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A B S T R A C T   

In order to effectively address the uncertainty risks of port energy system caused by intermittence 
and fluctuation of renewable energy, this paper proposes a scheduling method for port energy 
system based on distributionally robust optimization (DRO) considering ammonia synthesis after 
hydrogen production by water electrolysis (P2H2A), and uses real data from Tianjin Port for 
example analysis. The calculation results show that 1 h selected for the scheduling interval of 
P2H2A is reasonable, it can ensure that the ammonia synthesis reaction transitions smoothly to 
the new steady state, and the temperature and pressure of the ammonia converter meet safety 
constraints. The two-stage scheduling of port energy system based on DRO can be divided into 
pre-scheduling in the day-ahead stage and rescheduling in the intraday stage, which can improve 
the capacity of anti-risk for stochastic optimization and overcome the conservatism of robust 
optimization, and consider economy and robustness. Moreover, the rescheduling decision can be 
transformed to a prediction error function, the result of two-stage scheduling based on DRO is the 
pre-scheduling result, which is between the cost of stochastic optimization and robust optimi-
zation. As the Wasserstein distance-based sphere radius increases, the pre-scheduling cost of DRO 
gradually deviates from risk neutral stochastic optimization and leans towards risk averse robust 
optimization. When the Wasserstein distance-based sphere radius remains constant, the variance 
gradually decreases as the number of scenarios increases, which can promote the Wasserstein 
distance-based fuzzy set to converge to the true distribution. When the number of scenarios is 
greater than 15, the pre-scheduling cost will no longer fluctuate significantly, and the calculation 
time is in the range of 1200 s–6600 s. It can meet the demands of day-ahead scheduling calcu-
lation time. Therefore, the scheduling model has outstanding advantages in the computing time to 
improve the flexibility and economy of Tianjin Port’s energy system scheduling, considering 
ammonia synthesis after hydrogen production using renewable energy.   

1. Introduction 

Ports undertake 80% of global transportation tasks, and produce 3%–5% of global CO2, 14%–15% of NOX and SOX [1], which will 
cause adverse impacts on the environment. Under the goal of emission peak and carbon neutrality, China is accelerating the con-
struction of green and low-carbon ports, promoting port electrification reconstruction, and gradually replacing fossil fuels with 
renewable clean energy source [2]. Taking Tianjin Port as an example, as an important foreign trade port in Tianjin, it has speeded up 
their strategy to construct ecological coastline and green port in recent years. Tianjin Port attaches great importance to the 
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Nomenclature 

PP2H
t the power consumption of P2H at time t 

PP2H,0 the power of auxiliary equipment 
cP2H the power coefficient of electrolyzers 
QH2

t the hydrogen production volume at time t 
rP2H

max the upper limit of ramp rate for P2H 
QNH3

t the ammonia production volume at time t 
QNH3

max , QNH3
min the upper and lower limits of ammonia production volume 

rNH3
max , rNH3

min the upper and lower limit of ramp rate for ammonia synthesis 
PNH3 ,0 the fixed power of ammonia production 
cNH3 the constant coefficient of ammonia production 
QH2 ,out

t the outlet flow rate of HST 
ηHST the efficiency of hydrogen storage/release for HST 
VOLHST the installed capacity of HST 
SHST

max , SHST
min the upper and lower limits of SOC for HST 

QH2
max the upper limit of the flow for HST 

MH2 the molar mass of hydrogen 
ηc the compressor efficiency 
QAir

t the air flow rate at time t 
MAir the molar mass of air 
SHES

t the SOC of HES at time t 
HHES,ch

t , HHES,dis
t the power of heat storage/release for HES at time t 

ηHES the heat storage/release efficiency for HES 
VOLHES the installed capacity of HES 
SHES

max , SHES
min the upper and lower limits of SOC for HES 

HHES
max the upper limit of power for HES 

LEC
t the cooling power of the EC at time t 

PEC
t the electrical power of EC at time t 

ηEC the efficiency of EC 
LEC

max the upper limit of the cooling power for EC 
LAC

t cooling power of the AC at time t 
PAC

t the electrical power of AC at time t 
ηAC the efficiency of AC 
LAC

max the upper limit of the cooling power for AC 
HGB

t the thermal power of the GB at time t 
GGB

t the gas consumption of GB at time t 
ηGB the efficiency of GB 
HGB

max the upper limit of the thermal power for GB 
PGT

t , HGT
t the electrical power and thermal power of the GT at time t 

ηGT,p, ηGT,h the efficiency of electric power and heat generation for GT 
PGT

max, PGT
min the upper and lower limits of the electrical power for GT 

rGT
max the upper limit of the ramp rate for GT 

UGT
t the on/off status of GT at time t 

TGT
min the lower limit of the time span of start and stop for GT 

cT the coefficient vector of the pre-scheduling decision variable x 
X the set of pre-scheduling decision variables x 
Pe,inj Ne-dimensional nodal injection power column vector 
sup(⋅) the supremum function 
D the true distribution of prediction errors 
l a fuzzy set 
ωu the prediction error of renewable energy power generation 
Q(x,ωu) the rescheduling cost 
A the coefficient matrix of the constraint conditions in the pre-scheduling stage 
b the parameter vector of the constraint conditions in the pre-scheduling stage 
ED( · ) mathematics expectation 
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comprehensive recovery and utilization of oilfield associated gas, actively implements the "from coal to gas" and "from oil to gas" 
projects, and has achieved significant environmental protection efforts. By building rooftop photovoltaic (PV) and offshore wind 
turbine (WT), Tianjin Port builds a integrate energy system wherein renewable energy constitutes the main body of energy, supple-
mented by natural gas distributed energy system, and coordinated with municipal power grid (MPD), in order to optimize the syn-
thetical efficiency for low-carbon energy utilization. 

However, enhancing the capacity of the large-scale renewable energy source utilization requires the dispatching of a large amount 
of diversified flexibility resources in ports [3]. Since the renewable energy have the intrinsic intermittence and fluctuation, their 
integration into the port will present a great challenge on the operating reliability of port energy system [4]. Therefore, the rational 
integration of diversified flexibility resources in ports, the optimal scheduling of port energy systems, and the improvement of anti-risk 
ability have become a key problem to be solved urgently. 

1.1. Deficiency of current research 

In the context of emission peak and carbon neutrality, as a low-carbon and clean secondary energy, hydrogen energy is a green 
energy carrier that can enhance the capacity of renewable energy utilization and promote the low-carbon transition of port energy 
system. Hydrogen is an industrial raw material for synthesizing ammonia, which is one of the main methods for the large-scale 
consumption of green hydrogen [5]. Demonstration projects have realized the commissioning and operation [6], and the number 

y(x,ωu) the decision variable in the rescheduling stage 
dT the coefficient vector 
Z the coefficient matrix of the constraint conditions in the rescheduling stage 
g(ωu) the parameter vector 
De the empirical distribution 
L(Ξ) all probability distributions in support set Ξ 
M the uncertain variables 
α the confidence level 
μti the average value of the sample data 
ωu

m the m-th uncertainty parameter 
Γti the variance of the sample data 
ωti

m the m-th sample data 
θu

m the m-th element of θu 

l the boundary of θu
m 

lmax the maximum of l 
pstd, l std the probability distribution and fuzzy set of uncertain parameters 
Cmain

t the energy purchase and sale cost 
CCO2

t the carbon emission cost 
Cvary

t the fluctuation penalty cost 
cpr,NH3 the sale price of ammonia 
cpr,e,s

t , Psell
t the price and quantity that port sells electricity to municipal power grid 

