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ABSTRACT

Genome-wide enrichment of methylated DNA fol-
lowed by sequencing (MeDIP-seq) offers a reason-
able compromise between experimental costs and
genomic coverage. However, the computational anal-
ysis of these experiments is complex, and quantifi-
cation of the enrichment signals in terms of absolute
levels of methylation requires specific transforma-
tion. In this work, we present QSEA, Quantitative Se-
quence Enrichment Analysis, a comprehensive work-
flow for the modelling and subsequent quantification
of MeDIP-seq data. As the central part of the work-
flow we have developed a Bayesian statistical model
that transforms the enrichment read counts to ab-
solute levels of methylation and, thus, enhances in-
terpretability and facilitates comparison with other
methylation assays. We suggest several calibration
strategies for the critical parameters of the model,
either using additional data or fairly general as-
sumptions. By comparing the results with bisulfite
sequencing (BS) validation data, we show the im-
provement of QSEA over existing methods. Addition-
ally, we generated a clinically relevant benchmark
data set consisting of methylation enrichment ex-
periments (MeDIP-seq), BS-based validation experi-
ments (Methyl-seq) as well as gene expression exper-
iments (RNA-seq) derived from non-small cell lung

cancer patients, and show that the workflow retrieves
well-known lung tumour methylation markers that
are causative for gene expression changes, demon-
strating the applicability of QSEA for clinical stud-
ies. QSEA is implemented in R and available from
the Bioconductor repository 3.4 (www.bioconductor.
org/packages/qsea).

INTRODUCTION

DNA methylation of CpG dinucleotides is a closely con-
trolled epigenetic modification that impacts gene regulation
and development (1). Aberrant DNA methylation has been
identified as a hallmark of many diseases, in particular can-
cer (2). For example, down-regulation of tumour suppressor
genes caused by focal hypermethylation of their promoters
is a well described mechanism in the development of many
cancer types (3). Thus, the systematic investigation of aber-
rant DNA methylation in cancer patients holds great po-
tential in combatting cancer, since it not only contributes to
the understanding of the functional role of epigenetic alter-
ations in human disease, but also allows the identification
of epigenetic biomarkers for noninvasive early cancer diag-
nosis (4) as well as targets for new molecular therapies (5).
The gold standard for measuring DNA methylation is
bisulfite (BS) sequencing (6,7). DNA treated with sodium
bisulfite converts unmethylated cytosines to uracil, but does
not affect methylated cytosines (8). Subsequent sequencing
of the BS-treated DNA reveals the fraction of unconverted
(and thus methylated) cytosines. This approach measures
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DNA methylation at base resolution. However, it requires
deep sequencing in order to generate sufficient read cover-
age, which remains a limiting cost factor when applying it
at whole-genome scale (WGBS). Thus, bisulfite sequencing
has been performed mainly as a targeted approach focusing
on genomic regions of primary interest, for example with
Methyl-seq (9,10) and reduced representation bisulfite se-
quencing (RRBS) (11). Other approaches, such as Illumina
450k arrays, use microarrays to measure methylation levels
at genomic CpGs. All these approaches are limited to their
respective target regions, and are not informative for discov-
ery of epigenetic mechanisms outside the covered genome
subset.

In contrast, assays based on enrichment of methylated
DNA fragments target the entire genome and are, thus, not
restricted to predefined sites: Methylated DNA Immuno-
Precipitation (MeDIP) (12) and methyl-CpG binding do-
main (MBD) protein capture (13) are similar techniques,
that enrich DNA fragments containing methylated cy-
tosines. After sequencing, the measured read density can
be related to the level of DNA methylation. This approach
requires substantially less sequencing depth compared to
WGBS, and is thus more cost effective. However, the res-
olution of enrichment-based methods is limited by the in-
sert size of the sequencing library (typically 250 bp on av-
erage). With appropriate normalization, read density from
these experiments provides a relative measurement for lo-
cal methylation, and allows detecting relative differences be-
tween samples within a single region. However, due to de-
pendence of the signal on CpG density, comparison of dif-
ferent genomic regions within and across samples, as well
as derivation of absolute methylation levels requires fur-
ther transformation. Many use cases presuppose absolute
methylation levels, such as assessing, whether a specific re-
gion is methylated or unmethylated, comparing with bisul-
fite based assays, and charting whole genome methylation
landscapes.

For processing enrichment-based methods, we have pre-
viously developed computational methods for the detec-
tion and annotation of aberrant DNA methylation, summa-
rized in the MEDIPS software package (14). These meth-
ods have been applied to the analysis of MeDIP-seq data,
for example, for identifying aberrant DNA methylation in
colon cancer (15). Furthermore, they have been extended
to other enrichment-based epigenetic sequencing data, for
example, in order to profile hydroxymethylation changes
during stem cell development (16) or to analyze cell type
specific histone modification patterns from ChIP-seq ex-
periments (17). Normalization of MeDIP-seq data imple-
mented in the MEDIPS package corrects for local CpG
densities and results in improved correlation of MeDIP sig-
nals to BS sequencing data. However, the current version of
MEDIPS does not address transformation of these signals
into absolute methylation estimates.

