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ABSTRACT: The combination of photoredox catalysis with the Wolff−
Kishner (WK) reaction allows the difunctionalization of carbonyl groups
by a radical-carbanion relay sequence (photo-Wolff−Kishner reaction).
Photoredox initiated radical addition to N-sulfonylhydrazones yields α-
functionalized carbanions following the WK-type mechanism. With
sulfur-centered radicals, the carbanions are further functionalized by
reaction with electrophiles including CO2 and aldehydes, whereas CF3
radical addition furnishes a wide range of gem-difluoroalkenes through β-
fluoride elimination of the generated α-CF3 carbanions. More than 80
substrate examples demonstrate the broad applicability of this reaction
sequence. A series of investigations including radical inhibition,
deuterium labeling, fluorescence quenching, cyclic voltammetry, and
control experiments support the proposed radical-carbanion relay mechanism.

1. INTRODUCTION
The inversion of the inherent polarity of organic function-
alities, termed as umpolung, is a key bond-forming strategy in
organic synthesis.1 The umpolung of a carbonyl group places a
negative charge on the carbon atom, making it nucleophilic
and prone to attack electrophiles. Carbonyl umpolung is
achieved in many ways: Acyl anion equivalents are obtained by
the umpolung of electrophilic aldehydes in stoichiometric
dithiane chemistry2 and catalytic N-heterocyclic carbene
(NHC) chemistry.3 Synthetically important alkyl carbanion
intermediates can be obtained from carbonyl groups using the
Wolff−Kishner (WK) reduction. The polarity inversion is
accomplished by sequential hydrazone formation, tautomeriza-
tion, and N2-extrusion to generate a nucleophilic alkyl
carbanionic species (Scheme 1A). With elegant modifications
from Huang Minlon4 and others,5 the WK process has evolved
over the past century into a powerful carbonyl deoxygenation
tool in the synthesis of complex molecules.5 Despite being a
very effective way of producing carbanions, synthetic
applications of this chemistry have long been underexplored
considering that the alkyl carbanion in such an umpolung can,
in principle, react with many electrophiles other than a proton.
Few examples based on the modified WK process have been
developed for the construction of C−C bonds, wherein highly
reactive alkyllithium reagents were employed to react with
sulfonylhydrazones.6 More recently, pioneering work by Li and
co-workers demonstrated the direct functionalization of the
carbanion in a Wolff−Kishner reaction by nucleophilic
addition to carbonyl compounds,7 imines,8 CO2,

9 and Michael
acceptors10 under ruthenium catalysis. The same group utilized
such carbanions in metal-catalyzed Negishi-type coupling,11

Heck-type coupling,12 Tsuji-Trost alkylation,13 and olefination
reactions14 or metal-free C−C bond-forming reactions.15 In
these cases, the functional groups are installed through metal-
assisted nucleophilic trapping of nonfunctionalized alkyl
carbanions (Scheme 1B). Inspired by the facile generation of
carbanions in the classic WK process, we questioned if
functionalized carbanions can be produced catalytically for a
subsequent nucleophilic reaction allowing the simultaneous
installation of two functional groups at a geminal position. The
scope of such a reaction sequence has remained unexplored
although its realization represents a desirable synthetic tool for
carbonyl group functionalization.
As part of our ongoing research activities in photoredox

catalytic generation of functionalized carbanions from carbon-
yls,16 we envisioned that a combination of a conventional WK
process with photoredox catalysis might furnish functionalized
alkyl carbanions for a subsequent derivatization. In the
anticipated radical-carbanion relay sequence, radicals generated
by the photoredox catalytic system would be captured by N-
sulfonylhydrazone,17 thus installing the first functional group.
Subsequently, the diazene intermediate, resulting from radical
fragmentation,17a,c,18 enters a similar reaction sequence as
involved in the WK reduction to give functionalized
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carbanions, which offers a second opportunity for further
transformations (Scheme 1C,a). Herein we report the
successful implementation of this radical-carbanion relay
functionalization concept. The combination of photoredox
catalysis with a Wolff−Kishner process allows the facile
generation of α-sulfenyl and α-CF3 carbanions that undergo
further nucleophilic attack or fragmentation, respectively
(Scheme 1C,b).