cpr,e,b
t , Pbuy

t the price and quantity that port purchases electricity from municipal power grid 
cpr,g

t the price of nature gas 
cpr,CO2 the carbon price 
δg,CO2, δp,CO2 the carbon emissions factors of nature gas and municipal power grid 
cvary the power fluctuation penalty coefficient of municipal power grid 
Pvary

t the power fluctuation of municipal power grid caused by renewable energy 

Q̃
NH3

t the adjustment value of ammonia production volume at time t 

P̃
sell
t , P̃

buy
t the adjustment value of the quantity that port sells electricity to municipal power grid, and port purchases electricity 

from municipal power grid 

G̃
GT
t , G̃

GB
t the adjustment values for gas consumption of gas turbine and gas fired boiler 

cpr,re, cpr,load the penalty coefficients for the power curtailment of renewable energy power generation and load shedding 
Pcut,wt

t , Pcut,pv
t , Pcut,load

t the quantity for the power curtailment of wind turbine, photovoltaic and load shedding 
PMPG

max the upper limit of exchange power between port and municipal power grid 
PWT

t , PPV
t the power of wind turbine and photovoltaic 

Pload,e
t , Hload,h

t , Lload,c
t the electric load, heating load, and cooling load at time t 

Pcut,i
t , Pcut,load

t the reduction of renewable energy power generation and load 
ωu the prediction error of renewable energy power generation 
Tcc

k Opening or closing instructions for branches in power/heat/gas system and energy station  
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of projects initiated has rapidly increased in the world [7]. That can in turn create a larger install base of renewable energy power 
generation and hydrogen production by electrolysis. Using green hydrogen instead of gray hydrogen as feed gas in the ammonia 
synthesis, accelerating the renewable energy base construction of the green port and hydrogen city, both have become an important 
development direction for carbon emission reduction in Chinese ports [8]. In the long run, realizing green production and increasing 
productivity of synthetic ammonia will help reduce industry trade deficit. 

Therefore, the ammonia synthesis after hydrogen production using renewable energy is expected to provide a large amount of 
flexible resources for the port energy system. It should adjust to the intermittence and fluctuation of renewable energy power gen-
eration, and has the ability to be the flexible and adjustable load [9,10]. With the technology development and engineering con-
struction of green hydrogen, the technology of power to hydrogen (P2H) and ammonia synthesis after hydrogen production by water 
electrolysis (P2H2A) have become research hotspots. The current research on the load regulation characteristics of P2H mainly focuses 
on technical and economic aspects [11], scheduling control [12], and operation modes [13]. Compared with P2H, the research on 
flexible regulation characteristic of P2H2A is relatively limited. A joint scheduling model is proposed based on historical electricity 
prices [14], considering electricity, hydrogen and ammonia. An optimized scheduling method is proposed for ammonia synthesis after 
Hydrogen production using wind power [15], focusing on analyzing the impact of the sitting and sizing on the operating costs of 
ammonia plant. An energy management strategy is proposed for industrial parks about the integrated utilization of electricity, 
hydrogen and ammonia [16]. A P2H2A optimization scheduling model is proposed based on day-ahead electricity price forecasting 
[17], in order to evaluate the impact of parameter variation of synthetic ammonia on revenue. However, the above references were 
deterministic optimization methods based on the forecasting of electricity prices or renewable energy, less related to the schedulability 
analysis of P2H2A under uncertainty. Although hydrogen storage tank can be installed between the hydrogen production and 
ammonia synthesis sections to suppress hydrogen flow fluctuation, the capacity of hydrogen storage tank is limited by investment costs 
and safety constraints. Therefore, it is necessary to study the potentiality analytical methods for P2H2A to be the flexible and 
adjustable load, in order to provide a quantitative reference for P2H2A taking in renewable energy utilization and the implementation 
of power demand balance. 

The port can achieve the large-scale transmission, grid-connected, and utilization of offshore renewable energy power generation. 
Therefore, offshore renewable energy power generation integration to the port with high penetration will present a great uncertainty 
risk, which cannot be ignored. At present, the analysis methods for uncertainty problems in power-gas coupled system include sto-
chastic optimization [18], and robust optimization [19,20]. As the number of scenarios increases, stochastic optimization methods 
may cause dimension disaster, and lead to computational difficulties. Due to the low probability of the worst-case scenario occurring, 
the robust optimization results are too conservative. In order to overcome the limitations and shortcomings of the above two methods, 
researches are committed to the research of distributionally robust optimization (DRO) methods [21]. DRO can generate a fuzzy set 
containing all probability distributions based on sample data of uncertain variables. Under the scenario where the prediction error of 
uncertain variable follows the worst-case probability distribution in a fuzzy set, the scheduling strategy can be determined. Compared 
with stochastic optimization, DRO has stronger robustness, and it does not need to the accurate distributed function of uncertain 
variables during calculation [22]. DRO considers the probability distribution information of uncertain variables to avoid overly 
conservative scheduling strategy [23]. DRO has been applied in other fields [24,25], but there is relatively little research on it for port 
energy systems. Therefore, it is necessary to conduct research on optimal dispatch of port energy system with DRO in response to the 
uncertainty of offshore renewable energy power generation. 

1.2. Structure of thesis 

In summary, the hydrogen energy is a green energy carrier that can enhance the capacity of renewable energy utilization and 
promote the low-carbon transition of port energy system, and is an important industrial raw material for synthesizing ammonia. It can 
be expected to participate in the scheduling of port energy system as flexible resources. Therefore, it is necessary to study the po-
tentiality analytical methods for P2H2A to be the flexible and adjustable load, in order to provide a quantitative reference for P2H2A 
taking in renewable energy utilization and the implementation of power demand balance. In order to overcome the limitations and 
shortcomings of stochastic optimal dispatch and robust optimal dispatch, the DRO is necessary to be used in optimal dispatch of port 
energy system with the property of renewable energy uncertainty. 

To make up the existing research insufficiency, this paper proposes a scheduling method for port energy system based on dis-
tributionally robust optimization considering ammonia synthesis after hydrogen production using renewable energy, and uses real 
data from Tianjin Port for example analysis. Firstly, to describe the capability of load regulation for ammonia synthesis after hydrogen 
production by water electrolysis (P2H2A), an overall architecture model of P2H2A was constructed in Part II. The model of P2H2A 
considers the safety constraints of hydrogen production and ammonia synthesis chemical processes, which can make P2H2A serve as a 
flexible resource for distributionally robust optimization scheduling of port energy systems while ensuring safety. Secondly, the 
Wasserstein distance is used to characterize the uncertain fuzzy set in Part III, which is consist of the probability distribution of 
renewable energy power generation. By fitting the probability distribution of prediction error of renewable energy power generation, 
various scenarios of its output interval under different confidence levels can be obtained. Thirdly, for the port energy system with 
P2H2A, DRO is used to build a two-stage scheduling model considering Wasserstein distance-based fuzzy set in Part IV. The model can 
be converted into a mixed integer linear programming model for being easy to solve by using the strong duality theorem. Finally, 
example analysis is conducted based on the real data of Tianjin Port in Part V. The results show that P2H2A can significantly reduce the 
carbon emission and improve the flexibility for the port energy system. The proposed model not only considers the economy of the port 
energy system, but also further ensures the capability of anti-risk and robustness under the uncertainty of renewable energy power 
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generation. 

1.3. Main innovation of paper 

This paper proposes a scheduling method for port energy system based on distributionally robust optimization considering 
hydrogen production and ammonia synthesis, and the main innovations are as follows.  

