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Soft robotic grippers are increasingly desired in applications that involve grasping

of complex and deformable objects. However, their flexible nature and non-linear

dynamics makes the modelling and control difficult. Numerical techniques such as Finite

Element Analysis (FEA) present an accurate way of modelling complex deformations.

However, FEA approaches are computationally expensive and consequently challenging

to employ for real-time control tasks. Existing analytical techniques simplify the modelling

by approximating the deformed gripper geometry. Although this approach is less

computationally demanding, it is limited in design scope and can lead to larger estimation

errors. In this paper, we present a learning based framework that is able to predict

contact forces as well as stress distribution from soft Fin Ray Effect (FRE) finger images

in real-time. These images are used to learn internal representations for deformations

using a deep neural encoder, which are further decoded to contact forces and stress

maps using separate branches. The entire network is jointly learned in an end-to-end

fashion. In order to address the challenge of having sufficient labelled data for training,

we employ FEA to generate simulated images to supervise our framework. This leads

to an accurate prediction, faster inference and availability of large and diverse data for

better generalisability. Furthermore, our approach is able to predict a detailed stress

distribution that can guide grasp planning, which would be particularly useful for delicate

objects. Our proposed approach is validated by comparing the predicted contact forces

to the computed ground-truth forces from FEA as well as real force sensor. We rigorously

evaluate the performance of our approach under variations in contact point, object

material, object shape, viewing angle, and level of occlusion.

Keywords: soft robotics, finite element analyses, fin ray, force prediction, deep learning CNN, soft robotic gripper,

stress profiling, machine vision

1. INTRODUCTION

One of the primary applications of soft-robotics is adaptive grasping. The use of a passive,
complaint structure which adapts to an object’s geometry has showed great promise in applications
when easily deformable and/or frangible objects are to be manoeuvred, such as in the automated
harvesting of soft agri-food produce (Hemming et al., 2014). A great deal of work has been carried
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out within the broad field of soft-robotics, with many adaptive
grippers having been developed (Rus and Tolley, 2015), including
pneumatic (Hao et al., 2016), wire driven (Hassan et al.,
2015), granular jamming (Brown et al., 2010), and compliant
mechanism (Petković et al., 2013) based grippers. One such
design which has shown great promise utilises what is commonly
referred to as the “Fin Ray Effect” (FRE), originally presented by
Festo Gmbh (Bannasch and Kniese, 2012; Festo, 2014).

The FRE demonstrated by such grippers, mimics the
biomechanical means in which fish fin operate. The result
is a compliant grasping finger which requires no embedded
actuation. The grippers deform when they come into contact
with an object, adapting to the objects shape. The grippers are
scalable and versatile in their application. FRE style grippers
have been explored within literature for a range of applications.
Our previous work (Elgeneidy et al., 2019) focused on the
optimisation and characterisation of the FRE “cross-beams” to
maximise the layer jamming effect, whilst maintaining high
initial contact deformation. This work carried over into a Finite
Element Analysis (FEA) of the 3D-printed FRE grippers, with
our design being further optimised for layer jamming (Elgeneidy
et al., 2020). The geometry of the gripper used in this work
is based on our previous research (Elgeneidy et al., 2020). The
gripper is completely flexible, directly printed in TPU flexible
filament. The geometry differs from the original Festo design
(Figure 1A) of the gripper though the use of flexible ribs which
vary in angle, with a 3◦ ascending variance between them
(Figure 1B). The result of these design changes is a gripper with
variable stiffness thanks to the jamming of the ribs against one
another under deformation. Analytical modelling approach for
this fully soft FRE gripper is non trivial due to the layer jamming
behavior causing a more non-linear response.

One of the drawbacks presiding over the field of soft-robotics
is the use of sensors and contact modelling (Wang et al., 2018).
The compliant structures do not lend themselves to traditional
methods of modelling and control, as such new systems have
needed to be developed. With the FRE grippers, a traditional
actuator can be used; swapping out the rigid grippers for soft
FRE grippers. The use of a rigid arm robotic system with soft-
gripper end device, allows for the implementation of a traditional
control system up to the end device, simplifying the procedure
whilst maintain adaptive grasping. This approach, however, fails
to consider the grippers own state (proprioception) and that
of external stimuli (exteroception), such as the contact object,
as the end device is still a passive compliant structure. Other
numerical approaches, such as FEA modelling are often have
larger processing time and which makes them difficult to adapt
for real-time robotic applications, especially when modeling
complex and deformable bodies without prior knowledge of the
target objects.

In this paper we present a machine learning based approach
that is able to predict the contact forces for Fin Ray fingers in
real-time using images from an external camera, circumventing
the requirement of force sensors in a close loop control
system. Figure 2 outlines the procedure used to conduct this
work. Firstly a CAD rendering of the gripper is produced and
simulated using the finite element method. The images and force

measurements exported from this simulation is used to train the
deep convolutional neural network (CNN). The verification of
the system is performed by testing the gripper on a custom rig
which records the resultant force caused by the displacement of
the gripper onto the test object. A recording of the experiment
is then segmented and fed into the CNN. The resultant is a
stress map and the corresponding resultant forces. These results
are then be verified against the experimental data and the
FEA simulation.