2. RESULTS AND DISCUSSION
2.1. Generation of α-Sulfenyl Carbanions and Their

Reactions with Electrophiles. Carbon−sulfur bonds are
found in pharmaceuticals or natural products and are widely
used in synthesis. Recent years have witnessed increasing
attention to develop an efficient approach to forge C−S
bonds.19 We postulate that photogenerated thiyl radicals20

from various thiols can engage in the radical-carbanion relay
functionalization sequence. Such a process would yield
synthetically useful α-sulfenyl carbanions, which are tradition-
ally produced through deprotonation of sulfides with strong
bases such as nBuLi and NaNH2.

21 Building on the facile
carbanion trapping by CO2

22 and our continued interest in
utilization of CO2 as the C1 feedstock for photocatalytic
carboxylation reactions,22e,23 we selected N-tosylhydrazone as
the radical acceptor in the anticipated sequence based on the
following considerations: (1) they can be easily prepared
through condensation of carbonyl compounds with
TsNHNH2; (2) after radical addition to N-tosylhydrazone,
rapid β-sulfone elimination was anticipated to produce a
sulfinyl radical which should undergo single-electron transfer
with the photocatalyst.17,24 We commenced our study by
utilizing aldehyde hydrazone 1a, thiophenol 2a, and CO2 as
model substrates for the optimization of the reaction
conditions.

After systematic screening of all reaction parameters (see the
SI for details), we were delighted to obtain the desired
functionalized carboxylic acid 3a in 81% yield using
[Ir(dFCF3ppy)2dtbbpy]PF6 (1 mol %) under 3 atm of CO2
in DMSO (Table 1, entry 1). Polar solvents like DMSO and

DMF were effective for this thiocarboxylation reaction (see the
SI, Table S2). Moreover, we successfully converted p-
tolualdehyde into the desired product 3a in one pot by
means of a condensation and photocatalytic sequence with
similar efficiency (Table 1, entry 2). Rigorous control
experiments revealed that photocatalyst, base, and light were
crucial for the transformation to occur (Table 1, entries 6−8).
With the optimized reaction conditions in hand, we

examined the scope of the method (Table 2). The reaction
gave good yields of the corresponding products with a series of
aromatic aldehyde-derived N-tosylhydrazones bearing elec-
tron-neutral (3a−3c, 3f, 3g, 3j, and 3l), electron-donating (3d,
3h, and 3o), or electron-withdrawing (3i, 3k, and 3n) groups
at para-, meta-, or ortho- positions. The reaction was
compatible with N-tosylhydrazones containing two substitu-
ents on the aromatic ring, affording the desired carboxylic acids
(3m−3o) in reasonable yields (43−58%). Heterocyclic and
naphthalene-containing substituents were also well tolerated by
the catalytic system (3p, 3q).
The reaction system could also be extended to N-

tosylhydrazones derived from ketones, affording a wide range
of carboxylic acids with quaternary carbon-centers (3r−3ae).
Gratifyingly, functional groups including phenyl (3s), halogen
(3t and 3x), thiophene (3u), benzofuran (3v), and methoxy
(3y) on the aromatic rings of substrates were well tolerated.
The reaction proceeded with similar efficiencies for electron-
rich or electron-poor substrates. Moreover, N-tosylhydrazones
bearing more sterically hindered substituents at the α-position
such as ethyl (3aa), isopropyl (3ab), and cyclopropyl (3ac)
gave the desired products in good yields, but longer reaction
times were required. The reaction could be utilized for the
thiocarboxylation of N-tosylhydrazone derived from 4-

Scheme 1. Umpolung Generation of Alkyl Carbanions from
Carbonyls

Table 1. Screening of Reaction Conditions for
Thiocarboxylation of N-Tosylhydrazonea

entry change from standard conditions yieldb

1 none 81%
2 one-pot process 80%c

3 MeCN instead of DMSO n.d.
4 THF instead of DMSO n.d.
5 4CzIPN instead of Ir−F n.d.
6 without Cs2CO3 n.d.
7 without PC n.d.
8 in the dark n.d.