The task of estimating exact levels of methylation from
enrichment experiments has recently been addressed by
different methods: BayMeth is an approach that models
read coverage with a Poisson distribution and quantifies
methylation levels using Bayesian point estimators (18).
The parameters of the model are calibrated with an ad-
ditional fully methylated control enrichment experiment

PAGE 2 OF 13

(DNA treated with SssI CpG methyltransferase). Another
method, MeSiC, is based on a Random Forest Regression
model, estimating methylation levels at base resolution from
MeDIP-seq, without the need for additional calibration ex-
periments (19). Both methods, however, have been devel-
oped for, and so far applied to, in vitro samples only, and
their ability to conserve differences between pairs of in vivo
tumour samples, and thus their applicability to clinical stud-
ies, has not yet been demonstrated.

Here, we present our novel workflow ‘Quantitative Se-
quencing Enrichment Analysis’ (QSEA). QSEA implements
a statistical framework for modelling and transformation of
MeDIP-seq enrichment data to absolute methylation levels
similar to BS-sequencing read-outs. Furthermore, QSEA
comprises functionality for data normalization that ac-
counts for the effect of CNVs on the read-counts as well
as for the detection and annotation of differentially methy-
lated regions (DMRs). The transformation is based on a
Bayesian model similar to BayMeth, but it extends this ap-
proach substantially by incorporating model parameters
that explicitly take into account the signal-to-noise ratios
of the experiments. Comparison of QSEA with BayMeth
and MeSiC on different in vitro and in vivo benchmark data
shows that QSEA outperforms both methods and that it is
particularly suited for situations where no additional cali-
bration experiments are available. We applied QSEA to the
prediction of aberrant methylation on pairs of tumour and
adjacent normal tissue from five non-small cell lung can-
cer (NSCLC) patients and validated the identified differ-
entially methylated regions (DMRs) with BS sequencing
on the same samples. Furthermore, we performed RNA-
seq experiments on these tumour/normal pairs in order to
monitor the effect of aberrant methylation on gene expres-
sion regulation and show that QSEA retrieves well-known
lung cancer methylation markers that are causative for gene
expression changes.

In summary, QSEA is a reliable workflow for detecting
aberrant methylation in patient cohorts. Results are strongly
correlated with BS-seq data and DMRs can be confirmed
by the literature as well as experimental validation. QSEA is
implemented as a user friendly R package, which is available
at the Bioconductor repository (20).

MATERIALS AND METHODS
Patient-derived xenografts

Ethical approval (no. EA3/001/06) for the establishment
of xenograft models from NSCLC patients was achieved
from the local ethical review committee (Charité Berlin). All
mice used in the study were handled in accordance with the
Guidelines for the Welfare and Use of Animals in Cancer
Research (21) and according to the German Animal Pro-
tection Law.Their use was approved by the local respon-
sible authorities (approval no. G0030/15, H0023/09). Pa-
tient lung tumour samples were implanted subcutaneously
into 1-3 nude or NOD/SCID mice (in-house breeding).
Once tumours became palpable, tumour size was measured
weekly with a caliper-like instrument. Individual tumour
volume V" was calculated with the formula V' = % length x

width?. Tumours of each model were further transplanted
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into 2-4 mice after a tumour volume of ~1.2 cm?® was
reached. Where possible, snap frozen tumour samples from
each passage (up to 10 passages) were conserved and stored
at —80°C for further analysis.

DNA library preparation and sequencing

DNA preparation. DNA from frozen tissue samples
was isolated using a TissueLyser and the AllPrep
DNA/RNA/Protein Mini Kit (Qiagen) according to
the manufacturer’s recommendations. Samples were quan-
tified using the NanoDrop ND-2000 (Thermo Scientific).

MeDIP-Seq. 1.3 g of genomic DNA were randomly
sheared using the Covaris S2 or M system to assess a size
range of 100-300 bp. Illumina library preparation was per-
formed by using the TruSeq DNA Sample Preparation Kit.
Fragmented DNA was end repaired into dA-tailed frag-
ments. The TruSeq indexed adaptor was then ligated to
the fragmented DNA. Adaptor-ligated DNA was further
cleaned up by AMPure XP beads (Beckman Coulter), de-
natured and then subjected to the methylated DNA im-
munoprecipitation (MeDIP) procedure. MeDIP was per-
formed using 5 wg of a monoclonal antibody against
S-methylcytidine (Eurogentec) coupled to magnetic Dyn-
abeads with M-280 sheep antibody against mouse IgG
(Thermo Fisher Scientific). Sequencing libraries were de-
natured at 95°C for 10 min and incubation with the beads
was carried out at 4°C for 4 h in the IP Buffer (10 mM
sodium phosphate buffer (pH 7.0), 140 mM NacCl, 0.25%
Triton X100). Beads were washed three times with the IP
buffer and DNA was eluted in the elution buffer (50 mM
Tris—HCI (pH 7.5), 10 mM EDTA, 1% SDS) at 65°C for
15 min. The beads were then treated with proteinase K
for 2 h at 55°C, and methylated DNA was recovered using
the QIAquick PCR Purification Kit from Qiagen. Assess-
ment of the MeDIP efficiency was conducted with quan-
titative PCR (qPCR) targeting spiked-in controls as well
as further methylated and unmethylated genomic regions.
Following MeDIP enrichment, libraries were PCR ampli-
fied, size-selected and quantified using the Quant-iT ds-
DNA HS Assay Kit and a Qubit 1.0 Fluorometer from In-
vitrogen. Paired-end 2 x 50 bp libraries were sequenced us-
ing the HiSeq2500 platform (Illumina), yielding 57-111 mil-
lion reads per sample.