2. CURRENT LITERATURE

One of the major difficulties presiding over the field of soft-
robotics is accurate modelling of the gripper in real time.
Complaint structures inherently do not lend themselves to
traditional analytical techniques and the use of integrated
sensors can compromise performance. FRE soft-grippers can
be described as a 4D-printed structure, responding to external
stimuli through layer jamming. Various techniques have been
proposed developed in an attempt to model and characterise
the behavior of such grippers (Zolfagharian et al., 2020). One
such technique is to use a FEA approach. In terms of gripper
optimisation, this is a well explored topic, with many successful
examples of its application (Crooks et al., 2016; Basson et al.,
2018; Emerson and Elgeneidy, 2020; Sun et al., 2020). Generally
however, FEA is a computationally intensive process that is often
time consuming, whichmakes its difficult as ameans of providing
real-time feedback control. A reduced order finite element model
has been developed (Largilliere et al., 2015; Zhang et al., 2016).
This work and more recent attempts (Katzschmann et al., 2019;
Koehler et al., 2019) show promise, yet still presents several
issues. Whilst reduced order FEA has been developed for soft
robotics, Tonkens et al. (2020) it has yet to be experimentally
verified and the technique has not yet been demonstrated on FRE
grippers. The non-linear behaviour of this work’s layer jamming
fully flexible FRE gripper, would also provide an added degree
of difficulty.

Work has been performed to produce a kinetostatic model of
the FRE grippers for force estimation (Shan and Birglen, 2020).
This approach constructs a pseudo rigid body mechanics model,
with parameters taken from the geometry and a finite element
model. This model’s main purpose is aid in the task specific
optimisation of the FRE gripper. A similar approach has been
used in Kim et al. (2017) to develop a soft robotic glove and in
the pneumatic gripper seen in Wang and Hirai (2017). All of
these techniques, whilst helpful for optimisation, have not been
utilised in the real-time control of the grippers, nor are they able
to estimate the contact force without significant input data. The
geometric complexity of the FRE gripper is limited here, with
a uniform rigid cross beam structure. An analytical modelling
approach would be significantly more complex for other FEA
grippers utilising layer jamming behaviour.

Sensors have been incorporated into the design of many soft-
grippers as a means of providing feedback for control. Some
examples, where load cells have been incorporated into the design
of compliant gripper (Abdeetedal and Kermani, 2018) or novel
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FIGURE 1 | Fin-ray-effect gripper designs, (A) original fin ray gripper (Festo, 2020) presenting rigid ribs with a flexible outer layer, (B) modified fin ray gripper, the layer

jamming effect can be seen (left) where the ribs “jam” together under deformation causing the effective stiffening of the gripper.

FIGURE 2 | Pipeline: In this work we aim to learn the contact force and stress maps for a fin ray finger using visual input from an external camera. We employ images

captured via the FEA simulation of the gripper to train our deep network. Once trained, the network could be employed to predict forces and stress in real time from

the deformation images.

techniques such as the use of electro-conductive yarn (Matsuno
et al., 2018), would not be suitable for the FRE finger style
grippers. Other designs have moved away from the finger style
approach, incorporating sensors in a larger compliant system
(Petković et al., 2014). With regards to the finger style FRE
grippers, sensors have placed on the surface for use within a
haptic feedback system (Basson and Bright, 2019). These sensors
however impact the way that gripper deforms on initial contact
and demonstrated a slow system response. There has also been
work conducted on an object recognition task based on deep

convolutional neural networks (DCNNs) using a flexible sensor
mounted to the surface of an FRE gripper (Gandarias et al., 2018).
Whilst good results were achieved, the sensor placement has an
impact on the compliant structure of the gripper and was shown
to be less accurate when used with a fully flexible structure.

The challenge of connecting sensors to a soft-robotic gripper
is nontrivial. Each sensor will require wires running to it,
which must be channelled in such a way as to not impede the
rest of the structure. To compensate for this, and the issues
with reduced gripper deformability, the use of 3D-printing
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embedded soft-sensors (Shih et al., 2019) has been carried out,
though this is still in its early stages. Soft electronic skins (Shih
et al., 2020), containing a multitude of embedded sensors have
also been examined for their application in the control and
proprioception of soft-robots. Such sensors generally have a
high resolution, requiring a complex algorithm to extract the
useful information. Due to this, the use of machine learning
techniques, in conjunction with soft skins, have shown promise.
The complexity still proves problematic however, and soft skins
have yet to make a great impact on soft-robotic control.

