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ABSTRACT

Accessible chromatin is a highly informative struc-
tural feature for identifying regulatory elements,
which provides a large amount of information about
transcriptional activity and gene regulatory mech-
anisms. Human ATAC-seq datasets are accumulat-
ing rapidly, prompting an urgent need to comprehen-
sively collect and effectively process these data. We
developed a comprehensive human chromatin ac-
cessibility database (ATACdb, http://www.licpathway.
net/ATACdb), with the aim of providing a large
amount of publicly available resources on human
chromatin accessibility data, and to annotate and il-
lustrate potential roles in a tissue/cell type-specific
manner. The current version of ATACdb documented
a total of 52 078 883 regions from over 1400 ATAC-
seq samples. These samples have been manually cu-
rated from over 2200 chromatin accessibility sam-
ples from NCBI GEO/SRA. To make these datasets
more accessible to the research community, AT-
ACdb provides a quality assurance process including
four quality control (QC) metrics. ATACdb provides
detailed (epi)genetic annotations in chromatin ac-
cessibility regions, including super-enhancers, typ-
ical enhancers, transcription factors (TFs), common
single-nucleotide polymorphisms (SNPs), risk SNPs,
eQTLs, LD SNPs, methylations, chromatin interac-
tions and TADs. Especially, ATACdb provides accu-
rate inference of TF footprints within chromatin ac-
cessibility regions. ATACdb is a powerful platform
that provides the most comprehensive accessible
chromatin data, QC, TF footprint and various other
annotations.

INTRODUCTION

Genome-wide identification of chromatin accessibility is
important for detecting regulatory elements and under-
standing transcriptional regulation governing biological
processes such as cell fate determination, cell differentia-
tion and diseases development (1,2). In cancer cells, chro-
matin accessibility profiling has been proven to be used to
identify transcription factor binding sites (TFBSs) and pre-
dict regulatory networks for studying transcriptional reg-
ulation mechanisms (3). In the human retinae, chromatin
accessibility-associated transcription factors (TFs), as criti-
cal regulators for photoreceptor differentiation, played im-
portant roles in photoreceptor maturation at the late stage
of retinae development (4). In T-cell lymphoma, changes in
chromatin accessibility were correlated with gene expres-
sion of IFNG, resulting in distinct chromatin responses
in leukemic and host CD4+T cells (5). Lugena et al. de-
tected significant TF footprints within accessible chromatin
regions in brains of wild-type monarchs, which revealed
the rhythmic genes and regulation modes in the monarch
brain (6). Disease-associated sequence variations are en-
riched in chromatin accessibility regions (7). For exam-
ple, Type 2 diabetes-associated single-nucleotide polymor-
phisms (SNPs) within chromatin accessibility regions in
human islets, contributed to islet dysfunction and failure
(8). In the brain tissue, the SNP heritability of schizophre-
nia enriched in accessible chromatin regions contributes to
the risk of schizophrenia (9). In colorectal cancer, loss of
ARID1A located at enhancers leads to dramatic changes
in chromatin accessibility, and influences the expression of
MET in colorectal cancer cell growth and adhesion (10).
Many studies have revealed that DNA methylation has a
complex interplay with accessible chromatin. For example,
Rizzardi et al. found that neuronal brain region-specific
DNA methylation within chromatin accessibility regions
mediated neuropsychiatric trait heritability (11). Together,
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these studies confirmed the significance of chromatin ac-
cessibility in addressing key issues associated with biologi-
cal processes, cell differentiation, cancer biology and disease
development.