(1) A low-carbon energy architecture of port is established, which may be divided into three structural layers, such as the energy 
input layer, energy conversion and storage layer, and energy output layer. The system structure of ammonia synthesis after 
hydrogen production by water electrolysis is proposed, which can participate the operation of port energy system as low-carbon 
and flexible resources.  

(2) The model of the ammonia synthesis section has been reasonably simplified. The scheduling model for P2H2A is presented, 
which can make P2H2A adapt to the uncertain of renewable energy power generation. It can help to settle the accommodation 
problem of large-scale renewable energy power generation, and improve the economy and flexibility of energy system in the 
port.  

(3) Considering the risks brought by the uncertainty of renewable energy power generation, the Wasserstein distance is used to 
characterize the uncertain fuzzy set of uncertainty parameter prediction errors. The Wasserstein distance-based fuzzy set in-
dependent of prior knowledge is data-driven, and can make the DRO model has good operation ability, and can be less 
conservative.  

(4) DRO is used to build a two-stage scheduling model of port energy system. The scheduling strategy based on DRO may enhance 
the anti-risk ability of scheme, and avoid the impact of overly conservative on the scheme economic at the same time. The strong 
duality theorem is used to reconstruct the model, which is equivalent to the mixed integer linear programming problem, in 
order to make the problem easy to solve. 

2. Port energy system structure and model 

Vigorously developing new energy, mainly wind power and photovoltaic, is the necessary path for port energy saving and emission 
reduction. As a low-carbon and clean secondary energy source, hydrogen energy is a green energy carrier that can increase the capacity 
of renewable energy utilization and promote low-carbon transition of port energy structure. Hydrogen is an industrial raw material for 
synthesizing ammonia, which is one of the main methods for the large-scale consumption of green hydrogen. Tianjin Port has the 
conditions to build a green energy hub with ammonia and hydrogen. Therefore, it is planned to build an integrated energy system in 
the port, mainly based on renewable energy power generation, supplemented by natural gas distributed energy system, and coordi-
nated with municipal power grid. 

The energy structure of port is shown in Fig. 1. The energy input layer includes photovoltaic (PV), wind turbine (WT), municipal 
power grid (MPD), natural gas source, etc. The energy conversion and storage layer includes ammonia synthesis after hydrogen 
production by water electrolysis (P2H2A), electric cooler (EC), absorption cooler (AC), gas turbine (GT), gas fired boiler (GB), heat 
energy storage device (HES), etc. P2H2A consists of an electrolyzer, N2 production via air separation (AS), hydrogen storage tank 
(HST), and ammonia converter. The energy output layer includes electric/cooling/heating load and liquid ammonia. Energy con-
version equipment can achieve reliable supply of energy demand and improve energy efficiency through multi-energy complementary 

Fig. 1. Energy structure of port.  
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mode. P2H2A can not only improve the capacity of renewable energy utilization, but also bring considerable economic benefits to the 
port. HES and GB can achieve decoupling heat-power of GT, the peak regulating capacity of GT can be increased. HST can achieve 
energy transfer for long time scales, and are suitable for stabilizing the daily, weekly, and even seasonal electricity fluctuations. 
Therefore, it is necessary to build a low-carbon, clean energy system to promote the sustainable development of port. 

2.1. Modeling of ammonia synthesis after hydrogen production by water electrolysis 

Ammonia synthesis after hydrogen production using renewable energy is a deep coupling between power system and chemical 
system, has the ability to adjust their energy demand to the fluctuation of renewable energy. It involves the complex regulation process 
of safe, robust and coordination for multiple systems of renewable energy power generation, hydrogen production and ammonia 
synthesis. The technology of alkaline water electrolysis is usually used in the P2H, which has the advantages of mature state of art, 
lower cost and long life. The ammonia synthesis section usually adopts the Harbor-Bosch process [26], which is consist of ammonia 
converter, ammonia separation, circulation recovery, etc. The principle of ammonia synthesis is shown in Eq. (1). The reaction 
principle of P2H2A is shown in Fig. 2. 

N2(g)+ 3H2(g)→2NH3(g) (1) 

The overall process of P2H2A is shown in Fig. 2. T and p represent the temperature and pressure of each stage, respectively. H2 and 
N2 are respectively produced by the P2H section and the air separation section. The ammonia synthesis section is an exothermic 
reaction. The ammonia converter operates in a high-temperature and high-pressure environment to ensure catalyst activity and re-
action rate. The raw gas needs to be pressurized through multi-stage compression, and heat exchanged with the high-temperature 
mixed gas at the outlet of ammonia converter to increase the gas temperature. After the reaction is completed, liquid ammonia 
products can be obtained from the mixed gas after heat exchange, cooling, and ammonia separation section. The unreacted raw gas will 
be recompressed and recycled back into the ammonia converter to continue the reaction. 

2.1.1. P2H model 
The power of P2H usually includes the power of electrolyzers and the power of auxiliary equipment [27]. The load rate of a single 

electrolyzer is about 20%–100%. Through the strategy combination of unit startup and shutdown and load distribution, the load rate of 
multiple electrolyzers can continuously change within the range of 5%–100% [27], and the energy conversion efficiency is close to 
linear. Therefore, the linear function between power consumption and hydrogen production volume for P2H section is shown in Eq. 
(2). 

0≤PP2H
t = PP2H,0 + cP2HQH2

t ≤ PP2H
max (2)  

− rP2H
max ≤PP2H

t − PP2H
t− 1 ≤ rP2H

max (3)  

In formula, PP2H
t is the power consumption of P2H at time t. PP2H

max is the upper limit of P2H power. PP2H,0 is the power of auxiliary 
equipment, which is taken as 0.9% of PP2H

max . cP2H is the power coefficient of electrolyzers, taken as 0.0048 MWh/Nm3. QH2
t is the 

hydrogen production volume at time t. rP2H
max is the upper limit of ramp rate for P2H [28], taken as 50% × PP2H

max per minute. 

2.1.2. Ammonia synthesis model 
The ammonia synthesis section can adjust the ammonia production volume to the fluctuation of hydrogen flow. Due to constraints 

such as thermal equilibrium and catalyst activity [29], the ammonia production volume should be maintained within a given range, as 
shown in Eq. (4). Ammonia separation, circulation recovery, compression, and other processes all need power consumption. The linear 
function between power consumption PNH3

t and ammonia production volume for ammonia synthesis section is shown in Eq. (6). 

Fig. 2. Reaction principle of ammonia synthesis after hydrogen production by water electrolysis.  
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QNH3
min ≤QNH3

t = QNH3
t− 1 + rNH3

t ≤ QNH3
max (4)  

rNH3
min ≤ rNH3

t ≤ rNH3
max (5)  

PNH3
t =PNH3 ,0 + cNH3 QNH3

t (6)  

In formula, QNH3
t is the ammonia production volume at time t. QNH3

max and QNH3
min are the upper and lower limits of ammonia production 

volume, QNH3
min is taken as 20% of QNH3

max . rNH3
max and rNH3

min are is the upper and lower limit of ramp rate for ammonia synthesis, which are 
taken as 15% and − 25% of QNH3

max respectively. PNH3 ,0 is fixed power. cNH3 is a constant coefficient. 

2.1.3. N2 production and storage equipment model 
Due to fluctuations in renewable energy power generation, there is fluctuation in hydrogen production volume. The fluctuation of 

hydrogen flow can be smoothly adjusted by hydrogen storage tank (HST), in order to meet the stability requirements of hydrogen flow 
used in ammonia synthesis. The state of charge (SOC) for HST SHST

t and the power of the hydrogen compressor PH2 ,C
t are shown in Eqs. 