Tactile sensing is another means of control which has been
shown to be effective, with some systems being able to estimate
the deformation of a manipulated soft object (Sanchez et al.,
2018). Such systems however primarily use a rigid structure,
which can be modelled and controlled using traditional means,
with only the contact pads providing the tactile feedback. The
TacTip project (Ward-Cherrier et al., 2018) uses an optical
approach to create 3D-printed tactile sensors. A series of pins,
which mimic the structure of human skin, are created on a
flexible surface. The vision system then determines a pressure
map with a granularity based on the number and density of the
pins. This is still limited however and would not be suited to
FRE grippers.

Motivated from the ability of current learning based
techniques to process higher dimensional data such as images,
recent approaches such as Baghaei Naeini et al. (2020), She et al.
(2020), Sferrazza et al. (2020), Han et al. (2018), and Liang et al.
(2018) aim to employ deep learning based architectures to predict
contact forces and stress maps. A few of the approaches rely
on sensors (Han et al., 2018; She et al., 2020; Thuruthel et al.,
2019) to predict the forces from sensory feedback, however, there
is a limit to the amount of data which can be recorded, along
with effecting the compliance of the gripper and the difficulty
in wiring. For instance, a technique is purposed in She et al.
(2020), whereby a computer vision based system incorporating
a convolutional neural network is used to proprioception and
exteroception of the wire driven soft-grippers. The system whilst
effective, is still limited in the range of data captured and there no
contact force estimation present. Buso et al. (2020) the measured
colour changes in tandem with pressure readings were used to
determine the force acting on a soft-robotic cushion. However,
such sensors could not be used with FRE grippers due to the
flexibility of the grippers. Alternative approach is to employ a
vision based system such as a tactile sensor (Sferrazza et al.,
2020) or a dynamic vision system (Baghaei Naeini et al., 2020) on
gripper which observes the indentation of a deformable surface,
rather than the gripper/compliant structure. The system utilises
a machine learning system, trained via simulated data in order
to estimate a contact force map. This system was shown to
be effective but is limited to deformable objects and requires
proximity for the vision system. The FRE design is naturally
well-suited for vision-based systems, as unlike other grippers,
there is no shell obscuring the internal structure. In this work,
we employ an external camera to observe the deformations
of the FRE fingers rather than objects to predict forces and
stress map. Specifically, here we utilise our previously developed
FEA model (Elgeneidy et al., 2020) to capture video simulation

data of the deformation and colour coded stress-map to act as
training data for a deep neural network. This is performed with
aim of providing real-time contact stress mapping and resultant
grasping force estimation of our layer jamming FRE gripper
from visual data. Although in this work we focus only on the
FRE gripper, our approach could be easily extended to other
deforming gripper designs.

While the recent data driven techniques provide a promise to
map forces from visual information, they require a large amount
a data to do so. Thus, recent approaches employ simulators as
surrogate for the real data (James et al., 2019; Zakharov et al.,
2019). Liang et al. (2018) use FEA to predict stressmaps in human
organs, however they only showcase the results on simulation
data. Similarly, for force estimation (Sferrazza et al., 2020) use
simulation data from FEA to train their deep network. They
present prediction results for real-world data, however only limit
to cylindrical objects. In this paper we employ FEA to learn
jointly learn contact forces and stress map from FRE deformation
images. To the best of our knowledge, this is the first deep
learning based approach that is able to predict contact forces as
well stress profiles in real time from FRE deformation images.We
also showcase the generalisation of our approach to arbitrarily
shaped objects and to different materials. Finally we compare
the predictions achieved by our approach vis-a-vis force sensor
which showcases the efficacy of our approach.

3. FEA PROCEDURE

The Finite Element Model utilised was previous developed for
the optimisation of the Fin Ray rib structure, maximising the
layer jamming effect for gripper force generation (Elgeneidy et al.,
2020). This section will act as a summary of the model used,
with the full details regarding the model and its validation being
contained within the previous work. The model was created in
the Static Structural package of ANSYS Workbench 19.3 (Ansys,
Inc). This platform once configured allows for the gripper’s
deformation and resultant force generation to be determined and
visually displayed from a range of input parameters. The outline
of the procedure is that the gripper will remain static, with the
object being displaced into the gripper; this simulates the effect
of the gripper’s deformation during an object grasp. The data
and simulation video are captured during this and used to train
the deep neural network. This section will break down the key
defining aspects of the simulation namely the geometry, material
definition, constraints, and result exportation.

3.1. Geometry
3.1.1. Gripper
The geometry of the gripper was previously optimised within
ANSYS Workbench. The gripper profile follows the basic FRE
gripper outline, with the major adjustment from the original
FESTO concept being the variable angled “ribs” designed for
maximum layer jamming. The profile of the gripper is presented
as a 2D CAD model, created in the ANSYS Workbench CAD
package “Design Modeller.” The 2D profile is later extruded
during simulation to give a 20 mm wide gripper.
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FIGURE 3 | Object height increments. We capture the variations in point of contact by explicitly generating training simulations for object contacts at three different

heights representing contact forces at low, mid, and high point.