In recent years, there have been several high-throughput
methods to profile chromatin accessibility, such as ATAC-
seq (12), DNase-seq (13), FAIRE-seq (14) and MNase-
seq (15). Compared to other technologies, ATAC-seq is a
powerful technology with high accuracy and sensitivity to
profile genome-wide chromatin accessibility (12,16,17). Al-
though several relevant publicly resources such as Cistrome
(18), TCGA (19) and ENCODE (20) store some chro-
matin accessibility data, there is no chromatin accessibility
database based on ATAC-seq that focuses on collecting a
large number of human ATAC-seq chromatin accessibility
regions, or that provides the comprehensive detailed infor-
mation about standardized curation, quality control (QC),
TF footprints and various other annotation information.
In addition, several databases store chromatin accessibil-
ity data based on DNase-seq datasets, including GTRD
(21), EpiRegio (22), DeepBlue (23) and OCHROdb (24).
However, GTRD, EpiRegio and DeepBlue are focused on
gene regulation for ChIP-seq and DNase-seq data, and only
supported some chromatin accessibility data. OCHROdb
is a database based on chromatin accessibility data, it only
supports DNase-I samples. Human ATAC-seq datasets are
accumulating rapidly, which promotes an urgent need to
comprehensively collect and effectively process these data.
More importantly, quality measure processes are neces-
sary for ATAC-seq experiment. Assessing the quality of
ATAC-seq is used to help researchers reach more precise as-
sumptions or conclusions (25). Footprints reveal the pres-
ence of DNA-binding proteins at each site in the accessi-
ble region, which promotes a better understanding of gene
regulation and chromatin dynamics (12). Together, build-
ing a valuable resource to integrate, annotate and ana-
lyze these human chromatin accessibility data can help re-
searchers understand epigenomic mechanisms deeply, and
discover more biological functions in accessible chromatin
regions.

In the present study, we developed a comprehensive chro-
matin accessibility database for human (ATACdb, http:
//www.licpathway.net/ATACdb), which provides a large
number of human chromatin accessibility data based on
ATAC-seq. ATACdb contains 52 078 883 regions from 1493
ATAC-seq samples, which were manually curated from
over 2200 chromatin accessibility samples associated with
ATAC-seq data from NCBI GEO/SRA (26,27). Various
detailed (epi)genetic annotation information about chro-
matin accessibility regions are supported in our database.
ATACdb can display a QC report for each sample, in-
cluding mean insert size and standard deviation, TSS en-
richment score and Fraction of Reads in Peaks (FRiP).
To view a QC report intuitively, ATACdb displays di-
agnostic plots for samples. The database further sup-
ports TF footprint analysis for inferring TFBS and pro-
vides exhaustive information for footprint. ATACdb is
a user-friendly database to query, browse and visual-
ize information associated with chromatin accessibility
regions.

MATERIALS AND METHODS

Data collection and identification of accessible chromatin re-
gions

In ATACdb, we manually collected over 2200 publicly
available human ATAC-seq samples. Notably, we first
integrated all sample identifiers (GSM ID) from GEO
(26) using the keyword of ‘human species[Organism]’
and ‘ATAC-seq’. All chromatin accessibility samples were
manually curated from NCBI GEO/SRA (26,27) (Fig-
ure 1). To attain more accuracy, all samples were ex-
amined in the GEO sample description text and non-
compliant samples were filtered out, such as single-cell
ATAC-seq. Second, for sequencing data, we integrated
Trim Galore (v1.18) (http://www.bioinformatics.babraham.
ac.uk/projects/trim galore/) for trimming of the adapter
and low quality reads. This step avoided unqualified se-
quences that affected the alignment results. Third, we used
Bowtie2 (v2.25) (28) for aligning reads to the human ref-
erence genome (hg19) that was downloaded from UCSC
Genome Bioinformatics with the following parameters (-
X 2000 –no-mixed –no-discordant). Fourth, the produced
SAM file by Bowtie2 (v2.25) (28) was used by the SAM-
tools (v1.90) (29) and Picard (http://broadinstitute.github.
io/picard/) for viewing and processing. SAMtools was used
to index the resulting alignments in the SAM/BAM for-
mat and Picard was used to remove duplicate nucleotide
sequences. Finally, MACS2 (v2.1.2) (30) was used to iden-
tify accessible chromatin regions, as well as the summit
of each ATAC-seq peak with the following parameters ‘–
broad–SPMR –nomodel –extsize 200 -q 0.01’. The EN-
CODE blacklisted regions (20,31) often had extremely high
read coverage, and thus were discarded in ATACdb (32).