(7)–(9) [30]. 

SHST
t = SHST

t− 1 +
(
QH2

t ηHST − QH2 ,out
t

/
ηHST) /VOLHST (7)  

SHST
min ≤ SHST

t ≤ SHST
max , 0 ≤ QH2

t ,QH2 ,out
t ≤ QH2

max (8)  

PH2 ,C
t =

[(
QH2

t

/
MH2

)
RT1 ln(p2 / p1)

] /
ηc (9)  

In formula, QH2 ,out
t is the outlet flow rate of HST. ηHST is the efficiency of hydrogen storage/release for HST. VOLHST is the installed 

capacity of HST. SHST
max and SHST

min are the upper and lower limits of SOC for HST, respectively. QH2
max is the upper limit of the flow for HST. 

MH2 is the molar mass of hydrogen. R is the ideal gas constant. ηc is the compressor efficiency, which is taken as 60%. 
In addition, the N2 required for ammonia synthesis can be obtained through air separation (AS). The process requires multi-stage 

compressors to gradually pressurize the air from atmospheric pressure, and the power consumption is shown in Eq. (10). 

PAS
t =

[(
QAir

t

/
MAir

)
RT4 ln(p3 / p4)

] /
ηc (10)  

In formula, QAir
t is the air flow rate at time t. MAir is the molar mass of air. 

Compared to P2H, the power consumption of hydrogen storage and N2 production processes is smaller. Compared with the power 
consumption of P2H2A, the power consumption changes caused by temperature and pressure changes in Eqs. (9) and (10) can be 
approximately ignored. For simplicity, this paper assumes that temperatures T1, T4, and pressures p1, p2, p3, and p4 are constant. 

According to the mass balance relationship of the ammonia synthesis reaction, the relationship between the ammonia production 
volume QNH3

t and the outlet flow rate of HST QH2 ,out
t is shown in Eq. (11). 

QNH3
t = 2QH2 ,out

t

/
3 (11) 

Considering that heat energy storage (HES) device is similar to HST, the model of HES is briefly described as follows. 

SHES
t = SHES

t− 1 +
(
HHES,ch

t ηHES − HHES,dis
t

/
ηHES) /VOLHES (12)  

SHES
min ≤ SHES

t ≤ SHES
max , 0 ≤ HHES,ch

t ,HHES,dis
t ≤ HHES

max (13)  

In formula, SHES
t represents the SOC of HES at time t. HHES,ch

t and HHES,dis
t respectively represent the power of heat storage/release for 

HES at time t. ηHES is heat storage/release efficiency for HES. VOLHES is the installed capacity of HES. SHES
max and SHES

min are the upper and 
lower limits of SOC for HES. HHES

max is the upper limit of power for HES. 

2.2. Modeling of cooling and heating equipment 

2.2.1. Electric cooler 

0≤ LEC
t = PEC

t ηEC ≤ LEC
max (14)  

In formula, LEC
t is the cooling power of the electric cooler (EC) at time t. PEC

t is the electrical power of EC at time t. ηEC is the efficiency of 
EC. LEC

max is the upper limit of the cooling power for EC. 

2.2.2. Absorption cooler 

0≤ LAC
t = PAC

t ηAC ≤ LAC
max (15) 
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In formula, LAC
t is the cooling power of the absorption cooler (AC) at time t. PAC

t is the electrical power of AC at time t. ηAC is the 
efficiency of AC. LAC

max is the upper limit of the cooling power for AC. 

2.2.3. Gas fired boiler 

0≤HGB
t = GGB

t ηGB ≤ HGB
max (16)  

In formula, HGB
t is the thermal power of the gas fired boiler (GB) at time t. GGB

t is the gas consumption of GB at time t. ηGB is the ef-
ficiency of GB. HGB

max is the upper limit of the thermal power for GB. 

2.2.4. Gas turbine 

PGT
min ≤PGT

t = GGT
t ηGT,p ≤ PGT

max (17)  

HGT
t =GGT

t ηGT,h (18)  

− rGT
max ≤PGT

t − PGT
t− 1 ≤ rGT

max (19)  

UGT
t − UGT

t− 1 ≤ UGT
τ ≤ 1 + UGT

t − UGT
t− 1, τ ∈

[
t + 1, t + TGT

min − 1
]

(20)  

In formula, PGT
t and HGT

t are the electrical power and thermal power of the gas turbine (GT) at time t. ηGT,p and ηGT,h respectively refer to 
the efficiency of electric power and heat generation for GT. PGT

max and PGT
min are the upper and lower limits of the electrical power for GT. 

rGT
max is the upper limit of the ramp rate for GT. UGT

t indicates the on/off status of GT at time t. UGT
t = 1 means that GT is operation, UGT

t =

0 means that GT is shutdown. TGT
min is the lower limit of the time span of start and stop for GT. 

3. Distributionally robust optimization theory 

According to Eq. (21), the optimization scheduling model is a function of the prediction error of renewable energy. Due to the 
limited sample data of renewable energy prediction error, the real distribution of renewable energy prediction error cannot be directly 
ascertained. Therefore, this paper does not directly obtain the real distribution. But instead, an empirical distribution is established to 
be used as an estimate of the real distribution, and empirical distribution is founded on past data records of renewable energy pre-
diction error. Due to the limitations of past data records, this section uses the Wasserstein distance to construct a fuzzy set of un-
certainty parameter prediction errors. The fuzzy set can be regarded as a sphere with a radius of a, where real distribution mainly 
distributed around the empirical distribution. The sphere contains all possible real distribution of renewable energy prediction error. 
The probability distribution of renewable energy historical data mostly fluctuates around the real distribution. The probability dis-
tribution fuzzy set of Wasserstein distance focuses more on describing the difference between the real distribution and the empirical 
distribution. The Wasserstein distance-based fuzzy set independent of prior knowledge is data-driven, and can ensure that the un-
known distribution converges to the true distribution. Therefore, it has strong adaptability to the problem studied in this paper, and 
can make the distributionally robust optimization (DRO) model has good operation ability, and can be less conservative. 

3.1. Distributionally robust optimization model 

A scheduling method for port energy system in this paper is built based on DRO. The Wasserstein distance-based fuzzy set inde-
pendent of prior knowledge is data-driven, and can ensure that the unknown distribution converges to the true distribution. It has 
strong adaptability to the problem studied in this paper, and can make the DRO model has good operation ability, and can be less 
conservative. Referring to the common two-stage DRO model [31], the two-stage scheduling of port energy system based on DRO can 
be divided into pre-scheduling in the day-ahead stage and rescheduling in the intraday stage, as shown in Eq. (21). Therefore, a 
two-stage optimization approach can be suitable for the problem at hand, and would not adversely affect other aspects of the model. 

min
x∈X

cT x + sup
D∈l

ED(Q(x,ωu)), Ax ≤ b (21)  

In formula, cT is the coefficient vector of the pre-scheduling decision variable x. X is the set of pre-scheduling decision variables x. sup 
(⋅) is the supremum function. D is true distribution of prediction errors. l is a fuzzy set. ωu is an uncertain parameter, which is the 
prediction error of renewable energy power generation in this paper. Q(x,ωu) is the rescheduling cost incurred due to ωu. A is the 
coefficient matrix of the constraint conditions in the pre-scheduling stage. b is the parameter vector of the constraint conditions in the 
pre-scheduling stage; ED( · ) indicates mathematics expectation. 