3.1.2. Objects
The objects are defined in the same drawing as the gripper. Just as
with the gripper, the 2D drawing is produced and later extruded
to 20 mm during the simulation process. The objects contact
the gripper at three height increments relative to the objects
centre point and the base of the gripper (Figure 3). The height
increments are 20, 30, and 40mm.

The objects shown in Figure 4, comprise of some primary
shapes with varying size and approach angles, along with more
abstract shapes. Each of the shape is dimensioned around a centre
point, used for the height increments, and with a constraint
which ensures that the object’s contact surface remains offset 0.1
mm to the angled contact face of the gripper. Three different size
circles are used: 5 mm (Figure 4A), 10 mm (Figure 4B), 20 mm
(Figure 4C). These are the simplest object as angle is indifferent
and the contact area is distributed rather than concentrated
around a small focal point. A small contact point can in some
instances create excessive localised forces outside of the current
material model limits. The square shapes for this reason feature
a small fillet (0.5 mm) to counter this excessive localised stress.
The squares are sized at 15 mm (Figure 4D), 10 mm (Figure 4E),
and 5 mm (Figure 4F) and are angled at four 15◦ increments
relative to the base of the gripper (Figures 4G–I). The material
of the objects is by default “structural steel”1, meaning there
is an inconsequential amount of deformation. To demonstrate
the effect of varying the object hardness, a 15 mm hollow ring
(Figure 4J) was used which allows for clear object deformation
to be observed alongside the gripper distortion. This hollow
object is also presented to the gripper at 3 height increments.
The remaining objects (Figures 4K,L) are used to validate the
effectiveness of the trained system. These objects were once again
tested at the three height increments, with the object material
defined as “structural steel.”

1ANSYS engineering data sources: general materials, structural steel.

3.1.3. Mesh Parameters
A uniform mesh is used on both the objects and the gripper.
The mesh method uses the default “mechanical, programmed
controlled,” with an element sizing of 0.5 mm. This level of
granularity was found to be sufficient to run the simulation,
whilst not being excessively time consuming. This was an
important factor given the relatively large number of training and
testing simulating videos which would be produced using this
model. Further optimisation of the meshes could be conduced,
but was not the primary focus of this work.

3.2. Material Definition
The FRE gripper is produced directly using fused deposition
modelling (FDM) 3D-printing. The material used is a TPU based
filament called NinjaFlex (Fenner Inc.)2, one of the most wildly
used flexible filaments. NinjaFlex does not appear as a standard
material within the ANSYS package, as such a custom model
was produced using (Reppel and Weinberg, 2018) as a basis.
The material model has been previously verified and is shown
to closely approximate the behaviour of FDM printed NinjaFlex.
For the soft object test, both structural steel and NinjaFlex were
used alongside ANSYSmaterial library’s “neoprene rubber”3. The
rubber material is significantly softer than the NinjaFlex gripper,
resulting in much of the deformation occurring in the object
rather than the gripper.

3.3. Contacts, Constraints, and
Displacements
The simulation is set-up around defined conditions which aim
to mimic the gripper interacting with objects. For the simulation
to function correctly, any parts which may contact one another
must be defined with a frictional relationship. This is the case for
both the ribs of the FRE gripper and the contact surfaces of the
object and gripper. This is defined with frictional coefficient of

2https://ninjatek.com/wp-content/uploads/2019/10/NinjaFlex-TDS.pdf.
3ANSYS engineering data sources: hyperelastic materials, neoprene rubber.

Frontiers in Robotics and AI | www.frontiersin.org 5 May 2021 | Volume 8 | Article 631371

https://ninjatek.com/wp-content/uploads/2019/10/NinjaFlex-TDS.pdf
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


De Barrie et al. Finray Effect Gripper Force Prediction

FIGURE 4 | (A) 5 mm circle, (B) 10 mm circle, (C) 15 mm circle, (D) 15 mm square, (E) 10 mm square, (F) 5 mm square, (G) square offset 30◦, (H) square offset 45◦,

(I) square offset 45◦, (J) hollow ring (soft-object), (K) abstract test object, (L) pentagon test object.

0.15, modelled via Augmented Lagrange. The base of the gripper
is locked under a static constraint. This allows for the gripper to
flex within its elastic limits in X (horizontal direction normal to
applied force), whilst the base remains static. With this constraint
in place, it is the object which moves into the gripper, rather than
the gripper to the object as would be the norm in the gripper’s
application. To this end the object is acted upon by a remote
displacement of 10 mm in the X direction only, acting from the
centre of the object. The other directional and rotational axis are
fixed. In most cases this displacement is at the limit of what the
simulation would allow. Exceeding this would oftentimes result
in an excessive localised stresses, which cause the model to fail.
It is assumed that this is due a combination of factors, including
the use of a custom non-linear material model; however as this
only occurs in over-stressed conditions, the issue has not been
fully investigated.