ATAC-seq quality control

The QC measurement is an important feature of ATAC-
seq datasets. We provided four different QC metrics of
ATAC-seq samples, including mean insert size and corre-
sponding standard deviation of paired-end libraries (12) us-
ing Picard (http://broadinstitute.github.io/picard/), TSS en-
richment score and FRiP using the ENCODE consortium
(33,34). We preferred the mean insert size as a superior
metric of quality assessment, because it was estimated af-
ter trimming off the outliers in from the original insert-size
distribution. The TSS enrichment score indicated the aver-
age depth of the TSS of genes and the FRiP indicated frac-
tion of mapped reads falling into the peak regions. In or-
der to view QC measures intuitively for users, we displayed
a graph showing the insert size distribution in the sample
detail page. The spatial frequency of chromatin-dependent
periodicity coincides with nucleosome (12). We displayed
a histogram of the insert size distribution, which reflected
decreasing and periodical peaks corresponding to the nu-
cleosome free regions (nfr) (<100 bp), mononucleosomes
(∼200 bp), dinucleosomes (∼400 bp) and trinucleosomes
(∼600 bp), to test ATAC-seq experiment (12,25,35). The
high-quality ATAC-seq experiment could produce valuable
information about improving the preparation of samples
(Supplementary Figure S1A). On the contrary, the typical
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Figure 1. Database content and construction. Chromatin accessibility regions in ATACdb were calculated based on human ATAC-seq data. Genetic and
epigenetic annotations were collected or calculated, including super-enhancers, typical enhancers, TFs, common SNPs, risk SNPs, eQTLs, LD SNPs,
DNA methylation sites, 3D chromatin interactions and TADs. Users can determine the scope of the chromatin accessibility data query through four paths:
genomic region-based query, tissue-category-based query, TF-based query and gene-based query. ATACdb contains analytical tools and multiple functions
to browse, search, download and visualize chromatin accessibility information.

insert size distribution plot for a failed ATAC-seq experi-
ment is shown in Supplementary Figure S1B. Low quality
ATAC-seq experiments might have resulted from a high ra-
tio of Tn5 transposase or biased size selection during library
preparation (21). Based on the overall QC distributions, we
established the thresholds of QC characteristics and filtered
out a few low quality samples. Overall, these steps identified
52 078 883 accessible chromatin regions from 1493 ATAC-
seq samples.

TF footprint analysis

TF footprint analysis can significantly improve the accu-
racy of TFBS identification, which has unique ability to as-
sess changes in the activity of TFs and discover cell-specific
TFBS (12). ATAC-seq-based genomic footprint refers to
the pattern where an active TF binds to DNA and prevents
Tn5 transposase cleavage within the binding site, which is a
fast growing area of chromatin accessibility study (36,37).
More importantly, TF footprint analysis has been used to
detect TF occupancy, the effects of genetic variants in TF
binding, and to identify cell- and lineage-selective transcrip-

tional regulators (38–40). To explore more biological func-
tions of TF footprints, ATACdb predicts TFBS with foot-
prints using HINT (41), which is based on hidden Markov
models. By incorporating all these biases with the param-
eters: ‘-bc’, HINT can predict TF footprints, and signif-
icantly surpasses other competing methods (36). Motifs
from JASPAR were used to do motif matching for foot-
prints (42).

Finally, all motif predicted binding sites were calculated
by matching all position weight matrices against the hu-
man reference genome in ATACdb. TFs with the Tag Count
(TC), protection score, number of binding sites and foot-
print logo were identified for each sample. We used TC to
rank footprint predictions, which indicated the number of
reads around putative TFBSs (25). To further understand
the footprint, we provided the protection score to discover
footprints with potential short residence binding times (43).
The protection score was calculated by measuring the dif-
ferent Tn5 digestion numbers between TFBS and flanking
regions (36,37). The profiles for each motif, which can in-
dicate the activity of TF intuitively, were displayed in AT-
ACdb. We have filtered out TFs with ≤10 binding sites. We
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have now added some new ‘Threshold’ options, including
‘Protection score threshold’, ‘TC threshold’ and ‘Number
of binding sites threshold’, which allows users to set differ-
ent thresholds to ensure TFs are high-activity and cell-type-
specific in our website. For example, we set a default thresh-
old of the number of binding sites (the default value: 100).
All TF footprints for each sample can be downloaded in the
‘Download’ page.