aReaction conditions: compound 1a (0.2 mmol), 2a (0.3 mmol),
Cs2CO3 (0.6 mmol), [Ir(dFCF3ppy)2dtbbpy]PF6 (1 mol %), and 3
atm of CO2 in 2 mL of solvent, irradiation with blue LED (455 nm) at
25 °C for 24 h. n.d. = not detected. bYields were determined by 1H
NMR analysis of the crude reaction mixture using 1,3,5-trimethox-
ybenzene as the internal standard. c1a was formed in one pot starting
from p-tolualdehyde and used directly without purification. 4CzIPN =
2,4,5,6-tetra(carbazol-9-yl)isophthalonitri le. Ir−F = [Ir-
(dFCF3ppy)2dtbbpy]PF6. PC = photocatalyst.
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chromanone, yielding the heterocyclic product 3ad in 43%
yield. To our delight, N-tosylhydrazone derived from an
aliphatic ketone reacted at 0 °C yielding product 3ae in
moderate yield. The decreased efficiency and required low
reaction temperature were rationalized by the instability of the
aliphatic α-sulfenly carbanion. Importantly, this reaction is
easily scalable, as demonstrated by the gram scale synthesis of
3a in 75% yield.
Next, we explored the scope of the reaction with respect to

thiols. As shown in Table 3, thiophenols bearing either
electron-donating (4a−4c) or electron-withdrawing groups
(4e) on the para position of the aromatic ring reacted
smoothly to generate the expected products in mostly good
yields. Both ortho- and meta-substituted thiophenols were
suitable substrates, affording the products in high yields (71−
85%). However, 4-nitro-thiolphenol failed to give the desired
product. Notably, besides aromatic thiophenols, our method
could be extended to primary, secondary, and tertiary aliphatic
thiols (4j−4l), albeit with moderate efficiencies.
After successful application of this radical-carbanion relay

sequence for carboxylation, we tested other electrophiles, like
aldehydes or ketones, to realize a visible-light driven Barbier-
type reaction.22b,25 Barbier-type reactions are well-known
carbon−carbon forming reactions utilizing the nucleophilic
attack of organometallic species to carbonyl compounds.26

Using slightly modified reaction conditions, we discovered that
photo-Wolff−Kishner generated carbanions can be efficiently
trapped with a wide range of aldehydes (Table 4).

Benzaldehyde reacted smoothly to give the desired alcohol
6a in 78% yield. We were delighted to find that heteroaryl
aldehydes readily participated in the coupling reaction to give
products 6b−6d. When ketone-derived N-tosylhydrazones
were employed, densely functionalized sulfides (6e−6f) were
constructed in synthetically useful yields. Besides aromatic

Table 2. Scope of N-Tosylhydrazones for
Thiocarboxylationa

aReaction conditions: unless otherwise noted, all reactions were
carried out with 1 (0.2 mmol), 2a (0.3 mmol), Cs2CO3 (0.6 mmol),
[Ir(dFCF3ppy)2dtbbpy]PF6 (1 mol %), and 3 atm of CO2 in 2 mL of
DMSO, irradiation with blue LED (455 nm) at 25 °C for 24 h, and
isolated yields were shown. b6 mmol scale, CO2 was bubbled into the
reaction continuously. cReaction was conducted at 0 °C in DMF (2
mL)

Table 3. Scope of the Thiols for Thiocarboxylationa

aReaction conditions: unless otherwise noted, all reactions were
carried out with 1a (0.2 mmol), 2 (0.3 mmol), Cs2CO3 (0.6 mmol),
[Ir(dFCF3ppy)2dtbbpy]PF6 (1 mol %), and 3 atm of CO2 in 2 mL of
DMSO, irradiation with blue LED (455 nm) at 25 °C for 24 h, and
isolated yields were shown.