3.4. Simulation
Using the model defined in this section, the simulation is run
for each of the shape and material configuration. Videos of the
gripper deformation, a log-scale stress map, and the resultant
force data is exported for use in the CNN training detailed in the
proceeding section.

4. LEARNING FORCE AND STRESS
PROFILES

4.1. Dataset
The objective of the proposed approach is to learn the contact
forces and stress profile from visual observations to achieve
real-time predictions for forces which are difficult to obtain
via analytical and numerical methods. Using the FEA data
collection procedure described in the previous section, we trained

on 20,000 data samples obtained by varying size, height, and
angle of contact for sphere and cube shapes. Each data sample
comprises of a three channel deformation image (O), a stress
map represented as a single channel segmentation image (s) and
a contact force (Fx) in the normal direction. In this paper, we
focus on predicting the normal force, however our approach
could easily be extended to prediction of other components of
forces as well. As data prepossessing, the images were cropped,
down-sampled and the fingers were segmented, before feeding to
the CNN.

4.2. Network Architecture
The network architecture is illustrated in Figure 5. It consists
of three parts (i) Deformation encoder (Eθ ), (ii) Stress decoder
(Dφ) (iii) Force decoder (Dψ ). Where, the deformation encoder
takes in the deformation image and learns a latent representation
(h) that could be decoded back to stress map (S) and forces
(Fx) using (Dφ) and (Dψ ). The encoder (Eθ ) follows the typical
architecture of a convolutional network. It consists of the four
stacks of two 3× 3 convolution layers, each followed by a rectified
linear unit (ReLU) and a 2× 2 max pooling operation with stride
2 for downsampling. At each downsampling step we double
the number of feature channels. The stress decoder is designed
similar to the U-net expansion structure (Ronneberger et al.,
2015) with skip connections. Every step in (Dφ) consists of an
upsampling of the feature map followed by a 2 × 2 convolution
(“up-convolution”) that halves the number of feature channels
and two 3 × 3 convolutions, each followed by a ReLU. Finally,
force decoder is a dense feedforward network consisting of 5
fully connected layers of (128-64-32-8-2) neurons, respectively.
The first fully connected layer has ssigmoid activation while
others have ReLU activation. The latent features h are flattened
before feeding to Dψ . At every step we decreased the number
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FIGURE 5 | Network architecture: the encoder and decoder follow similar architecture as U-net (Ronneberger et al., 2015) including the skip connections between

encoder and decoder. We add an additional branch for decoding forces from the intermediate representation. The force decoder consist of a dense fully connected

neural network of depth five layers. The entire network is trained in an end-to-end fashion by optimising the joint loss function (Equation 1).

of parameters down to one in the last layer. There is a batch-
normalisation layer placed after the initial fully-connected layers
to refrain from overfitting.

4.3. Training Procedure
The entire network is trained in an end-to-end fashion, by
minimising the following function over the training dataset,
consisting of the individual mean squared loss over stress
and force:

L =
∑

i

(αs‖Si−Dφ(Eθ (Oi))‖+αf ‖Fxi−Dψ (Eθ (Oi))‖)/N, (1)

The network is trained for 10 epochs on the training dataset,
using Adam (Kingma and Ba, 2014) gradient decent approach
with the learning rate of 10−4. The weights of individual loss
functions αs and αf are selected as 1 and 10 tomatch the gradients
from stress map and force predictions. The batch size N is
selected as 16 according to GPU memory. We use a workstation
with 64 GB RAM, Intel Xeon processor and Nvidia Geforce 2080
GPU to train and evaluate the system.

5. EXPERIMENTS

For evaluating the proposed approach we perform a series
of experiments focusing on generalisation of the network to
different shapes and materials. We select the performance
metrics as mean squared error for both the stress as well as
force predictions.

5.1. Shape Generalisation
We evaluated our approach on 2,000 number of data samples
generated by the FEA setup for three shapes as described in
Figure 4 which were different from the two shapes which our
network was trained on. In Figure 6, we showcase the results
for force predictions. The qualitative stress maps predicted
by our network could be visualised from Figure 7, while the
quantitative results are summarised in Figure 6. It could be seen
that even though the network has not been trained on the three
test shapes, it is able to predict the stress and contact forces
correctly. This shows the efficacy of the network and the ability
to generalise to arbitrarily shaped object, which is crucial for real
world applications.
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FIGURE 6 | Evaluating shape generalisation. (Top left) The three objects with different shape profiles, used for evaluating the approach. (Top right) Force (Fx )

predicted by our approach as compared to the true forces computed using FEA. (Bottom) We quantitatively evaluate the mean squared error in the force, which is

under 0.1 N. It can be seen that the prediction time by our approach is 0.008 s, which makes it suitable for real time control. For FEA we compute the mean time over

100 Frames on a workstation with i5 (6th generation) 8 GB RAM, 256 GB SSD Windows 10 machine running ANSYS 19.3. Note that the systems used for

benchmarking FEA (CPU implementation) and CNN (GPU implementation) are different, which might not be a fair comparison however our approach is over 150 times

faster and could be used in realtime, the main reason for the boost is ability of deep learning libraries to parallelly process image data.