Chromatin accessibility region annotation

Accessible chromatin region annotation can promote the
investigations in biological processes and diseases. ATACdb
provides detailed (epi)genetic annotation information in ac-
cessible chromatin regions, including TFs, super-enhancers,
typical enhancers, common SNPs, risk SNPs, eQTLs, LD
SNPs, DNA methylation sites 3D chromatin interactions
and TADs. We used BEDTools (v2.25.0) (44) to annotate
corresponding information in accessible chromatin regions,
and displayed details of the annotation using interactive ta-
bles.

Transcription factors (TFs). ATACdb provides two types
of analysis methods for detecting TFs binding to the acces-
sible chromatin region. One is the TF footprint (discussed
in the above section). Another is a sequence-based predic-
tion for motif frequency (motif scan). For motif scan anal-
ysis, we used the FIMO (45) tool from the MEME (46)
suite to predict putative TFBSs from sequences within ac-
cessible chromatin regions. The motif information were ob-
tained from the JASPAR database (42). We have scanned
for occurrences of motifs in every accessible chromatin re-
gion for each ATAC sample. And we have identified indi-
vidual candidate binding sites or protein motifs in a total
of 52 078 883 accessible chromatin regions in ATACdb. We
found that some motifs are short. They may not be found
if users set a too stringent P-value of FIMO. Therefore,
we identified DNA-binding sequence motifs with a P-value
threshold of 1e−4, make sure that short motifs were also
well represented in our database. We further added some
‘FIMO threshold’ options allowing users to select different
parameters. This annotation can help users systematically
investigate patterns of TF bindings within accessible chro-
matin regions, which is of great significance for further un-
derstanding gene regulation and biological regulatory net-
works.

Super-enhancers/typical enhancers. The complex relation-
ship between chromatin accessibility and super-enhancers
may help decipher transcriptional activity and gene ex-
pression mechanisms (41). To annotate the potential roles
of super-enhancers and typical enhancers within accessible
chromatin regions, we collected a total of 331 146 super-
enhancers and 6 629 274 typical enhancers from SEdb (47).
We annotated super-enhancers and typical enhancers to ac-
cessible chromatin regions, and the detailed information
were provided, including sample name, ChIP density, rank
and associated genes in the closest strategy (47–49).

Common SNPs/eQTLs/risk SNPs/LD SNPs. To anno-
tate the effects of SNPs located in accessible chromatin re-

gions, we obtained 38 063 729 common SNPs from db-
SNP (50) and filtered out SNPs with a minimum allele fre-
quency (MAF) < 0.01. We obtained mutation data and
phased genotype data from the 1000 Genomes Project
phase 3 (51) and separated out mutations with MAF >
0.05 using VCFTools (v0.1.13) (52). Plink (v1.9) (53) was
used to calculate the LD SNPs (r2 = 0.8) of five super-
populations (African, Ad Mixed American, East Asian, Eu-
ropean and South Asian). For risk SNP, a total of 264 514
risk SNPs were obtained from the GWAS Catalog (54) and
GWASdbv2.0 (55). The functional annotations for SNPs
and insertion/deletions variants in the human disease/traits
were also collected. We obtained 2 886 133 human eQTLs
and 31 080 511 eQTL-gene pairs from PancanQTL (56),
HaploReg (57) and GTEx v5.0 (58).