Methyl-Seq. The Methyl-Seq experiments were con-
ducted using the SureSelectXT Methyl-Seq Target Enrich-
ment System by Agilent Technoligies. In brief, 3.0 wg of
genomic DNA were fragmented to 100-200 bp using the
Covaris S2 or M system followed by library preparation.
Fragmented DNA was end repaired into dA-tailed frag-
ments. The methylated adapter was then ligated to the frag-
mented DNA. Adapter-ligated DNA was further cleaned
up by AMPure XP beads (Beckman Coulter), denatured
and afterwards hybridized to the RNA capture library for
24 h at 65°C. Following the capturing of the RNA-DNA hy-
brids using streptavidine-coated magnetic beads, the DNA
was separated from the beads, eluted and bisulfite converted
using the EpiTECT Kit (Qiagen). The bisulfite-treated li-
braries were PCR amplified and purified. Finally, the DNA
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was again amplified and barcode sequences where attached
to the sequences. The indexed DNA pool was analyzed with
the 2100 Bioanalyzer High Sensitivity DNA assay (Agi-
lent Technologies). Paired-end 2 x 50 bp libraries were se-
quenced using the HiSeq2500 platform (Illumina), yielding
41-101 million reads per sample.

RNA-seq. Sequencing libraries were prepared from 1wg
of total RNA per sample following the TruSeq stranded
RNA Low Sample protocol (single index; Illumina): Ri-
bosomal RNA was depleted using the RiboZero Gold Kit
(Epicentre) followed by chemical fragmentation of RNA,
first and second strand cDNA synthesis, 3’-end adenylation
and adaptor ligation. Quality was tracked using the Bioana-
lyzer (Agilent). Libraries were amplified by PCR (15 cycles),
quantified by qPCR and pooled for multiplex sequencing
(34 libraries per lane). Paired-end 2 x 50 bp libraries were
sequenced using the HiSeq2500 platform (Illumina), yield-
ing 92-152 million reads per sample.

Demethylation experiment

Three Iung cancer cell lines (H1299, H1650 and HCC827)
were seeded at 3000-5000 cells per well in a 96-well plate
and allowed to grow for 24 h. Subsequently, the cells were
treated with one of four concentrations (2.5, 5, 10 and 20
pM) of decitabine (DMSO as negative control) for 120 h
with growth medium change every 24 h. After isolation of
the RNA (RNeasy Mini kit, Qiagen) and reverse transcrip-
tion (RevertAid reverse transcriptase, Thermo Fisher Scien-
tific), the expression values of the selected genes were mea-
sured with qRT-PCR (Universal Probe Library, Roche).
ACTB was used as a houskeeping gene.

Computational analysis

Processing of MeDIP-seq. MeDIP paired-end reads were
aligned using bwa Version 0.7.12-r1044 (22). In order to re-
move sequencing reads that originated from mouse DNA
fragments, MeDIP reads from both PDX and human tis-
sue samples were aligned to the mouse/mm10 reference se-
quence first. Only read pairs that, according to the aligner,
did not align properly to the mouse reference were aligned
to the human reference GrCh37/hgl9, and processed in
R 3.2.0 with ‘QSEA’. According to the average fragment
length, the size of the genome-wide windows was set to 250
bases. CNVs were calculated from input and MeDIP reads
based on 1 megabase windows. CpG enrichment function
was calibrated in three different ways: (i) ‘BS calibration’,
based on Methyl-Seq methylation values from regions with
at least 70% methylation in at least half of the samples; (ii)
‘TCGA calibration’, based on mean Illumina 450k methy-
lation values from TCGA LUSC and LUAD cohorts (n =
172) (28,29), for regions with mean methylation >90% and
variance <0.05 and (iii) ‘Blind calibration’, based on the as-
sumption, that average methylation level of CpG depleted
regions is 80%, and decreases linearly with CpG density to
25% at regions with 15 CpGs per fragment. These averages
match our observations for the analyzed samples (Supple-
mentary Figure S1). The two alternative methods, BayMeth
and MeSiC were applied with default parameters, follow-
ing the authors’ instructions on the project web pages. In
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order to minimize the effect of read counting, CNV infer-
ence and CpG density estimation, these steps have been
conducted in QSEA for BayMeth as well. Parameters for
BayMeth empirical Bayes function were method = "DBD’,
mode = "fixedWeights’, weights = ¢(0.1,0.8,0.1). For MeSiC
the preprocessing scripts provided by the authors were used
for read counting. On the web-page, all available sequence
features were selected, and the algorithm was set to Ran-
dom Forest Regression. Resulting base-specific methylation
estimates were averaged in genomic windows in order to
compare the results with the window based methods. The
sequence files of IMR-90 dataset were downloaded from
SRA (accession numbers SRR513111 and SRR513112 for
IMR-90 MBD seq; SRR068932 and SRR068933 for Sssl
treated MBD seq) and aligned to reference GrCh37/hgl9
using bwa 0.7.12-r1044. Processed IMR-90 450k Illumina
human methylation files were downloaded from GEO, ac-
cession GSM1314099, and filtered for detection P-values
<0.01.

Processing of Methyl-Seq. Adapter sequences in paired-
end Methyl-Seq reads were trimmed using trim_galore ver-
sion 0.4.0 and then aligned using bismark v0.10.0 (23) based
on bowtie2 version 2.2.1 (24) with default parameters. Cor-
responding to the MeDIP alignment strategy, Methyl-Seq
reads were aligned to the mouse/mm10 reference first. Read
pairs, not properly aligned to the mouse genome accord-
ing to the aligner have been aligned to the human refer-
ence GrCh37/hgl9. Using bismark_methylation_extractor,
the methylation levels were called at all covered CpG sites.
For subsequent analysis, only regions covered by 20 or more
reads were considered. Methyl-Seq methylation levels were
averaged in 250 base windows in order to compare Methyl-
Seq to MeDIP.