FIGURE 7 | Stress profiling. We qualitatively evaluate the stress profile predicted by our approach in contrast to that generated by FEA simulation. (Top) The input

object deformation image to the network, (Middle) The stress map predicted by our network. (Bottom) The ground truth stress map obtained by FEA. The stress

values are on logarithmic scale and normalised between [0, 1]. Note that these test shapes are not previously seen by our network in the training data. Our approach is

able to reconstruct the fine rib structure from deformation silhouette.

5.2. Material Generalisation
We next evaluate ability of the network to generalise over
different materials. We test the network on ring shaped objects
made of three different materials namely structural steel,
NinjaFlex and neoprene rubber without fine tuning or retraining

the network. It can be seen in Figure 8 that our approach easily
generalises to different materials. This demonstrates that visual
measurements in form of deformation images are sufficient to
predict forces and stress maps (Figure 9), with a low mean
squared error (Figure 8).
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FIGURE 8 | Evaluating material generalisation. (Top-left) We additionally evaluate our approach on a ring shaped object made of rubber and steel material having

trained only on steel objects (square and cylinder). Note the difference in the stress profile generated by a rubber ring as compared to other material. However, the

deformation of the Fin Ray finger is very less in rubber. This confirms our hypothesis that the deformation image indeed captures stress on the gripper. (Top-right)

Force prediction by our approach as compared to the true fore obtained by the FEA on materials the three materials, which showcases the efficacy of our approach.

(Bottom) The effect of different material less to the force prediction as the deformation image captures most of the force information. Note that the time taken by FEA

to simulate the soft materials significantly large on the other hand, for the learning based approach remains unaffected with the material. This showcases the

effectiveness of data driven approaches as surrogate for numerical simulation approaches.

FIGURE 9 | Stress profiling for soft objects. (Top) The input object deformation image to the network, (Middle) The stress map predicted by our network. (Bottom)

The ground truth stress map obtained by FEA.

5.3. Real World Experiments
This evaluation compares the network results to real
experimental data. A custom test rig is used to monitor
the resultant forces acting upon an object under gripper
displacement. It is worth noting that this experiment looks
at forces in Z, with the gripper being displaced vertically.

Conversely the FEA experiments were configured primarily
around the forces in X, with the displacement of the object being
locked to that direction. The gripper is the same design as the
one used in the aforementioned FEA generated videos. The
NinjaFlex gripper is printed directly using a Luzbot Taz 6 (Fargo
Additive Manufacturing Equipment 3D, LLC). The objects tested
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FIGURE 10 | Force prediction for real objects. (Top-left) Cropped input images showing three test objects. (Top-right, Middle-left, Middle-Right) Force

predictions for rhombus, cylinder and square respectively by network trained on simulation data appended with cylinder, rhombus, and square as context object. We

compare the predictions with the measurements obtained by the force sensor. Note the incorrect predictions (Top-right) in the absence of the force, this is due to the

incorrect color segmentation. (Bottom) We here present the mean squared error in force on real data. While the network is able to generalise to real data, adding the

context object reduces the domain gap and improves the prediction significantly. From the table, we can see that adding data form one object as context results in

acceptable performance.

are also produced using 3D-printing, though these are made
from rigid ABS. Three objects where used in these tests, with
the designs (Figure 10) mimicking some of the aforementioned
training objects; namely a 20 mm cylinder and a 15 mm square
at 0 and 45◦.

The test procedure is controlled via a Simulink (The
MathWorks, Inc.) model. The model takes the data from the
force/torque sensor (Schunk Mini40) and syncs it with RGB
video captured on an Intel Realsense D435i camera. This system
is synced to 30 frames per second (FPS), with each frame having
a corresponding data point. The test procedure consists of lining
the object and gripper in one of three positions relative to
the base of the gripper (20, 30, 40 mm), similar to the FEA
procedure. The vertical axis is driven so that gripper is the
positioned around 0.5 mm above the surface of the object. The
test procedure is then carried out. The gripper is lowered 10
mm onto the object, held there for 1 s before retracting to its
original position. This procedure is repeated once more during
the recording, resulting in two cycles per each 10 s video. The
test is repeated at the three reference locations with each object.
For the sampling rate of 30 FPS used to synchronise images
and force measurements, this 10 s video results in 300 images
for each object. This raw images are processed with our image
processing pipeline Figure 11 to achieve a silhouette of the finger

similar to FEA simulations. Although the image processing aims
to match the real images with the simulation images, still these
images have significant domain gap due to segmentation errors.
Tominimise this gap we add some random salt-and-pepper noise
to the input images while training the network. Furthermore, we
append some context images from real objects to the network
while training, in Figure 10 it could be seen appending these
context images helps is bridging this domain gap. Moreover,
approaches from the very recent sim2real literature, for domain
randomisation (Zakharov et al., 2019) and domain adaptation
(James et al., 2019) could be utilised to further reduce this domain
gap in a more principled manner. Figure 10 shows the results of
the predicted resultant force with real objects, a estimated stress
map is also produced (Figure 12) just as was the case with the
purely simulated data.