Eq. (21) is to minimize the sum of the pre-scheduling cost cTx in the day-ahead stage and the expectation of rescheduling cost 
Q(x,ωu) in the intraday stage. And then, optimal pre-scheduling decision x in the day ahead stage can be obtained, which balances 
economy and robustness. The expectation of Q(x,ωu) is the expectation of the worst distribution in the fuzzy set l , as shown in Eq. 
(22). 
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Q(x,ωu) = min
(
dT y(x,ωu)

)
, Zy(x,ωu) ≤ g(ωu) (22)  

In formula, y(x,ωu) is the decision variable in the rescheduling stage. dT is the coefficient vector corresponding to y(x,ωu). Z is the 
coefficient matrix of the constraint conditions in the rescheduling stage. g(ωu) is the parameter vector related to ωu in the constraint 
conditions of the rescheduling stage. 

From Eq. (21), it can be seen that the min function can be regarded as a pre-scheduling problem in the day-ahead stage. Based on 
Eqs.(21) and (22), it can be seen that the sup(⋅) function can be regarded as a rescheduling problem in the intraday stage, following the 
max-min criterion to improve the worst case scenario in the optimization objective. The day-ahead stage provides the pre-scheduling 
decision x for the rescheduling of intraday stage. The intraday stage provides the optimal rescheduling cost dTy under different pre- 
scheduling decisions for the day-ahead stage. The optimization processes of the day-ahead scheduling and the intraday scheduling are 
coupled and nested with each other. 

3.2. Uncertainty modeling of renewable energy based on wasserstein distance 

According to stochastic optimization theory, the uncertainty of renewable energy power generation follows an empirical distri-
bution extracted from historical prediction error data. Based on stochastic optimization theory and combined with robust optimization 
theory, a fuzzy set is established to obtain the uncertainty set of real distribution, which contains the worst case scenario of real 
distribution. 

Firstly, the empirical distribution De can be determined based on the prediction error sample set {ωti
1,ωti

2,⋯,ωti
M} of M uncertain 

variables, and De is used as an estimate of the true distribution D of the prediction error. Following [32,33], De can be constructed, as 
shown in Eq. (23). 

De =
∑M

m=1
δωti

m
/M (23)  

In formula, M represents the sample quantity. δωti
m 

represents the random variable formed by prediction error of renewable energy. The 
cumulative distribution function can be obtained by assigning 1/M of probability mass to M prediction error of renewable energy, 
namely empirical distribution. Each prediction error data is a support point for the random variable. Therefore, the empirical dis-
tribution is a discrete uniform distribution established on M historical data points, which are independent and identically distributed. 

Secondly, a fuzzy set should be constructed based on De, which must contain D as much as possible and satisfies lim
M→∞

De = D. 

Furtherly, the Wasserstein distance is used to measure the distance between De and D, and construct a fuzzy set [34]. The definition of 
Wasserstein distance is shown in Eq. (24). 

W(De,D)= inf
{∫

d
(
ωu

e ,ωti)Π
(
dωu

e , dωti)
}

(24)  

d
(
ωu

e ,ωti)=
⃦
⃦ωu

e − ωti
⃦
⃦ (25)  

In formula, inf(⋅) is the infimum function. ωu
e and ωti are uncertain parameters, which follow the distributions of De and D, respectively. 

Π(⋅) is the joint distribution of De and D. 
Thirdly, the definition of fuzzy set l is shown in Eq. (26). 

l ={D∈ L(Ξ)|W(De,D)< ε(M)} (26)  

In formula, L(Ξ) is all probability distributions in support set Ξ. l is a Wasserstein sphere, the center of the sphere is De, with a radius of 
ε(M). In the fixed confidence degree, l includes all possible probability distributions. 

The conservatism of the DRO model can be controlled by ε(M), which can be calculated by Eq. (27). 

ε(M) = FM
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 2 ln(1 − α)/M

√
, lim

M→∞
ε(M) = 0 (27)  

FM = min

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2

[

1 − ln M
∑M

m=1
exp
(
δ
⃦
⃦ωu

m − μti
⃦
⃦
)
]

/δ

⎞

⎠, δ > 0

√
√
√
√
√ (28)  

In formula, α represents the confidence level. FM is a constant. μti is the average value of the sample data. δ is a parameter. ωu
m is the m- 

th uncertainty parameter. 

3.3. Support set based on data driven 

The support set Ξ can be calculated by sample data {ωti
1,ωti

2,⋯,ωti
M} [35]. For the convenience of calculations, the sample set is 

standardized by the regularization method, as shown in Eq. (29). 
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θu
m =

(
Γti)− 0.5(ωti

m − μti), ∀m = 1, 2,⋯,M (29)  

In formula, Γti is the variance of the sample data. ωti
m is the m-th sample data. 

After normalized, the mean of uncertain parameter sample θu is 0, and the variance is I. Assuming Φ is the support set of θu, the 
definition is shown in Eq. (30). 

Φ =
{

θu ∈ RT |− l ≤ θu
m ≤ l

}
∀m = 1, 2,⋯,M (30)  

In formula, θu
m is the m-th element of θu. l is the boundary of θu

m. 
A reasonable l can be obtained by solving Eq. (31). It not only ensures random event θu

m ∈Φ occurs with a high probability, but also 
enables Φ small enough to ensure low conservatism. 

min
0≤l≤lmax

l s.t. sup
pstd∈l std

pstd(θu ∕∈ Φ) ≤ 1 − φ (31)  

In formula, lmax is the maximum of l. pstd and l std are probability distribution and fuzzy set of uncertain parameter θu, respectively. φ is 
confidence. 

When the optimal l is obtained, a support set based on data driven Ξ can be get by Eq. (32). 

Ξ=
(
Γti)0.5Φ + μti (32)  

4. Modeling and calculation method of Port energy system scheduling based on DRO 

In the two-stage optimization of this article, it is necessary to ensure the consumption of renewable energy and the reliable supply 
for load in the day-ahead stage [36]. The pre-scheduling stage is based on the prediction information of day-ahead stage, and ignores 
the uncertainty risk caused by prediction errors. In the process of system actual operation, due to the uncertainty of renewable energy, 
the scheduling strategy obtained in the pre-scheduling stage may not actually be the optimal result. According to the scheduling 
strategy of pre-scheduling stage, the system will need a lot of power exchange with municipal power grid in the intraday stage, in order 
to balance supply and demand imbalance caused by renewable energy uncertainty. It results in higher total scheduling cost. Therefore, 
the rescheduling of system in the intraday stage is needed to stabilize the power fluctuation of renewable energy, when there is a 
prediction error ωu in the renewable energy power generation. The rescheduling is carried out based on the real-time running data and 
pre-scheduling strategy. During the process of rescheduling, the electricity quantities purchased and sold by power grid and outputs of 
equipment have been adjusted, the power curtailment of renewable energy power generation and load shedding also have been carried 
out. Through adjusting pre-scheduling strategy, the rescheduling of intraday stage can optimize the total cost of the above state two 
stages, which has been applied in Tianjin Port. It also indicates that the two-stage optimization model could effectively address this 
interdependence between the both stage, which can contribute to the objective of total cost optimization. The distinctions in data 
characteristics between the day-ahead and intraday stages is shown in Table 1. 

Table 1 
Distinctions in data characteristics between the day-ahead and intraday stages.  