Processing of RNA-seq. By analogy with MeDIP and
Methyl-Seq analysis, RNA-seq paired-end reads were first
aligned to the mouse/mm10, and remaining reads to the
human reference GrCh37/hgl9 using rna-star alignment
tool version 2.4.1.d (25). For both references, we provided
the RefSeq gene annotation file to facilitate mapping of
reads spanning exon-exon junctions. Reads were counted
per gene, using htseq-count version 0.6.1p1 in union mode
(26). For normalization and detection of differentially ex-
pressed genes, we used the Bioconductor package DESeq2
(27). In general, genes with more than 1 FPKM were con-
sidered expressed. For the analysis of variable genes, we
applied variance stabilizing transformation of the DESeq?2
package in order to normalize for the dependency of the
variance to the mean expression.

RESULTS

Workflow for Quantitative Sequencing Enrichment Analysis
The QSEA workflow comprises the following steps (Figure
1):

1. Import of alignment results and counting of fragments
along genomic windows,
2. Normalization for copy number variation,
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3. Normalization for sequencing depth and library compo-
sition,

4. Transformation and quantification of enrichment sig-
nals,

5. Computation of differentially methylated regions,

6. Annotation of DMRs.

Details for each step are given in Supplementary Mate-
rial.

Modeling enrichment profiles enables transformation of
MeDIP-seq read densities to absolute methylation levels

Comparing MeDIP-seq read densities with absolute methy-
lation levels derived from BS sequencing on the same sam-
ples reveals particular characteristics. The MeDIP enrich-
ment signal is dependent on the number of methylated cy-
tosines within the fragment, which is limited by the num-
ber of CpGs. By extracting genomic windows with similar
CpG densities, we observe a linear relation between abso-
lute methylation () and mean normalized sequence read
coverage (Figure 2A). On the other hand, for a fixed level of
absolute methylation, we observe an increase of MeDIP en-
richment from lower to medium CpG density that becomes
saturated at higher levels of CpG density (Figure 2B). We
further observe that regions lacking DNA methylation as
well as regions lacking CpG dinucleotides are covered by
an offset of reads. These ‘background reads’ represent the
noise of the experiment. Especially at regions with low CpG
density and regions with low methylation levels, these back-
ground reads lead to distortion of the signals.

Based on these observations, we model the number of
reads, y, with a Poisson distribution with mean parameter
\ linear in the methylation level 8:

y~ Pois(h=nfx*(+ B *cf(CpG)))

The offset o is the expected read density without enrich-
ment (‘background reads’), which corresponds to the exper-
imental noise. The enrichment signal is the absolute methy-
lation level B multiplied by the CpG-dependent enrichment
function cf(CpQG). This function describes the sample spe-
cific dependency of the MeDIP enrichment and the CpG
density, and can be interpreted as the expected enrichment
if the region were fully methylated. Both the enrichment
signal and the noise are scaled by the sample- and region-
specific normalization factor (nf) which accounts for li-
brary size and composition as well as potential CNV influ-
ences (Supplementary Material).

To estimate the sample specific enrichment profiles
cf(CpQG), we rely on knowledge about the methylation sta-
tus for a set of genomic regions, for example, derived from
targeted BS sequencing. As highly methylated regions have
the best signal to noise ratio, these regions are most suit-
able for calibration. Further selected regions should span a
broad range of CpG densities, in order to cover the genomic
spectrum. In the following, we use three strategies for con-
ducting calibration of model parameters.

1. °BS calibration’: This strategy works with additional cal-
ibration experiments. For the studied samples, we se-
lected between 146 455 and 184 099 genomic windows
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Figure 1. Overview of the QSEA workflow. Green boxes represent data input, functions implemented in QSEA are depicted in blue, and red boxes describe

the respective analysis step performed within these functions.

that are at least 50% methylated in the corresponding
Methyl-Seq experiment, and at least 70% methylated in
at least half of the samples. To estimate the expected en-
richment of fully methylated regions, the observed read
densities of selected regions are scaled according to the
observed BS methylation levels in these regions. These
estimates are grouped into bins of similar CpG den-
sity and averaged. We deduce sample-wise enrichment
profiles by scaling and shifting the sigmoidal function

f(x)= A o these averages. This function is capa-

ble of describing the observed saturation of enrichment
regarding CpG density levels, and fits the observed en-
richment profile (Figure 2C).

In addition to ‘BS calibration’ we explored two ap-
proaches that do not require additional experiments and
thus preserve the cost advantage of MeDIP-seq over whole-
genome bisulfite experiments.

2. ‘TCGA calibration’: Here, we rely on publicly available data

for comparable samples. We used methylation values from
microarray measurements of 54 adenocarcinoma samples
and 32 adjacent normal tissue samples (28), as well as 49
squamous cell lung cancer samples and 37 adjacent nor-
mal tissue samples (29) published by the TCGA consor-
tium. From these cohorts we identified 18 587 genomic
windows with average methylation levels >0.9 over all
samples, covering the full range of CpG density. These re-
gions have low methylation variability over a large set of
samples and are used to calibrate the MeDIP enrichment
profiles.