Table 4. Scope of the Aldehydes for Thiohydroxyalkylationa

aReaction conditions: unless otherwise noted, all reactions were
carried out with 1 (0.2 mmol), 2a (0.3 mmol), 5 (0.8 mmol), Cs2CO3
(0.3 mmol), [Ir(dFCF3ppy)2dtbbpy]PF6 (1 mol %) in 2 mL of
DMSO, irradiation with blue LED (455 nm) at 25 °C for 24 h, and
isolated yields were shown. b6 mmol scale. cParaformaldehyde (0.8
mmol) and DMSO (4 mL) were used.
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aldehydes, aliphatic aldehydes bearing short or long chains
were suitable electrophiles in our system, giving the desired
products in moderate yields (6g−6o).27 Notably, solid
paraformaldehyde reacted to provide the desired product
(6g) in 48% yield. This transformation was however sensitive
to steric hindrance. The presence of additional substituents at
the α-carbon on the trapping aldehyde decreased the yield
considerably (6m−6o), and only a trace amount of the
product was detected when pivalaldehyde was employed.
Moreover, ketones failed to trap the generated carbanion in the
catalytic system, which may be explained by the undesired
deprotonation of the α-protons to the carbonyl yielding benzyl
phenyl sulfide.28

2.2. Generation of α-CF3 Carbanions and Their
Fragmentation Reactions. Organic molecules containing a
fluorine moiety generally exhibit improved reactivity, bio-
activity, and metabolic stability compared to their non-
fluorinated counterparts.29 An important privileged fluoro-
containing group is the gem-difluoroethylene moiety based on
their unique property in medicinal chemistry.30 Moreover,
gem-difluoroalkenes are versatile building blocks for the
synthesis of other fluorine-containing molecules.31 Traditional
methods such as Wittig32 and Julia33 reactions for the synthesis
of 1,1-difloroalkenes generally suffer from limited scope,
modest efficiency, or harsh conditions. Another efficient
pathway is the gem-difluorination of diazo compounds under
metal catalytic34 or metal-free reaction conditions.35 This
strategy is generally restricted to aromatic diazo compounds or
diazo esters. Recently, several elegant defluorination strategies
starting from α-trifluoromethyl alkenes based on metal
catalysis36 or photoredox catalysis37 have been developed for
the synthesis of gem-difluoroalkenes. Nevertheless, this route
requires the presence of trifluoromethyl groups on the alkene
moieties, and the product scope is limited by the accessibility
of such trifluoromethylated alkenes.
Following the proposal shown in Scheme 1C and

encouraged by the success in the generation of α-sulfenyl
carbanions as described in section 2.1, we wondered whether
difluoroalkenes could be produced involving CF3 radicals in
the radical-carbanion relay sequence. The feasibility of this
approach was supported by the facile E1cB elimination of α-
CF3 carbanions to yield the difluoroalkenes.37a,f,38 We used
sodium triflinate (Langlois reagent, CF3SO2Na), a bench-
stable and commercially available trifluoromethylation reagent,
as the CF3 radical precursor and N-tosylhydrazone 7a as the
model substrate.39 The optimized conditions (see the SI,
Tables S5−S7), which include the use of [Ir -
(dFCF3ppy)2dtbbpy]PF6 (2 mol %) as photocatalyst and
Cs2CO3 (1.5 equiv) as the base in 1 mL of solvent (DMSO/
acetone = 1/1), delivered the desired 1,1-difluoroalkene 9a in
77% yield (Table 5, entry 2). Likewise, this transformation
demonstrated retained efficiency when the reaction was carried
out in a one-pot process (Table 5, entry 3). Control
experiments indicated that the base, photocatalyst, and light
irradiation were essential for this reaction (Table 5, entries 4−
6).
Using the optimized reaction conditions for the gem-

difluoroolefination, the scope of this methodology was
evaluated. As summarized in Table 6, the reaction proceeded
smoothly with a variety of N-tosylhydrazones, affording the
expected gem-difluoroalkenes in moderate to good yields. The
reactions of sodium triflinate with cycloketone-derived N-
tosylhydrazones led to the corresponding products 9a−9e in

Table 5. Screening of Reaction Conditions for the 1,1-
Difluoroolefination of N-Tosylhydrazonea

entry change from standard conditions yieldb

1 none 70%
2 PC (2 mol %) 77% (73%)c

3 one-pot, PC (2 mol %) 75%d

4 without Cs2CO3 n.d.
5 without PC n.d.
6 in the dark n.d.

aReaction conditions: compound 7a (0.2 mmol), 8 (0.3 mmol),
Cs2CO3 (0.3 mmol), [Ir(dFCF3ppy)2dtbbpy]PF6 (1 mol %) in 1 mL
of solvent, irradiation with blue LED (455 nm) at 25 °C for 24 h. n.d.
= not detected. bYields were determined by 19F NMR analysis of the
crude reaction mixture using 4,4′-difluorobenzophenone as the
internal standard. cIsolated yield. d7a was formed in one pot starting
from corresponding ketone and used directly without purification. PC
= photocatalyst.

