.8) 106 (5.0)	72 (2.7) 171 (6.4)	641 (3.7) 597 (3.5)
Hotels and conference venues	0 (0.0)	11 (2.2)	19 (2.1)	41 (1.8)	41 (2.2)	35 (1.6)	44 (2.0)	40 (1.8)	31 (1.5)	49 (1.8)	311 (1.8)
Transportation facility Other	2 (1.4) 7 (5.0)	6 (1.2) 35 (6.9)	7 (0.8) 68 (7.3)	15 (0.7) 131 (5.9)	18 (1.0) 166 (9.0)	40 (1.9) 141 (6.6)	9 (0.4) 149 (6.6)	26 (1.2) 119 (5.3)	24 (1.1) 111 (5.3)	32 (1.2) 127 (4.7)	179 (1.1) 1054 (6.2)

 Table 2

 AEDs newly registered with the nationwide Danish AED Network, according to the year of registration and type of location.

AED, automated external defibrillator.

Table 3

Withdrawn AEDs, according to the type of location, nationwide (2007–2016).

Total AEDs withdrawn, n (%)	1805 (100.0)
Companies/offices	592 (32.8)
School/education facility	221 (12.2)
Sports facility	220 (12.2)
Shopping malls/shops/banks	159 (8.8)
Other	124 (6.9)
Public building	92 (5.1)
Residential settings	92 (5.1)
Health clinics	84 (4.7)
Union/association	71 (3.9)
Attractions/recreational areas	73 (4.0)
Hotels and conference venues	36 (2.0)
Transportation facility	21 (1.2)
Church/community centre	20 (1.1)

In total, 17 106 AEDs were registered with the nationwide Danish AED Network from 2007 through 2016. Of these, 1805 (10.6%) AEDs were withdrawn during the study period. AED, automated external defibrillator.

Table 4

Cardiac arrest-related characteristics of the OHCA study population in Copenhagen (2008–2016).

Total OHCAs, n (%)	2500 (100.0)
Median age, year (IQR)	70 (59–80)
Male, year (IQR)	67 (56-77)
Female, year (IQR)	75 (64-86)
Male, n (%)	1550 (62.6)
Public location, n (%)	621 (24.8)
Median EMS response time ^a , min (IQR)	5 (4-7)
Shockable heart rhythm, n (%)	607 (24.3)
Bystander witnessed arrest, n (%)	1412 (57.3)
Bystander CPR, n (%)	1192 (48.6)
Bystander defibrillation, n (%)	126 (5.0)
30-day survival ^b , n (%)	351 (14.6)

OHCA, out-of-hospital cardiac arrest; IQR, interquartile range; EMS, emergency medical service; CPR, cardiopulmonary resuscitation.

Number of missing: age (n = 45), sex (n = 25), response time (n = 33), bystander witnessed status (n = 35), bystander CPR (n = 45).

^a Time from dispatch of vehicle to arrival at scene of cardiac arrest.

^b 87 cardiac arrests excluded due to missing information on 30-day survival.

Table 5

Differences in cardiac arrest-related characteristics between OHCAs covered by an accessible vs. an inaccessible AED.

Total OHCAs, n (%)	OHCAs located \leq 200 m of accessible AED, n (%)	OHCAs located \leq 200 m of inaccessible AED, n (%)	P value	
	276 (48.8)	290 (51.2)		
Median age, year (IQR)	66 (54–77)	69 (57–79)	0.14	
Male, year (IQR)	64 (53-73)	66 (55-76)	0.38	
Female, year (IQR)	73 (59-85)	77 (65-87)	0.30	
Male, n (%)	185 (68.8)	199 (69.8)	0.79	
Public location, n (%)	152 (55.1)	100 (34.5)	< 0.001	
Shockable heart rhythm, n (%)	97 (35.1)	72 (24.8)	0.007	
Median EMS response time ^a , min (IQR)	5 (3-7)	5 (3-6)	0.12	
Bystander witnessed arrest, n (%)	169 (62.1)	168 (59.2)	0.47	
Bystander CPR, n (%)	198 (72.5)	155 (54.8)	< 0.001	

OHCA, out-of-hospital cardiac arrest; IQR, interquartile range; EMS, emergency medical service; CPR, cardiopulmonary resuscitation; AED, automated external defibrillator.

Number of missing: age (n = 21), sex (n = 12), response time (n = 6), by stander witnessed status (n = 10), by stander CPR (n = 10).

^a Time from dispatch of vehicle to arrival at scene of cardiac arrest.

Table 6

Distance to the nearest accessible AED for bystander defibrillated OHCAs covered by an inaccessible AED <200 m.

	covered by an inaccessible AED <200 m	Nearest accessible AED within longer distances, n (%)				
		201–300 m, n (%)	301–400 m, n (%)	401–500 m, n (%)	>500 m, n (%)	
All OHCAs, n	14	3 (21.4)	3 (21.4)	3 (21.4)	5 (35.7)	
Bystander witnessed OHCAs with shockable heart rhythm, n	13	3 (23.1)	3 (23.1)	3 (23.1)	4 (30.8)	

AED, automated external defibrillator; OHCA, out-of-hospital cardiac arrest.

with the Kruskal-Wallis test. A 2-sided p-value <0.05 was considered significant. Analyses were performed using SAS (software version 9.4, SAS institute Inc., NC, USA).

Acknowledgments

This data article includes AED data retrieved from the Danish AED Network, and OHCA data collected and registered by the EMS personnel in Copenhagen, Denmark. Geocoding of OHCAs was performed in collaboration with Kirstine Wodschow, from the University of Southern Denmark, National Institute of Public Health. Distance calculations and analyses of AED coverage were performed in collaboration with Christopher L. F. Sun, from the Department of Mechanical and Industrial Engineering, University of Toronto, Canada, with advice by Kirstine Wodschow. This work was funded by the Danish Foundation TrygFonden with no commercial interest in the field of cardiac arrest.

Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.103960.

References

- L. Karlsson, C.M. Hansen, M. Wissenberg, S.M. Hansen, F.K. Lippert, S. Rajan, et al., Automated external defibrillator accessibility is crucial for bystander defibrillation and survival: a registry-based study, Resuscitation 136 (2019) 30–37.
- Network Analyst Tutorial. Available from: http://help.arcgis.com/en/arcgisdesktop/10.0/pdf/network-analyst-tutorial.pdf.
 C.M. Hansen, F.K. Lippert, M. Wissenberg, P. Weeke, L. Zinckernagel, M.H. Ruwald, et al., Temporal trends in coverage of historical cardiac arrests using a volunteer-based network of automated external defibrillators accessible to laypersons and emergency dispatch centers, Circulation 130 (2014) 1859–1867.
- [4] C.M. Hansen, M. Wissenberg, P. Weeke, M.H. Ruwald, M. Lamberts, F.K. Lippert, et al., Automated external defibrillators inaccessible to more than half of nearby cardiac arrests in public locations during evening, nighttime, and weekends, Circulation 128 (2013) 2224–2231.