3. “Blind calibration’: This approach is based on the inverse re-

lationship between methylation and CpG density in verte-
brate methylomes. Commonly, regions with low CpG den-
sity are highly methylated whereas methylation decreases
with higher CpG density levels (30). Accordingly, we as-

sume that regions with low CpG density are 80% methy-
lated on average and that with increasing CpG density,
methylation decreases linearly to 25% for the mean CpG
density of CpG islands (CGls). This assumption provides
a rough estimate for the average methylation levels of win-
dows in this range of CpG density that is used analogously
to the previous calibration strategies.

The Poisson model describes the distribution of the read
coverage y in genomic regions where methylation levels S
are known. In order to estimate methylation levels 8 given
the read coverage y, we apply Bayes’ theorem using an un-
informative, uniform prior and derive a Bayesian posterior
distribution for the methylation level S, given the number
of reads y (Supplementary Material).

Approximating the quantiles of the posterior distribu-
tions with binary search allows the calculation of credibility
intervals for the estimates. Figure 2D shows an example of
estimated methylation and credibility intervals dependent
on MeDIP coverage at a hypothetical genomic window that,
when completely unmethylated, would be covered by four
reads, and when fully methylated, by 25 reads on average.

QSEA accurately quantifies methylation and improves over
existing methods

We compared the accuracy of QSEA methylation estimates
with BayMeth and MeSiC using two experimental data
sets. The first dataset (in vitro) consists of an enrichment-
based methylation assay data (MBD-seq) of IMR-90 cells,
and Illumina 450k HumanMethylation array data from the
same cell line (18). The samples of the second data set
(in vivo) are derived from tumours from five human non-
small cell lung cancer (NSCLC) patients, that had been
transplanted after surgery onto xenograft mice (patient de-
rived xenografts, PDXs), as well as normal lung tissue ad-
jacent to the tumours. We generated genome-wide methyla-
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coverage of fully methylated regions (dashed green line). (D) Exemplary illustration of methylation estimates depending on MeDIP read density, assuming

four background reads and 25 reads at fully methylated windows.

tion experiments for all samples using MeDIP-seq, as well
as targeted BS sequencing, using Methyl-Seq. Addition-
ally, within the MeDIP protocol, parts of the sequencing li-
braries have been sequenced prior to MeDIP enrichment at
low coverage (input sequencing) in order to estimate CNV
levels of the PDX samples.

For the IMR-90 dataset, the enrichment profile was cal-
ibrated by QSEA following two of the strategies described
in the previous section: first calibration was based on the
‘true’ methylation information obtained from 450k Hu-
manMethylation arrays (‘BS calibration’), and second cal-
ibration was based on the inverse relation of CpG den-
sity and methylation (‘blind calibration’). BayMeth was run
in two calibration modes as well: the first used the Sssl
treated IMR-90 control sample (‘Sssl calibration’), the sec-
ond did not use the additional experiment (‘blind calibra-
tion’). For the calibration of MeSiC, we selected all avail-
able sequence features. To compare MeSiC methylation es-
timates, which are reported at CpG resolution, with the two
window-based approaches, BayMeth and QSEA, we aver-
aged MeSiC methylation values within the windows. We

quantified the accuracy of the different methylation esti-
mates resulting from the three different methods by calcu-
lating the Spearman correlation coefficient with 450k Hu-
manMethylation values.

Spearman correlations of QSEA methylation estimates
with 450k are high for both ‘BS calibration’ (0.819) and
‘blind calibration’ (0.805). BayMeth results in a correlation
of 0.786 with ‘blind calibration” and 0.655 with ‘SssI cali-
bration’. Methylation estimates of the MeSiC RFR model
compared to 450k results in a correlation of 0.594 (Figure
3A).

Particularly at lower to medium methylation levels,
QSEA benefits from explicitly modeling background reads:
while BayMeth tends to overestimate methylation for these
regions, QSEA shows less deviation from 450k values (Fig-
ure 3B). Taken together, we see that without Sssl calibra-
tion, QSEA and BayMeth perform comparably well on the
IMR-90 benchmark. With Sssl calibration, Baymeth over-
estimates intermediate methylation levels.

Next, we compared the performance of QSEA with
MeSiC and BayMeth using the lung cancer PDX dataset.
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for QSEA estimates.

In addition to allowing the assessment of the accuracy of
the methylation estimates, this dataset provides the oppor-
tunity to analyze how well the methods correctly quantify
methylation differences between pairs of samples which is
essential for comparative methylation analysis and practi-
cal applicability to patient cohorts.

For QSEA, we used all three different strategies for en-
richment estimation described in the previous section: (i)
enrichment estimation based on targeted BS sequencing
(‘BS calibration’), (ii) enrichment estimation based on in-
variable methylated regions in TCGA LUAD and LUSC
cohorts ("TCGA calibration’) and (iii) enrichment estima-
tion based on the inverse correlation of CpG density and
methylation (‘blind calibration’). Since no corresponding

SssI experiments for these samples are available, we applied
BayMeth in ‘blind calibration’ mode only. For the MeSiC
RFR model, we used all available sequence features.

In line with the results from the IMR 90 dataset, QSEA
performs comparably well for all three calibration configu-
rations, as expected for the similar enrichment profiles, re-
sulting in Spearman correlation coefficients between 0.75
and 0.84 for all patients. Correlation for BayMeth is 0.64
on average and 0.38 for MeSiC (Figure 3C). Again, espe-
cially for regions with low to medium levels of methylation
QSEA estimates are less biased compared to BayMeth and
MeSiC (Supplementary Figure S3).