Methylations/chromatin interactions/TADs. The func-
tional interplay between chromatin accessibility and
methylation provides information about the DNA se-
quence and TF binding at methylation sites, which is
significant for the genome-wide study of gene regulation
(59). For better understanding of the relationships between
methylation and accessibility, we obtained 30 392 523
methylation sites of 450k array from ENCODE (31).
Chromatin interaction data can help users understand
gene expression mechanisms. We obtained chromatin
interaction data, including Hi-C, ChIA-PET, 3C, 4C and
5C. Ultimately, 29 920 872 interactions were collected from
Oncobase (60), 4DGenome (61), NCBI (26) and the 3D
Genome Browser (62).

The complex relationship between chromatin accessibil-
ity region and TAD play an important role in regulation of
gene expression. To better understand chromatin accessibil-
ity regions and their associated genes within TADs, we col-
lected TADs covering 21 tissue types from the 3D Genome
Browser (62). We provided TAD annotation information
for chromatin accessibility regions and related details.

Chromatin-accessibility-region-associated genes

We analyzed accessible chromatin regions and determined
their associated genes, which accelerated the characteriza-
tion of gene regulation and biological processes. We used
a python script from ROSE (ROSE geneMapper.py) (63)
to predict chromatin-accessibiliy-region-associated genes.
Notably, we calculated the distance of each peak to the
±1 kb region around the TSS and annotated the peak
to the corresponding genes. Chromatin-accessibiliy-region-
associated genes were identified by ROSE geneMapper on
the basis of closest, overlap and proximal strategies (47–
49,63). All associated genes identified from three strategies
were provided in ATACdb, which could be used as a gene-
based query method in ATACdb.

Peak annotation visualization

ATACdb implements visualization functions of peak an-
notation using ChIPseeker (64). We supported visualiza-
tion of ATAC-seq peaks in different ways, including with
displays of peak coverage over chromosomes and profiles
of peaks binding to the TSS region. For each sample, we
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exhibited pie charts of annotated genomic features using
the annotatePeak function (64), which can report the pro-
portion of genomic region annotations (promoter, 5′ UTR,
3′ UTR, exon, intron, downstream and intergenic). The
peakHeatmap function (64) was used to visualize profiles
of ATAC peaks binding to the TSS region. ATACdb ex-
hibits heatmaps of peaks binding to the TSS region (±1 kb)
for each sample, which makes it easier for users to compare
among different ATAC-seq experiments.

DATABASE USE AND ACCESS

A search interface for retrieving chromatin accessibility data

ATACdb is a powerful platform with user-friendly search
options to retrieve chromatin accessibility data (Figure 2A
and B). Users can determine the scope of chromatin acces-
sibility data query through four paths, including ‘Search by
genomic region’ (input genomic position), ‘Search by tissue
type’ (input tissue name of interest), ‘Search by TF’ (input
TF name of interest) and ‘Search by gene’ (input gene name
and identification strategies). In the genomic region-based
query, users can input genomic position, and ATACdb will
identify accessible chromatin regions overlapping with the
submitted region. Based on the TF query, users can obtain
all accessible chromatin regions bound by the TF through
submiting a TF of interest. Users may also submit a gene
name, and accessible chromatin regions associated with it
can be returned via relationships between the accessible
chromatin regions and associated genes, which are identi-
fied in three strategies including closest, overlap and proxi-
mal (47–49). In the tissue-based query, users can select ‘Tis-
sue type’ and ‘Biosample type’ for customizing filters. AT-
ACdb can display accessible chromatin regions associated
with a specific type of tissue on the result page.