5.4. Evaluating Robustness Toward Partial
Occlusions
Since our proposed setup relies on an external camera to observe
the gripper deformations for predicting the force and stress
values, the performance could be affected by partial occlusions of
the gripper from the object being grasped or other objects present
in the environment. Thus, in this section, we aim to evaluate
the robustness of our approach toward partial occlusion by
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FIGURE 11 | Segmentation Pipeline for real lab experiment. Before feeding the input image to the CNN, we pre-process the image, this image pre-process pipeline

consists of cropping followed by a color based segmentation and region filling to fill holes and a final cropping and resizing. This process aims to minimise the domain

gap between simulation and real images. However, due to hand-crafted threshold parameters is acceptable to illumination variations. Although we do not focus on

bridging this domain gap, we refer the reader to employ recent domain randomisation (Zakharov et al., 2019) and adaptation (James et al., 2019) approaches for

optimal results.

FIGURE 12 | Stress estimation for real objects. We showcase the stress maps predicted by our network for real objects without retraining. (Top) Cropped image as

input, (Middle) Deformation image obtained after the image pre-processing module, this is fed to the network (Bottom) The stress map predicted by our network.

Note that the true stress map could not be obtained for the real data using FEA thus we only present the predictions by our network.

conducting additional simulation experiments, where a circular
object placed randomly selected position is partially occluding
the observed image. Given such noisy observations the network is
tasked to predict the correct force and stress values.We categorise

the severity of the occlusion in four classes namely: none, low
(10–30%), medium (40–80%), and high (≥80%), based on the
fraction the occluding circle is covering out of the image width.
For example in low occlusion, the diameter of the occluding circle
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FIGURE 13 | Response to partial occlusion. (First-row) Input images with medium to high levels occlusion. (Second-row) Stress-map predicted by the approach in

spite of occlusion. (Third-row) The ground truth stress maps generated from FEA. (Bottom) Quantitative results on force predictions under partial occlusions with

and without retraining the network. Rows of the table denote the training setting i.e., with or without occlusion. While the columns of the table denote the various level

of occlusions in while testing the network. The occlusion is simulated by a circle with diameter as fraction of image width (W) placed at randomly selected coordinates.

For the medium level of occlusion, the diameter of the occluding circle is between 40 and 80% width of the image. The results are averaged over 10 trials to maintain

consistency since occlusion is selected randomly.

is 10–30% the width of the image. The rational behind selecting
the percent width as occlusion metric is that the width of the
image is half the size of the height and thus contributes more
toward the shape of the gripper.

We use the similar training and testing setup as described
in experiment 5.1 with occlusion applied to observation images.
Here we initially evaluate the network trained without any
occlusion on various levels of occlusion, then we re-train the
network on training data with random level of occlusion and
evaluate again on the test set with different occlusion levels. The
results are presented in Figure 13. It can be seen from the table in
Figure 13 that even without seeing any occlusion in the training
set, the network is able to tackle low levels of occlusions, this is
due to the fact that the network is trained on just the silhouette
of the gripper and does not directly observe the fine ribs in the
input images. Finally, the retrained network is able to cater for
even severe levels of occlusion. The stress map prediction results
are presented in the top of Figure 13.

5.5. Generalisation to Viewpoint Variation
We further aim to evaluate the viewpoint generalisation of the
approach. Here, we collect a test dataset of test object 1 from
experiment 5.1, by varying the pitch of the camera from 0 degree
(front facing) to 30◦ in the step of 5◦ as shown in Figure 14 (left).

We compute the force predictions by our network on this test set
without any retraining and compute the mean squared error with
the ground truth force given by the FEA. It can be seen from the
Figure 14 (right) that out approach shows is able to tackle the
angle variations below 10◦, however for larger camera variations
the error is high. However, the approach could easily be retrained
for the desired camera configuration.

6. DISCUSSIONS AND CONCLUSION

The primary evaluation for the performance of the proposed
system focused on the generalisation of the systemwith simulated
data with regards to variations in object geometry and material.
The procedure highlighted in section 5.1 set out to demonstrate
the shape generalisation aspect of the system. From the plotted
data it is observed that predicted data fits the general trend
of the force spikes closely, with a MSE ranging from 0.02 to
0.09 (Figure 6). This is despite the object geometry being new
to the system. This close fit demonstrates that the system is
indeed capable of variance in shape when using FEA test videos
generated in the same way as the training videos.