In order to analyze the ability of the different methods
to capture individual differences between tumour and nor-
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mal tissues, we calculated Spearman correlation coefficients
between MeDIP-seq and BS-seq tumour-normal methyla-
tion differences for each patient. On average this correlation
is 0.71 for ‘blind calibration’ and 0.73 for “TCGA calibra-
tion” and ‘BS calibration” modes, 0.44 for BayMeth ‘blind
calibration’, and 0.02 for MeSiC. For comparison, the pair-
wise correlation between the BS tumour-normal differences
of different patients is 0.51 on average. Based on this cor-
relation analysis, we performed hierarchical clustering. For
all calibration modes, QSEA estimates tightly cluster with
the corresponding BS values (Figure 3D), while for the
other methods the sample relationships can not be recov-
ered (Supplementary Figure S4). This implies that the dif-
ferences between BS sequencing and the QSEA MeDIP es-
timates are minor compared to the differences between the
tumour patients and, thus, that QSEA can be used to infer
cross-sample methylation markers from patient cohorts.

Thus, the comparison shows that QSEA can reliably es-
timate methylation levels, without the need for additional
experiments. For the following sections, we thus use QSEA
with “TCGA calibration’ (option 2 above). Since this cali-
bration mode is completely independent from the Methyl-
Seq experiments, the Methyl-Seq B values can be used as a
validation dataset in the following.

Differentially methylated regions computed with QSEA are
supported by bisulfite sequencing and the literature

We further explored the performance of QSEA with respect
to the detection of DMRs between PDX and normal tissues
using the five patients as replicates. This comparison yields
105,426 genome-wide DMRs with an FDR <0.01, of which
11 098 are hypermethylated and 94 328 are hypomethylated
in the tumours. Of these DMRs, 62.7% are located in inter-
genic regions, 33.4% in introns, 6.1% in promoter regions
and 3.6% in exons.

QSEA found DMRs within CGI promoters of 1556 dif-
ferent genes, of which 1306 were hypermethylated, and 250
were hypomethylated (Supplementary Table S1). Confirm-
ing the results from the previous sections, for these regions
we also observed a very good correlation (0.87) between
QSEA methylation estimates and BS methylation values,
emphasizing the high reliability of the method (Figure 4A).
In total, 81 CGI promoter DMRs were not directly cov-
ered by Methyl-Seq probes, but could be approximated from
probes in neighbouring regions. Another 63 CGI promoter
DMRs were solely identified by the genome-wide MeDIP
approach, without any neighbouring Methyl-Seq probes
(visible as red points on the horizontal axis in Figure 4A).
Even though probes for targeted approaches are designed
to cover CGls, the genome-wide MeDIP approach is more
exhaustive for these regions: while 99.9% of regions over-
lapping CGls are sufficiently enriched in all MeDIP experi-
ments (>3 reads expected enrichment), these numbers drop
significantly with targeted BS-methods where 74.2% of the
CGls are covered by Methyl-Seq probes and 43% with Hu-
manMethylation 450k arrays (Supplementary Figure S5).

Among genes with hypermethylated CGI promoters, we
found 107 known tumour suppressor genes (TSGs), ac-
cording to the TSGene database (31). Figure 4B shows
the 20 TSGs with largest differences in methylation be-
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tween tumour and normal samples. The literature sup-
ports the detected methylation differences: Differential pro-
moter methylation for cysteine dioxygenase 1 (CDO1, mean
QSEA methylation level of 4% in normal and 78% in PDX)
has already been described as part of a DNA methylation
signature to detect minimally and non-invasive lung cancer
(32-34). Other prominent methylation markers of NSCLC
are, for example, paired box 6 (PAX6, mean QSEA methy-
lation level of 7% in normal and 79% in PDX) whose pro-
moter hypermethylation has been found to be significantly
associated with poor overall survival (35) but also genes like
CDX2, CEBPA, HOXBI13 and SOX11, that are well de-
scribed epigenetically regulated genes involved in tumouri-
genesis of several cancers (36-40).

In summary, DMRs identified with QSEA could be val-
idated with BS data and reveal important and well-known
markers for NSCLC tumour progression.

QSEA reveals gene regulation by CGI promoter hypermethy-
lation

In order to assess the effects of differential methylation on
gene expression regulation, we additionally performed gene
expression experiments using RNA-seq of the PDX and
normal samples. Out of 1556 genes with promoter DMRs,
757 are expressed (>1 FPKM) in at least two of the ana-
lyzed samples. For 330 of these genes, expression and pro-
moter methylation are anti-correlated (Spearman correla-
tion < —0.5), corresponding to the expected regulatory ef-
fect of DNA methylation at CGI promoters (Figure 4C).
Additionally, from the 757 expressed genes with promoter
DMR, we identified 300 to be differentially expressed be-
tween PDX and normal tissue. According to the anticor-
relation of promoter methylation and expression, 233 of
these are either hypermethylated and down-regulated or hy-
pomethylated and up-regulated (Figure 4D).

In order to confirm selectively the causative effect of pro-
moter hypermethylation on repression of gene expression
in vitro, three different NSCLC cell lines (H1299, H1650,
HCCS827) were demethylated by treatment with different
concentrations of decitabine, an inhibitor of DNA methyl-
transferase. We selected seven genes with promoter hyper-
methylation and accordingly anti-correlated gene expres-
sion (<—0.5) and compared gene expression changes rel-
ative to untreated control samples. Among the selected
genes were well-studied cancer-relevant genes like tumour
suppressors (HLF, FOXA2, STATSA, ALDHI1A?2), recep-
tor tyrosine kinases (PDGFRA), and potential biomarkers
(NKX2-1, CLECL14A), most of them with a distinct role
in NSCLC. All down-regulated genes showed increased ex-
pression in at least one cell type after reversal of the pro-
moter hypermethylation, suggesting that gene expression of
those genes is indeed controlled by promoter methylation
(Figure 4E).