The brief information on the search results is displayed
in a table on the result page. The table describes region
ID, genome location, length, fold change, -log10P/log10q
value and detailed (epi)genetic information in accessible
chromatin regions (Figure 2D). The result page provides
the QC report of ATAC-seq data including four measure
scores and a histogram (Figure 2E). Users can view accessi-
ble chromatin region distribution in chromosomes. For each
sample, ATACdb enables TF footprint analysis results, in-
cluding TFs with the TC, TF protection score, number of
binding sites and footprint logo (25,36,37). ATACdb also
enables ‘Threshold’ options allowing users to set different
thresholds to ensure TFs are high activity and cell type-
specific for each sample (Figure 2F). In addition, users may
click ‘Region ID’ for details about accessible chromatin re-
gions. ATACdb lists the more detailed annotation infor-
mation including TFs, super-enhancers, typical enhancers,
common SNPs, risk SNPs, eQTLs, LD SNPs, DNA methy-
lation sites 3D chromatin interactions and TADs (Figure
2G). The genes associated with accessible chromatin regions
are provided through using closest, overlap and proximal
identification strategies (47–49) (Figure 2H). The detailed
information associated with genes can be displayed, such as
gene-disease relationship information and gene expression
in different samples from GTEx (58), NCBI (26), ENCODE
(20) and CCLE (65) projects. ATACdb also provides the vi-

sualization of peak coverage over chromosomes and profiles
of peaks binding to the TSS region (Figure 2L).

A user-friendly interface for browsing accessible chromatin
regions

Users can quickly browse samples and customize filters
through ‘Biosample type’, ‘Biosample name’, ‘Tissue type’
and ‘Cancer type’ (Figure 2C). The number of records per
page can be changed using the ‘Show entries’ drop-down
menu. The number statistics of accessible chromatin regions
for each sample can be displayed on the page. Importantly,
users may further click on the ‘Sample ID’ to view accessi-
ble chromatin regions for a given sample.

Online analysis tools

ATACdb provides two practical analysis tools. One is the
‘Differential-Overlapping-Region’ analysis tool, the other
is the ‘Overlapping accessible chromatin regions bound
by two TFs’ analysis tool. The ‘Differential-Overlapping-
Region’ analysis tool can calculate similarities and differ-
ences between accessible chromatin regions of two samples.
When users submit two samples of interest, the tool will
compare the regions between two samples and extract all
regions overlapping at least one base between the two sam-
ples. For these overlapping regions, the tool further shows
the length of the overlapping regions and overlapping ra-
tio (the ratio of overlapping length to total length). More-
over, we can divide them into four overlapping types. For
the non-overlapping regions, we consider them as differ-
ential regions, and extract these regions of the two sam-
ples respectively. Finally, ATACdb will show these differ-
ential and overlapping regions between two samples with
their detailed information, including genomic region, re-
gion length, region number, overlapping ratio and overlap-
ping type (Figure 2I). The high overlapping ratio indicates
more similarity between two accessible chromatin regions.
For the ‘Overlapping accessible chromatin regions bound
by two TFs’ analysis tool, users can submit two TF names
and the window length of TF-binding sites. This tool can
calculate overlapping regions based on TF-binding sites.
ATACdb will show these overlapping regions with overlap-
ping lengths and overlapping ratios (Figure 2J). This anal-
ysis can further help users analyze the overlapping regions
bound by two TFs of interest in the accessible chromatin
regions.

Personalized genome browser and data visualization

ATACdb provides a powerful genome browser to help users
to intuitively view proximity information of accessible chro-
matin regions in the genome. We developed a personalized
genome browser using JBrowse (66) and added many use-
ful tracks such as accessible chromatin regions, enhancers,
super-enhancers, genes, SNPs and TADs (Figure 2M). AT-
ACdb can exhibit chromatin accessibility-associated pie
charts of chromosome distribution. In addition, ATACdb
provides visualization of TF footprint logos (Figure 2F),
histograms of expression of TFs binding to chromatin ac-
cessibility regions and the relationships between chromatin
accessibility regions and genes (Figure 2H).
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Figure 2. The main functions and usages of ATACdb. (A) The navigation bar of functions in ATACdb. (B) Users can query chromatin accessibility regions
through four paths: ‘Search by genomic region’, ‘Search by tissue type’, ‘Search by TF name’ and ‘Search by gene name’. (C) Browse samples. (D) Table
of search results including region ID, chr, start, end, size, -log10P value, common SNPs, super-enhancers, typical enhancers, risk SNPs, eQTLs, DNA
methylation sites, 3D chromatin interactions and visualization (genome browser). (E) Sample information including biosample name, biosample type,
tissue type, cancer type, region number, length, GEO/SRA ID and QC report. (F) The detailed information of TF footprint. (G) The detailed interactive
table of annotation information. (H) Accessible chromatin regions associated genes are identified through three strategies. Network diagram about these
regions is displayed. (I) Analysis of differential and overlapping accessible chromatin regions between two samples. (J) Analysis of overlapping accessible
chromatin regions bound by two TFs. (K) Data download. (L) Visualization of peak annotation. (M) Genome browser. (N) Sample and annotation statistics
in ATACdb.
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Table 1. Comparison of accessibility information in ATACdb with other databases