Parameters Day-ahead stage Intraday stage 

Energy purchase and sale cost Cmain
t in Eq. 34 C̃

main
t in Eq. 38 

Carbon emission cost CCO2
t in Eq. 35 C̃

CO2
t in Eq. 39 

Ammonia production volume Initial value QNH3
t Adjustment value Q̃

NH3

t 
Electricity sold from port to power grid Initial value Psell

t Adjustment value P̃
sell
t 

Electricity purchased by port from power grid Initial value Pbuy
t Adjustment value P̃

buy
t 

Gas consumption of gas turbine Initial value GGT
t Adjustment value G̃

GT
t 

Gas consumption of gas fired boiler Initial value GGB
t Adjustment value G̃

GB
t 

Fluctuation penalty cost Cvary
t in Eq. 36 – 

Power fluctuation penalty coefficient cvary – 
Power fluctuation of renewable energy Pvary

t – 
Penalty cost – C̃

cut
t in Eq. 40 

Power curtailment penalty coefficient – cpr,re 

Load shedding penalty coefficient – cpr,load 

Power curtailment of wind turbine and PV – Pcut,wt
t and Pcut,pv

t 
Amount of load shedding – Pcut,load

t  
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4.1. Objective function 

4.1.1. Pre-scheduling cost in the day-ahead stage 
The pre-scheduling cost includes such energy purchase and sale cost Cmain

t , carbon emission cost CCO2
t , and fluctuation penalty cost 

Cvary
t of municipal power grid power, as shown in Eq. (33). The port energy system is connected to the power grid by tie-line through 

grid-connected inverters and distribution transformers. The fluctuation of tie-line is directly related to the renewable energy power 
generation. Due to the influence of environmental factors, the renewable energy power generation has fluctuation and uncertainty. 
The stability of the port energy system under high renewable energy penetration level is more serious, and the power fluctuation of tie- 
line intensifies, which is not conducive to the safe and stable operation of the power grid. Therefore, North China Power Grid Company 
introduces fluctuation penalty cost in trading settlement, which can help to guide port to reduce power fluctuation of renewable energy 
power generation, in order to smooth the tie-line power and maintain safe and stable operation of the power grid. 

cT x=
∑24

t=1

(
Cmain

t +CCO2
t +Cvary

t

)
(33)  

Cmain
t = − cpr,NH3 QNH3

t − cpr,e,s
t Psell

t + cpr,e,b
t Pbuy

t + cpr,g
t

(
GGT

t +GGB
t

)
(34)  

CCO2
t = cpr,CO2[δg,CO2(GGT

t +GGB
t

)
+ δp,CO2Pbuy

t

]
(35)  

Cvary
t = cvaryPvary

t , -Pvary
t ≤

(
Pbuy

t -Psell
t

)
-
(
Pbuy

t-1 -Psell
t-1

)
≤ Pvary

t (36)  

In formula, cpr,NH3 is the sale price of ammonia. cpr,e,s
t and Psell

t are the price and quantity that port sells electricity to municipal power 
grid. cpr,e,b

t and Pbuy
t are the price and quantity that port purchases electricity from municipal power grid. cpr,g

t is the price of nature gas. 
cpr,CO2 is the carbon price. δg,CO2 and δp,CO2 are respectively the carbon emissions factors of nature gas and municipal power grid. cvary is 
power fluctuation penalty coefficient of municipal power grid. Pvary

t is the power fluctuation of municipal power grid caused by 
renewable energy. 

4.1.2. Rescheduling cost in the intraday stage 
Due to the unknown true distribution of ωu, within the Wasserstein distance-based fuzzy set l , the goal of Eq. (36) is to minimize 

the rescheduling cost under the worst-case scenario. The rescheduling cost includes such energy purchase and sale cost C̃
main
t , carbon 

emission cost C̃
CO2
t , and penalty cost C̃

cut
t for power curtailment of renewable energy power generation and load shedding, as shown in 

Eq. (37). 

sup
D∈l

ED(Q(x,ωu))= sup
D∈l

ED

(

min
∑T

t=1

(
C̃

main
t + C̃

CO2
t + C̃

cut
t

)
)

(37)  

C̃
main
t = − cpr,NH3 Q̃

NH3

t − cpr,e,s
t P̃

sell
t + cpr,e,b

t P̃
buy
t + cpr,g

t

(
G̃

GT
t + G̃

GB
t

)
(38)  

C̃
CO2
t = cpr,CO2[δg,CO2( G̃

GT
t + G̃

GB
t

)
+ δp,CO2P̃

buy
t

]
(39)  

C̃
cut
t = cpr,re( Pcut,wt

t +Pcut,pv
t

)
+ cpr,loadPcut,load

t (40)  

In formula, Q̃
NH3

t is the adjustment value of ammonia production volume at time t. ̃P
sell
t and ̃P

buy
t are the adjustment value of the quantity 

that port sells electricity to municipal power grid, and port purchases electricity from municipal power grid. cpr,g
t is the price of nature 

gas. G̃
GT
t and G̃

GB
t are the adjustment values for gas consumption of gas turbine and gas fired boiler, respectively. cpr,re and cpr,load are 

penalty coefficients for the power curtailment of renewable energy power generation and load shedding. Pcut,wt
t Pcut,pv

t and Pcut,load
t are 

the quantity for the power curtailment of wind turbine, photovoltaic and load shedding. 

4.2. Constraints 

4.2.1. Day-ahead stage 
The pre-scheduling in the day-ahead stage needs to meet various equipment constraints, as shown in Section 2. In addition, it is also 

necessary to meet municipal power grid operation constraints and energy balance constraints.  

(1) Municipal power grid operation constraints 

0≤Pbuy
t ≤ UMPG

t PMPG
max (41)  

0≤Psell
t ≤

(
1 − UMPG

t

)
PMPG

max (42) 
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In formula, UMPG
t is 0–1 variable. UMPG

t = 1 represents port purchases electricity from the municipal power grid. UMPG
t = 0 represents 

port sells electricity to the municipal power grid. PMPG
max is the upper limit of exchange power between port and municipal power grid.  

(2) Energy balance constraints 

Pbuy
t +PGT

t + PWT
t + PPV

t = Psell
t + PEC

t + PP2H
t + PH2 ,C

t + PAS
t + PNH3

t + Pload,e
t (43)  

HGT
t +HGB

t + HHES,dis
t = HHES,ch

t + HAC
t + Hload,h

t (44)  

LEC
t +LAC

t = Lload,c
t (45)  

In formula, PWT
t and PPV

t respectively represent the power of wind turbine and photovoltaic. Pload,e
t , Hload,h

t and Lload,c
t are electric load, 

heating load, and cooling load at time t. 

4.2.2. Intraday stage 
On the basis of pre-scheduling, the port energy system should be adjusted through rescheduling of intraday stage. The rescheduling 

in the intraday stage should also meet the equipment operation constraints in Section 2. In addition, it is also necessary to meet the 
curtailment constraints of renewable energy and load, and energy balance constraints.  

(1) Curtailment constraints of renewable energy and load 

0 ≤ Pcut,i
t ≤ Pi

t + ωu, i = {WT,PV} (46)  

0≤Pcut,load
t ≤ Pload,e

t (47)  

In the formula, Pcut,i
t and Pcut,load

t respectively represent the reduction of renewable energy power generation and load. ωu is the pre-
diction error of renewable energy power generation.  