QSEA detects functional mechanisms affected by differential
methylation

In order to exploit the full potential of the genome-wide
methylation information from the MeDIP-seq experiments,
we interrogated QSEA for inference of functional mecha-
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nisms other than CGI promoter hypermethylation. As men-
tioned above only 6.1% of the detected DMRs were located
in promoter regions and 3.6% in exons, respectively, whereas
33.4% were located in introns and 62.7% in intergenic re-
gions. The function of DNA methylation at those regions is
still elusive, and they are covered to a lesser extent by tar-
geted methods such as 450k arrays or Methyl-Seq. To infer
functional mechanisms we analyzed the enrichment of ge-
nomic features and annotations within the DMRs (Supple-
mentary Figure S6).

As expected, we found strong enrichment of hypermethy-
lation at CGI promoters: from 11 098 hypermethylated re-
gions genome-wide, 2,971 regions are overlapping CGIs at
promoters, corresponding to 42.7-fold enrichment. On the
other hand, this implies that 73% (i.e. the remaining 8127)
of hypermethylated DMRs are outside those well studied re-
gions. Interestingly, we found even stronger enrichment (48-
fold) for CGIs that are not in proximity to promotor regions
of known genes. These regions may act as enhancer sites,
whose functions have been reported to depend on methyla-
tion and, in the case of cancer genes, influence tumour prop-
erties (41). We therefore analyzed the enrichment of DMRs
in 161 transcription factor binding sites, obtained from EN-
CODE (42).

We found the enrichment of hypermethylated sites highly
variable for the binding sites of individual transcription fac-
tors. In line with the functional impact of Polycomb Re-
pressive Complex 2 (PRC2) in tumour development, regions
targeted by components of this factor are highly enriched
for gain of methylation: 54.5% of all hypermethylated re-
gions overlap with PRC2 binding sites (EZH2 and SUZ12),
which corresponds to a 102-fold enrichment compared to
the genome (Figure 5A).

Globally, hypomethylation is predominant in cancer
compared to hypermethylation, but less enriched in anno-
tated regions. We found 94 328 regions with loss of methyla-
tion, corresponding to 0.82% of the genome. These regions
are agglomerated in large hypomethylated blocks (LHB)
of 0.1-12 Mb in size (Figure 5C), which has been shown
to be a characteristic feature for several types of cancer
(43). Interestingly, within the hypomethylated regions, we
found less hypomethylated regions in promoter CGIs than
expected by chance (one third), but a 2-fold enrichment
of CGls distal to promoters. Again, many of these distal
DMRs overlap with enhancers containing particular TFBS.
For example, the binding sites of the histone modifiers
SMARCCI1,SMARCC2 and SMARCBI show 2- to 3-fold
enrichment in loss of methylation, suggesting a role of DNA
methylation in chromatin remodeling by the SWI/SNF
complex, a mechanism known to be involved in carcinogen-
esis (44). Further, TFBS enriched for loss of methylation
belong to RNA polymerase III (RPC155, GTF3C2, BDP1)
and activator proteins AP-1 (FOSL1, FOSL2, JUNB) and
AP-2 (TFAP2A, TFAP2C) (Figure 5B).

In general, the fact that DMRs are enriched with specific
transcription factor binding sites suggests that DNA methy-
lation dependent mechanisms related to those factors are in-
volved in tumourigenesis. In particular, it is frequently the
case that regulatory sites with loss of methylation are not
located near promoters of known genes, indicating a role of
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DNA methylation in the control of transcription of distal
genes.

QSEA is fast, flexible and easy to use

The described methods are implemented as an R package,
‘QSEA’, which is available at the Bioconductor repository
(20): www.bioconductor.org/packages/qsea.

The complete analysis of 10 human MeDIP-seq samples
with low coverage input sequencing took 95 min on a single
core computer, and allocated a maximum of 14 GB main
memory. A large part of the runtime is required for pro-
cessing the alignment files: Import of MeDIP-seq alignment
files and counting of reads overlapping genome-wide 250
base windows took 37 minutes, and CNV analysis includ-
ing the import of low coverage input alignment files took
11 min. The analysis of CpG density of the human genome
took 21 min. Calculation of the remaining normalization
parameters, including calculation of effective library size,
estimation of offset reads and analysis of MeDIP enrich-
ment took ~2 min. The detection of differentially methy-
lated regions took 13 min for fitting the null model and es-
timating the dispersion for genome-wide windows, and 12
min for fitting a reduced model and testing the contrast.
QSEA supports parallel scanning of alignment files on mul-
ticore computers, which reduced runtime for this step to 5
min on 10 cores (Supplementary Figure S7).

Importantly, once these computational steps have been
performed, QSEA provides functions to retrieve all infor-
mation for any regions of interest, for example, regions de-
fined by genome annotations or by differential methylation.
Normalized values and methylation estimates for those re-
gions are computed on request, instead of storing different
values for all genome-wide windows. This approach allows
both efficient usage of memory, as well as fast and flexi-
ble access to results of interest. For example, it takes obout
one minute to compile a table for all 105,426 genome-wide
DMRs, containing the raw read counts, normalized cover-
age, and estimated methylation values including the credi-
bility interval for the estimates and adding comprehensive
annotation.