Function type Data type/Specific function ATACdb Cistrome TCGA ENCODE

Quality control Mean insert size �
Standard deviation �
TSS enrichment score � �
Fraction of reads in peaks � �
Diagnostic plot a � �

TF footprint Tag Count b �
TF protection score c �
Number of binding sites �
Footprint logo �

Annotation Strategies of accessible chromatin region associated genes d 3 e 1 f

Common SNP �
Risk SNP �
eQTL �
LD SNP �
Super-enhancer �
Enhancer �
Methylation site �
Chromatin interaction �
TAD �

Peak annotation
visualization

Genomic feature distribution �

Peak relative to TSS distribution �
Genome browser Accessible chromatin region � �

SNP �
Common SNP �
Risk SNP �
Super-enhancer � �
Enhancer �
TFBS conserved �
TAD �

Analysis functions Differential-Overlapping-Region analysis g �
Overlapping accessible chromatin regions bound by two TFs
analysis h

�

Data browse Simple information browse � � � �
Browse based on samples classification i �
Region statistics for each sample �
Alphanumerically sortable table �

aInsert size distribution plot.
bNumber of reads around TFBSs used to rank footprint predictions.
cFootprints with potentially short residence times.
dAccessible chromatin region associated genes obtained by different strategies or algorithms.
eClosest, overlap and proximal genes were identified by ROSE geneMapper.
fPutative targets were identified by BETA.
gAnalyze differential and overlapping accessible chromatin regions.
hAnalyze overlapping accessible chromatin regions bound by two TFs.
iClassification of samples including Biosample type, Tissue type, Cancer type and Biosample name.

Data download and statistics

Chromatin accessibility regions and the elements of all sam-
ples are provided for download in the ‘Download’ page.
Users can quickly search and download associated informa-
tion (Figure 2K). We provided a download of chromatin ac-
cessibility region files in ‘.BED’ and ‘.CSV’ format for each
sample. For TF footprint analysis, we provided a download
of TF footprint files in ‘.txt’ and ‘.pdf ’ format. By clicking
‘pdf’, users can download the corresponding footprint lo-
gos in a compressed file. ATACdb supports the packaged
download of all accessible chromatin regions and TF foot-
prints analysis result. In the ‘Statistics’ page, ATACdb pro-
vides digital and graphical displays about accessible chro-
matin regions and annotation information for users (Figure
2N). In addition, sample information for super-enhancer
and chromatin interactions were provided in ATACdb.

SYSTEM DESIGN AND IMPLEMENTATION

The ATACdb website runs on a Linux-based Apache
Web server 2.4.6 (http://www.apache.org). The database
was developed using MySQL 5.7.27 (http://www.mysql.
com). PHP 5.6.40 (http://www.php.net) was used for
server-side scripting. The ATACdb web interface was
built using Bootstrap v3.3.7 (https://v3.bootcss.com) and
JQuery v2.1.1 (http://jquery.com). ECharts (http://echarts.
baidu.com) was used to be a graphical visualization
framework. This database has been tested using Mozilla
Firefox, Google Chrome and Internet Explorer web
browsers.