(2) Energy balance constraints 

L̃
EC
t + L̃

AC
t = 0 (48)  

H̃
GT
t + H̃

GB
t + H̃

HES,dis
t = H̃

HES,ch
t + H̃

AC
t (49)  

P̃
buy
t + P̃

GT
t + Pcut,load

t + ωu = P̃
sell
t + P̃

EC
t + P̃

P2H
t + P̃

H2 ,C
t + P̃

AS
t + P̃

NH3

t + Pcut,WT
t + Pcut,PV

t (50)  

4.3. Reconstruction of scheduling model for port energy system 

The two-stage scheduling model of port energy system based on DRO can be expressed as a min-max-min three-layer optimization 
as shown in Eq. (51). 

min
x∈X

cT x + sup
D∈l

ED
(
min
(
dT y(x,ωu)

))
(51) 

Because Eq. (50) contains D, D ∈ l and ωu ∈ Ξ, the constraint contains prediction error random variables and becomes an infinite 
limit. Therefore, the two-stage scheduling model based on DRO belongs to a semi-infinite programming model, which is difficult to 
directly solve. Therefore, this section reconstructs it into the mixed integer linear programming model for solution through strong 
duality theorem, and the reconstruction process is as follows. 

Firstly, according to strong duality theorem, the worst-case scenario expectation can be rewritten as Eq. (52). 

sup
D∈l

ED(Q(x,ωu))= inf
σ≥0

{
∑M

m=1
sup
ωu∈Ξ

(
Q(x,ωu) − σ

⃦
⃦ωu − ωti

m

⃦
⃦
)
/M + σε

}

(52)  

In formula, σ is a dual variable. 
Secondly, Eq. (51) under support set Ξ can be equivalently represented as Eq. (53). 

min
x∈X,σ≥0

cT x+
∑M

m=1
sup
ωu∈Ξ

(
Q(x,ωu) − σ

⃦
⃦ωu − ωti

m

⃦
⃦
)
/M + σε (53)  

s.t. Ax ≤ b, Zy(x,ωu) ≤ g(ωu), ∀ωu ∈ Ξ (54)  

In formula, Ax ≤ b represents the constraints of pre-scheduling stage. Zy(x,ωu) ≤ g(ωu) represents the constraints of rescheduling 
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stage. 
Thirdly, Eq. (53) also contains a max-min problem, which is difficult to solve directly. Therefore, auxiliary variable βm needs to be 

introduced, and Eq. (53) is rewrote to Eq. (55). 

min
x∈X,σ≥0

cT x+
∑M

m=1
βm/M + σε (55)  

s.t.

⎧
⎨

⎩

sup
ωu∈Ξ

(
Q(x,ωu) − σ

⃦
⃦ωu − ωti

m

⃦
⃦
)
≤ βm, ∀m = 1, 2,⋯,M

Ax ≤ b, Zy(x,ωu) ≤ g(ωu), ∀ωu ∈ Ξ
(56) 

If Q(x,ωu) is a convex function about variable ωu [37], then the optimal solution of sup
ωu∈Ξ

(Q(x,ωu) − σ
⃦
⃦ωu − ωti

m

⃦
⃦) must be obtained 

on the upper and lower bounds (ωs,ωx) of ωu or ω̂n ∈ Ξ, ∀m = 1,2,⋯,M . Obviously, Q(x,ωu) is a linear function of ωu. In addition, 
y(x,ωu) and g(ωu) also have a linear relationship with ωu. Therefore, under the support set Ξ, sup

ωu∈Ξ
(y(x,ωu) − g(ωu)) takes value within 

the upper and lower bounds of ωu. 
In conclusion, the scheduling model of port energy system based on DRO can be reconstructed into a mixed integer linear pro-

gramming model, which is easy to solve, such as in Eqs.(57) and (58). The error variable ωu of renewable energy power generation is 
no longer included in Eqs.(57) and (58). Therefore, this model has become a mixed integer linear programming problem, which can be 
solved directly through commercial solvers. 

min
x∈X,σ≥0

cT x+
∑M

m=1
βm/M + σε (57)  

s.t.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Q(x,ωs) − σ
⃦
⃦ωs − ωti

m

⃦
⃦ = dT y(x,ωs) − σ1T (ωs − ωti

m

)
≤ βm

Q(x,ωx) − σ
⃦
⃦ωx − ωti

m

⃦
⃦ = dT y(x,ωx) − σ1T (ωx − ωti

m

)
≤ βm

Q
(
x,ωti

m

)
− σ
⃦
⃦ωti

m − ωti
m

⃦
⃦ = dT y

(
x,ωti

m

)
≤ βm, ∀m = 1, 2,⋯,M

Ax ≤ b, σ ≥ 0, Zy(x,ωs) ≤ g(ωs), Zy(x,ωx) ≤ g(ωx)

(58) 

Significantly, the rescheduling decision is transformed to a prediction error function in Eqs.(57) and (58), the final result of two- 
stage scheduling based on DRO is the pre-scheduling result. 

5. Example analysis 

By building rooftop photovoltaic (PV) and offshore wind turbine (WT), Tianjin Port builds a integrate energy system wherein 
renewable energy constitutes the main body of energy, supplemented by natural gas distributed energy system, and coordinated with 
municipal power grid (MPD), in order to optimize the synthetical efficiency for low-carbon energy utilization. 

The research results of this article have been demonstrated in the northern port of Tianjin Port. From the short-running operational 
effect, hydrogen energy is treated as a green energy carrier in Tianjin Port that can enhance the capacity of renewable energy utili-
zation and promote the low-carbon transition of port energy system. Moreover, the economy and flexibility of energy system in Tianjin 
Port can be improved by the ammonia synthesis after hydrogen production using renewable energy. 

Therefore, Simulation was conducted in Part V using real data from Tianjin Port. Part V can obtain various load and device in-
formation required for simulation through actual data from Tianjin Port. The load in the northern port mainly comes from the ship 
shore power and the heating and cooling requirements of container terminal. A notice will be issued before the ship arrives at the 
northern port, the port load can be calculated according to the notice, and the level of uncertainty is small. Therefore, this article has 
not yet considered the uncertainty of load. With the development of demonstration areas, the uncertainty of port load will be 
considered in the future. The results of example analysis were consistent with the Tianjin Port trial running data. It can demonstrate 
that the scheduling method based on distributionally robust optimization has outstanding advantages in the computing time and 
renewable energy utilization to improve the flexibility and economy of energy system in Tianjin Port. Example analysis verified this 
article from three sections. 

Section 5.2 analyzes the impact of load rate adjustment on the safety constraints of the ammonia synthesis section, confirms the 
rationality of Eqs. (4) and (5) to describe the control inertia of the ammonia synthesis reaction in this article. From comparison of 
P2H2A system under various optimization methods, the advantage of DRO in the renewable energy utilization and the regulation 
ability of hydrogen storage tank is confirmed. 

Section 5.3 shows comparison results of deterministic optimization, stochastic optimization, robust optimization, and confirms that 
DRO can improve the capacity of anti-risk for stochastic optimization and overcome the conservatism of robust optimization on the one 
hand, and consider economy and robustness on the other hand. The pre-scheduling results based on DRO are consistent with the 
Tianjin Port operation data. 

Section 5.4 illustrates that DRO can reflect the decision-making risk preference of the port energy system by adjusting the Was-
serstein distance-based sphere radius, and confirms that DRO considers the uncertainty of probability distribution and has the 
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advantages of stochastic optimization and robust optimization. 

5.1. Example settings 

The energy purchase and sale prices at Tianjin Port are shown in Fig. 3. Equipment parameters of Tianjin Port are shown in Table 2. 
Referring to the market price in recent years, the sale price of ammonia at the port is set to 393.96 $/ton. The port has one offshore 
wind-farm and one rooftop photovoltaic. The predicted error data of renewable energy power generation is sourced from the publicly 
available data of Tennet [38]. The scheduling period is 24 h, and the time interval of scheduling is set to 1 h. In the example analysis, 
this paper uses the YALMIP tool kit in MATLAB to call CPLEX to solve the scheduling model of port energy system based on DRO. The 
computer parameters are Intel Corei5 1.99 GHz CPU and 8 GB memory. 