DISCUSSION

We developed a novel analysis workflow, QSEA, for Quan-
titative Sequencing Enrichment Analysis, in particular for
MeDIP-seq experiments. The workflow contains a Bayesian
model for estimating absolute levels of methylation from
genome-wide enrichment of methylated DNA fragments.
This approach is based on a Poisson model that accounts
for experimental noise by explicitly modeling background
reads. The parameters for the model can be calibrated us-
ing data from additional experiments, published data sets
or general assumptions. Furthermore, QSEA provides func-
tionality for the estimation of CNVs from sequencing data,
and incorporates this information to normalize local read
density. For detecting differentially methylated regions we
implemented a method based on generalized linear models.
A collection of methods and functions for descriptive anal-
ysis and depiction of the results complements the software
package.
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We tested the practical applicability of QSEA for patient
studies on MeDIP-seq data from five pairs of lung cancer
PDX models and adjacent normal tissue. Using targeted
bisulfite sequencing, we showed that the QSEA methyla-
tion estimates are highly accurate and, in contrast to pre-
vious methods, the performance is not dependent on addi-
tional experiments on the same samples. Additionally, the
identified differentially methylated regions (DMRs) were
confirmed by the literature. By integrating CGI promoter
methylation and gene expression, we quantified the func-
tional impact of gene silencing by promoter methylation.
We found CGIs and binding sites for members of PRC2
enriched for gain of methylation, and CGIs distant to pro-
moters as well as different specific TFBS enriched for loss
of methylation. Overall, we demonstrated a comprehensive
methylome analysis of cancer samples from MeDIP-seq ex-
periments.

We further evaluated the importance of additional exper-
iments for the analysis of MeDIP-seq data. Besides bisul-
fite calibration data, which can be replaced by alternative
calibration strategies, sequencing of input libraries is com-
monly required for normalization of enrichment based se-
quencing assays. Within the QSEA pipeline, this input se-
quencing is used for the estimation of CNVs, by compar-
ing the read densities within broad genome-wide windows
(typically between 100 kb and 2 Mb). In the absence of in-
put sequencing, QSEA can apply this procedure on methy-
lation enriched sequencing data by considering only read
fragments without CpG dinucleotides (typically ~10% of
the reads) This approach enables the user to estimate and
incorporate CNV without additional experimental efforts.
However, the strategy is only suitable for samples where
DNA methylation is occurring exclusively in CpG context.

Targeted approaches based on bisulfite conversion limit
the analysis on selected regions, which usually correspond
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to known functions of the methylome. For our samples,
only 39% of hypermethylated windows overlap with Illu-
mina 450k probes, and 78% overlap Agilent Methyl-Seq tar-
get regions (Supplementary Figure S5b). Thus, only a frac-
tion could have been discovered using these targeted ap-
proaches. The full extent of this advantage becomes clear
when comparing the coverage of hypomethylated regions:
only 2% of hypomethylated windows overlap with Illumina
450k HumanMethylation probes and 5% with Methyl-Seq
probes. Thus, MeDIP-seq offers a far more complete pic-
ture of the methylome and allows the investigation of yet
unexplored functions of DNA methylation.

For computing DMRs we applied generalized linear
models, which are a very popular approach for the detection
of differential sequencing read counts, originally for RNA-
seq. They can account for complex experimental designs
and for unwanted influences like batch effects. It would be
desirable to be able to test the linear relation of enrichment
and numerical factors (for example patient age, response to
treatment or other clinical parameters). However, a direct
application of numerical factors on the implemented GLM
would detect exponential rather than linear relations, due
to the logarithmic link function, which is required to match
the domains of the linear predictor and the response vari-
able (the read density). An adaption of the approach might
provide such functionality.

We also compared the quantified DMRs from our study
to published studies which used larger cohorts of patients
and microarray technology. Strikingly, a moderate to strong
correlation (0.62) of the methylation differences between
tumour and normal tissue was observed when compared
with the TCGA lung cancer study. This is remarkable since
these DMRs seem stably detectable across multiple plat-
forms (MeDIP-seq vs Illumina HumanMethylation 450k
array), different cancer models (PDX vs primary tumours)
and even different tumour subtypes. (Supplementary Figure
S9)

Furthermore, we observed a group of regions that show
high beta levels with respect to BS-seq but rather low lev-
els estimated from MeDIP-seq (Supplementary Figure S3).
This might in fact be explained by the differences to BS-
technology since the antibody used for MeDIP enrichment
is specific for SmC, while bisulfite conversion based meth-
ods cannot distinguish SmC and ShmC. The observed dif-
ferences might thus reflect the level of ShmCs in the samples
under analysis.

Although we focused on MeDIP-seq specific function-
ality for this report, QSEA offers useful functions for the
analysis of ChIP-seq as well. The commonly applied peak
based approaches are limited, especially for the detection
of differentially enriched regions between groups of sam-
ples. In addition to the functionality of MEDIPS, which has
been applied to H3K4me2 ChIP-seq of blood samples from
asthma patients (17), the ability to normalize for the effect
of CNV also allows the application of QSEA methods to
cancer samples.

In summary, QSEA is a highly reliable, flexible and ef-
ficient method to quantify DNA methylation from enrich-
ment based experiments, and to identify aberrant methyla-
tion.
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