ATACdb is freely available to the research community at
(http://www.licpathway.net/ATACdb) and requires no reg-
istration or login.

http://www.apache.org
http://www.mysql.com
http://www.php.net
https://v3.bootcss.com
http://jquery.com
http://echarts.baidu.com
http://www.licpathway.net/ATACdb
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DISCUSSION

Accessible chromatin is closely associated with various bi-
ological processes and human diseases, and is coupled
with exquisite tissue/cell-specificity. There is an urgent
need to comprehensively collect and effectively process hu-
man chromatin accessibility data. Some databases, such
as GTRD (21), EpiRegio (22) and DeepBlue (23), store
chromatin accessibility data based on DNase-seq datasets.
However, they focus on gene regulation for ChIP-seq and
DNase-seq data, and only provide some chromatin acces-
sibility data. Although OCHROdb (24) stores many chro-
matin accessibility data, it only supports DNase-I sam-
ples (Supplementary Table S1) (Supplementary Material
S1). The existing databases, such as Cistrome (18), TCGA
(19) and ENCODE (20), store chromatin accessibility data
based on ATAC-seq data. However, there is no chromatin
accessibility database that focuses on collecting compre-
hensive chromatin accessibility regions with detailed anno-
tation information and analyses about human ATAC-seq
data. ENCODE (20) focuses on gene regulation or histone
modification. In ENCODE, the number of human ATAC-
seq samples is merely about 50 (20). ATACdb documents
a total of 52 078 883 regions from over 1400 chromatin
accessibility ATAC-seq samples. There are about 30 times
more samples than that in ENCODE. TCGA (19) pro-
vides insights into principles of epigenetic regulation limited
on ranges of 23 primary human cancers. TCGA only sup-
ported cancer-related ATAC-seq samples. ATACdb focuses
on providing human chromatin accessibility data in various
tissue/cell types. Moreover, the number of samples in AT-
ACdb is about four times than in TCGA (19). Compared
to all existing databases such as Cistrome (18), TCGA (19)
and ENCODE (20), ATACdb provides two additional use-
ful strategies for inferring TF binding within chromatin ac-
cessibility regions including TF footprint analysis and mo-
tif scan, as well as quality assurance process by measuring
mean insert size. More importantly, ATACdb integrates a
large amount of genetic and epigenetic annotation informa-
tion. Overall, ATACdb is a powerful resource for chromatin
accessibility data with the most comprehensive annotation
information (Table 1 and Supplementary Table S1).

ATACdb provides a user-friendly interface to query,
browse, analyze and visualize chromatin accessibility re-
gions and detailed information about them. We compared
ATACdb with other databases for information and func-
tions, which showed the advantages of ATACdb (Table 1
and Supplementary Table S1). These advantages includes
(i) QC guidelines for ATAC-seq data that allow users to
measure the quality of chromatin accessibility experiments;
(ii) the accurate inference of TF binding from DNA se-
quences using TF footprint analysis; (iii) the comprehensive
genetic and epigenetic annotation of chromatin accessibility
regions including TFs, super-enhancers, typical enhancers,
common SNPs, risk SNPs, eQTLs, LD SNPs, DNA methy-
lation sites 3D chromatin interactions and TADs; (iv) the
visualization function to annotate genomic region of peaks;
(v) useful and full-featured online analysis tools such as
‘Differential-Overlapping-Region analysis’ and ‘Overlap-
ping accessible chromatin regions bound by two TFs’; (vi) a
customized genome browser for intuitively viewing proxim-

ity information of accessible chromatin regions and adding
a lot of useful tracks; (vii) user-friendly displays accessi-
ble chromatin region and associated annotation informa-
tion with interactive tables.

ATACdb provides a large number of chromatin accessi-
bility regions and comprehensive detail information about
standardized curation, QC, TF footprint, and other anno-
tation information. In future versions, ATACdb will fol-
low two main directions. First, we will extend the range of
species and further increase annotation information. Sec-
ond, we will add further practical analysis functions. Over-
all, ATACdb is by far the most comprehensive platform for
curated, annotated and analyzed accessible chromatin data.
ATACdb can also help users to understand more poten-
tial biological functions in accessible chromatin regions. We
extend ATACdb to be useful for both transcriptional and
(epi)genetic regulation studies.
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