Table 6. Scope of the gem-Difluoroolefination of N-
Tosylhydrazonesa

aReaction conditions: unless otherwise noted, all reactions were
carried out with 7 (0.2 mmol), 8 (0.3 mmol), Cs2CO3 (0.3 mmol),
[Ir(dFCF3ppy)2dtbbpy]PF6 (2 mol %) in (DMSO/acetone = 1/1) 1
mL, irradiation with blue LED (455 nm) at 25 °C for 24 or 30 h, and
isolated yields were shown. b8 mmol scale, reaction time: 48 h.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://dx.doi.org/10.1021/jacs.0c00629
J. Am. Chem. Soc. 2020, 142, 7524−7531

7527

http://pubs.acs.org/doi/suppl/10.1021/jacs.0c00629/suppl_file/ja0c00629_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.0c00629?fig=tbl5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c00629?fig=tbl5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c00629?fig=tbl6&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c00629?fig=tbl6&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c00629?fig=tbl6&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c00629?fig=tbl6&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c00629?fig=tbl6&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c00629?fig=tbl6&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://dx.doi.org/10.1021/jacs.0c00629?ref=pdf


38−73% yields. Interestingly, a strained substrate like
azetidinone-derivatized N-tosylhydrazone could be successfully
functionalized yielding difluoroalkene 9e in modest yield.40

Our method could be also extended to acyclic N-tosylhy-
drazones. For instance, tosylhydrazone derived from 3-
hexadecanone performed well in our reaction affording the
desired product 9f in 62% yield. Moreover, the mild reaction
conditions were compatible with ketone-based tosylhydrazones
bearing a wide range of functional groups including alkene
(9g), phenol (9h), and amide (9j−9l). With N-tosylhydra-
zones derived from phenylacetones, functional groups such as
phenyl, methoxy, and trifluoromethyl on the aromatic ring
were well tolerated (9m−9o). A sterically hindered substrate
7p participated in the reaction well to yield the gem-
difluoroalkene. Tosylhydrazones derived from aromatic
ketones were also applicable affording the desired products
(9q−9u) in reasonable yields. The reactions proceeded
smoothly with heterocycle-containing substrates (e.g., pyrazole
7i and pyridine 7u). Notably, ester groups on the carbon chain
remained untouched (9v). This catalytic system was also
suitable for aliphatic aldehyde-based N-tosylhydrazones,
delivering the corresponding products in moderate to excellent
yields (9w−9aa). The utility of this method was further
demonstrated by applying it to functionalize structurally and
functionally complex natural products like nabumetone,
zingerone, and stanolone, providing the desired products
(9ab−9ad) in good yields.
2.3. Reaction Mechanism. To gain insights into the

reaction mechanism, a series of spectroscopic investigations
and control experiments were conducted. First, no desired
products were detected when the radical scavenger TEMPO
(2.5 equiv) was added to the thiocarboxylation or gem-
difluoroolefination reaction. The radical nature of this type of
reaction was further confirmed by the formation of TEMPO−
SPh and TEMPO−CF3 adducts, which were detected by the
HRMS (Scheme 2A and the SI). Based on our results and
literature reports about the radical functionalization of N-
sulfonylhydrazones,17 we postulate that the sulfur-centered
radical and CF3 radical follow a similar mechanism to react
with N-tosylhydrazones to give the carbanions. We chose the
thiocarboxylation reaction as a model reaction to study the
mechanism more closely.
A control experiment using sodium thiophenolate in place of