Part of the desire to use FEA generated data over a purely
experimental data was due to the ability of the ANSYS package
to produce a colour coded stress map of the gripper. Our system

Frontiers in Robotics and AI | www.frontiersin.org 12 May 2021 | Volume 8 | Article 631371

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


De Barrie et al. Finray Effect Gripper Force Prediction

FIGURE 14 | Effect of viewpoint variation on the approach. (Left) Input deformation images from FEA by varying camera pitch. (Right). Mean squared error in force

predictions encountered by the approach on the test set without any retraining. It can be seen that the approach is able to tackle pitch difference of 10◦

without retraining.

in using this training data is able to produce a stress profile
for the gripper under deformation with an unknown object. It
can be seen from the stress prediction Figures 7, 9 that our
approach is able to truly capture the stress distribution in the
gripper. This is crucial in designing grippers with distributes
stress profiles that can grasp delicate objects such as fruits without
bruising them.

Another reason for the use of FEA training data is due to
the ease at which this data can be generated. Around 20,000
data samples were used in the training, with a further 4,000
for the six test samples. Despite the time taken to generate
the data from simulation, the process remains faster than
generating this experimentally and offers more flexibility in
varying object shape and material. The FEA set-up could also be
reconfigured for other designs or a change in gripper material.
This approach did however encounter some issues, namely
excessive local stress causing the simulation to fail. This can be
countered by increasing the mesh density or rounding of edges
as was done on the square objects described in section 3.1.2.
Further refinement of the FEA model, particularly the NinjaFlex
material model, may eliminate this issue, but was not the focus
of this work.

The other aspect of the simulated data tests examined the
systems ability to generalise across different materials. The
training data used rigid objects, with the material defined as
structural steel. The system therefore has not been trained with
the specific intention of adapting to material variance. Despite
this, the system has shown in section 5.2 that it is able to
generalise for the different materials examined. In the case of
the structural steel sample there is effectively no deformation
of the object and it performs in the same way as the training
data, with a MSE of 0.02. With the NinjaFlex sample there
is some object deformation, though as the walls and ribs of
the gripper are thinner than the hollow ring, this deformation
is quite small. The results therefore largely follow that of
structural steel and the training data (MSE 0.03), which has
already been shown to be accurate. The final sample is defined
as neoprene-rubber and therefore presents significant object
deformation. Even in this example, the resultant force profile

is predicted accurately, with a MSE of 0.02. This generalisation
is due to the fact that the deformation of the ribs is the
focus of the system, which remains consistent in cases such
as the neoprene rubber where much of the contact force is
dissipated into the deforming object rather that the fin ray
structure. The result is a lower, but equally well predicted,
resultant force from the soft object. Qualitatively the predicted
stress profile by the network accurately captured the true
stress distribution computed by the FEA process even for the
unseen materials.

The previous experiments took place using simulated training
and test data. Whilst the results are positive, this does not
automatically equate to the system being able to perform under
real world conditions. The procedure detailed in section 5.3
demonstrates that the system can indeed perform well on real
world data, despite being predominately trained with simulated
results. The MSE when the system is purely trained on simulated
data is determined as 0.092. When a single real data sample
is added into the training, this MSE is reduced to 0.07; with
an additional reduction to 0.037 when two lab samples are
used. With this comparatively small about of real world data
capture, the system is able to accurately predict the resultant
forces. The system could naturally have been train on purely
experimental data, though as referenced this would have been
highly time consuming. Furthermore, predicting stress map
would not have been possible in the absence of dense sensory
data. Prediction of stress maps could be vital for grasping
of delicate objects, allowing the grasp to be examined for
minimising excessive local force accumulation and improve
the FRE design.

The primary reason for the machine learning approach of
this system was to increase the speed at which resultant force
and stress mapping can be carried out on a Fin Ray finger; with
the aim of future inclusion in a system with real-time vision
based grasping force feedback. Whilst the data generation and
training stages were time consuming, the trained CNN takes just
8 ms to process a frame.Which makes it suitable for real-time
control applications, though the application of this is outside
of the scope of this work. As discussed in section 2, there are

Frontiers in Robotics and AI | www.frontiersin.org 13 May 2021 | Volume 8 | Article 631371

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


De Barrie et al. Finray Effect Gripper Force Prediction

numerous issues with sensor based approaches. The non-linear
behaviour, a result of the gripper’s layer jamming fully compliant
structure, make analytical techniques difficult to implement.
With a simpler geometry, analytical techniques alongside nodal
sensors may be feasible, though this would impact the behaviour
of the gripper, likely reducing its effectiveness. The speed
at which the trained CNN operates, provides an alternative
vision based solution which does not impact the behaviour of
the gripper.

This work presented a novel approach to determine the
contact force of a soft-gripper. The approach presented
successfully utilised simulated data to train a CNN. The system
has been verified on using both simulation and experimental
data, with both showcasing promising results. The system makes
use of the exposed geometry of a layer jamming FRE gripper,
resulting in a sensor-less system which does not impact the
performance of the soft finger, as would be the case where
sensors or other means are used. The simulation also allows
for the generation of estimated contact stress maps. The system
presented could be incorporated into control system which can
in real time determine the contact force of the gripper based on
it’s visible deformation.
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