the corresponding thiophenol 2a yielded the desired carboxylic
acid 3a in 73% yield. Moreover, we found that the product
could be generated in 50% yield with sodium thiophenolate
even in the absence of Cs2CO3, suggesting that the base
(Cs2CO3) merely serves to deprotonate the thiols (Scheme
2B). The Stern−Volmer luminescence quenching experiments
revealed that sodium thiophenolate quenches the excited state
of the photocatalyst much more efficiently than N-tosylhy-
drazone 1a and thiophenol 2a (see the SI, Figures S8−S11).
Light “on−off” experiments indicated that continuous light
irradiation was essential for the reaction to proceed (see the
SI). Additionally, the quantum yield of this transformation was
determined to be 2.1%. Hence, a radical chain process is
unlikely for this reaction. The combined results suggest a
transient sulfur-centered radical, generated by single-electron
oxidation of thiophenolate by the excited state of photocatalyst
in a reductive quenching photocatalytic cycle.
Further control experiments showed that (4-methylbenzyl)-

(phenyl)sulfide could be obtained in 69% yield in the absence
of CO2 (Scheme 2C). This finding suggests that the sulfur-

centered radical could interact with N-tosylhydrazone 1a
irrespective of the existence of CO2. The result is in
accordance with the hypothesis that a transient α-sulfenyl
carbanion might occur in the reaction process. On this basis,
we conducted isotope-labeling experiments. Indeed, when D2O
was added in the absence of CO2, up to 88% deuterium
incorporation into sulfide was observed (Scheme 2D). In
addition, a carbanion intermediate should in principle undergo
E1cB elimination when the adjacent carbon atom bears an
appropriate leaving group.41 Therefore, N-tosylhydrazones
bearing a methoxyl group at the vicinal carbon were prepared
and subjected to the standard reaction conditions in the
absence of CO2 giving the corresponding alkenes 11a and 11b
in good yields (Scheme 2E).
Based on the above experimental evidence and mechanistic

pathways reported in the literature, we propose a plausible
mechanism as depicted in Scheme 3 for the reported
photocatalytic generation of functionalized carbanions. Ini-
tially, the photoexcited state of [IrIII(dFCF3ppy)2dtbbpy]

+

(E1/2[*Ir
III/II] = +1.21 V vs SCE)42 is reductively quenched

by sodium triflinate (Eox = +1.05 V vs SCE)22a or
thiophenolate (Eox = ∼0.75 V vs SCE),43 formed through
the deprotonation of thiophenol by base, affording a sulfur-
centered radical and a CF3 radical, respectively. Subsequent
radical addition to the CN bond of N-tosylhydrazone
generates the aminyl radical species A.44 Fragmentation of the
arenesulfonyl radical from intermediate A leads to a function-
alized diazene intermediate B,18 and the following Wolff−
Kishner type N2 extrusion process proceeds to give α-CF3 or
sulfur carbanion C for further reactions. In the case of the α-
sulfenyl carbanion, subsequent nucleophilic attack to CO2 or
aliphatic aldehydes give carboxylic acids or alcohols. When α-
CF3 carbanions were produced, β-fluoride elimination

Scheme 2. Mechanistic Studies
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occurred to furnish the gem-difluoroalkenes. Finally, single-
electron transfer (SET) from the reduced photoredox catalyst
IrII (E1/2[IrIII/II] = −1.37 V vs SCE)42 to the arenesulfonyl
radical (Ered = +0.50 V vs SCE)24b yields a sulfinate anion and
regenerates the photocatalyst.

3. CONCLUSION
In summary, we have established a new reaction sequence for
the generation of α-functionalized alkyl carbanions through the
merger of photoredox catalytic radical generation with the
classic Wolff−Kishner (WK) reaction. This radical-carbanion
relay for carbonyl functionalization involves the radical
addition to N-sulfonylhydrazones, which enables the formation
of α-substituted carbanion intermediates. Subsequent reaction
with electrophiles including CO2 and aldehydes or fragmenta-
tion results in thiocarboxylation, thiohydroxyalkylation, and
gem-difluoroolefination with broad substrate scope and good
tolerance of many functional groups. Mechanistic studies
support the hypothesis that a tandem photocatalytic radical
addition/Wolff−Kishner process starting from N-sulfonylhy-
drazones facilitates the formation of the carbanion. This
strategy greatly expands the synthetic potential of Wolff−
Kishner reaction. Further studies aiming to generate non-
stabilized carbanions by this strategy are currently under
investigation.
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