5.2. Simulation verification of scheduling constrains for ammonia synthesis 

To verify the impact of load rate adjustment on the safety constraints of the ammonia synthesis section, the model of ammonia 
synthesis section was established in this paper, such as the ammonia converter, circulation recovery, and ammonia separation. The 
simulation results of ammonia production volume, hydrogen production volume, ammonia converter pressure and temperature are 
shown in Fig. 4. The load rate adjustment command of ammonia synthesis section is shown in Fig. 4 (a) by the blue solid line and green 
solid line, which decreases from 0.6 ton/h to 0.2 ton/h after 0.4 h or 1 h. The response processes are shown by the orange solid line 
(0.4 h) and yellow solid line (1 h) in Fig. 4, according to the load rate adjustment command of ammonia synthesis section. Security 
constrain is shown by the black solid line in Fig. 4 (c) and Fig. 4 (d). 

The impact of ramp rate of load rate adjustment on the safety constraints of ammonia synthesis section is analyzed as follows. When 
the ramp rate of load rate adjustment is relatively small, it can ensure that the ammonia synthesis reaction transitions smoothly to the 
new steady state, and the temperature and pressure of the ammonia converter meet safety constraints. When the ramp rate of load rate 
adjustment is relatively large, due to the large inertia of mass and heat transfer in the ammonia synthesis section, it is difficult to adjust 
in a timely manner. It results in the significant fluctuation of temperature and pressure of ammonia converter, which violates safety 
constraints. Using Eqs. (4) and (5) to describe the control inertia of the ammonia synthesis reaction in this article is more reasonable, 
and the time interval of scheduling of 1 h is reasonable. 

Using the system parameters given in Section 5.1, the running status of P2H2A can be calculated and shown in Fig. 5, based on the 
distributionally robust optimization scheduling model of port energy system in Section 4. 

Fig. 5 shows the curves of hydrogen production volume, residual capacity of hydrogen storage tank and ammonia production 
volume under different scheduling method, such as deterministic optimization, robust optimization and DRO. As shown in Fig. 5 (a), 
compared to deterministic optimization, DRO utilizes almost the same amount of renewable energy power generation without causing 
the power curtailment of wind turbine and photovoltaic. As shown in Fig. 5 (b) and Fig. 5 (c), compared to deterministic optimization, 
DRO can reduce the smoothness of ammonia production volume slightly, which can make the residual capacity of the hydrogen storage 
tank no longer touch the upper limit constraint and enhance the robustness of the scheduling method. Compared with robust opti-
mization, DRO better utilizes the renewable energy power generation and the regulation ability of hydrogen storage tank, which can 
effectively improve economic benefits of P2H2A. 

5.3. Scheduling result analysis of distributionally robust optimization 

The probability distribution of prediction error of renewable energy power generation at each prediction time scale was obtained 
by kernel density estimation, as shown in Fig. 6. With the inverse function of prediction error probability distribution, the output 
interval of renewable energy power generation can be obtained, and the confidence level is 95%. The scenarios of renewable energy 
power generation can be obtained by K-means clustering. The number of scenarios is 20, and the radius of sphere is 1 MW. 

The comparison results of deterministic optimization, stochastic optimization, robust optimization, and DRO are shown in Table 3. 

Fig. 3. Energy purchase and sale price of port.  
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Random optimization, robust optimization, and DRO are all two-stage scheduling methods. Deterministic optimization is a single stage 
scheduling method, which does not need to consider the rescheduling process and has no related cost. 

As shown in Table 3, the total scheduling cost of deterministic optimization is the lowest. But this does not mean that deterministic 
optimization is superior to uncertain optimization. The pre-scheduling of deterministic optimization is based on the prediction in-
formation of day-ahead stage, without considering the uncertainty risk and rescheduling cost caused by prediction errors. In the 

Table 2 
Equipment parameters of port.  

Equipment Parameters 

Municipal power grid Name Value Name Value 
Power limit for purchasing and selling electricity/MW 7/7 Power fluctuation penalty coefficient/$/MW 28.14 
Carbon emission coefficient/ton/MWh 0.6 – – 

Nature gas Heat value/kWh/m3 9.87 Carbon emission coefficient/kg/m3 2.262 
Electrolyzer Upper limit of hydrogen production power/MW 6 Hydrogen production efficiency/% 70 
Hydrogen storage tank Installed capacity/MWh 5 Hydrogen storage/release efficiency/% 98/98 

Starting and ending SOC/% 50/ 
50 

Upper limit of hydrogen storage/release power/MW 2/2 

Upper and lower limits of SOC/% 90/ 
10 

– – 

Ammonia synthesis Ammonia production volume/ton/h 0.64 Fixed power consumption/MW 0.055 
Gas turbine Upper and lower limits of electric power/MW 3/0.3 Upper and lower limits of ramp rate/MW 1/− 1 

Lower limit of the time span of start and stop/h 3/3 Power generation and heat generation efficiency/% 30/50 
Gas fired boiler Upper limit of thermal power/MW 2.5 Heat generation efficiency/% 90 
Heat energy storage device Installed capacity/MWh 15 Charge/discharge efficiency/% 98/98 

Starting and ending SOC/% 50/ 
50 

Upper limit of charge/discharge power/MW 1.3/ 
1.3 

Upper and lower limits of SOC/% 90/ 
10 

– – 

Absorption cooler Upper limit of cooling power/MW 0.8 Cooling efficiency/% 130 
Electric cooler Upper limit of cooling power/MW 0.8 Cooling efficiency/% 400 
Others Cost coefficient of wind power curtailment/$/MW 42.21 Cost coefficient of load shedding/$/MW 351.75 

Cost coefficient of photovoltaic curtailment/$/MW 0.3 Carbon cost coefficient/$/ton 35.18  

Fig. 4. The dynamic responses of the ammonia synthesis section under different ramp rate of load rate.  

X. Liu                                                                                                                                                                                                                     



Heliyon 10 (2024) e27615

16

intraday stage, deterministic optimization requires a large amount of power exchange between port and municipal power grid, in order 
to solve the power imbalance problem caused by prediction errors of renewable energy power generation. It results in higher actual 
scheduling costs. 

In uncertain optimization methods, stochastic optimization has the lowest pre-scheduling and rescheduling costs, because they are 
calculated based on precise probability distribution. However, a precise probability distribution will result in an overly optimistic risk 
expectation in the intraday stage. Insufficient power exchange between port and municipal power grid in the day-ahead stage will 

Fig. 5. Result comparison of P2H2A system under various optimization methods.  

Fig. 6. Forecast error probability distribution.  
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reduce the capability of anti-risk of stochastic optimization in the intraday stage. It results in the worst robustness of stochastic 
optimization. 

Robust optimization has the highest pre-scheduling and rescheduling costs, which are calculated based on the prediction error of 
worst-case scenario. In the day-ahead stage, robust optimization requires increasing power exchange between port and municipal 
power grid to enhance the capacity of anti-risk in the intraday stage, and has good robustness. However, it will result in the highest pre- 
scheduling cost and the worst economic property. 

The pre-scheduling and rescheduling costs of DRO are between stochastic optimization and robust optimization. The main reason is 
that pre-scheduling of DRO is made based on the forecasting error and its probability distribution under worst-case scenario. With the 
complementary advantages of stochastic optimization and robust optimization, DRO can improve the capacity of anti-risk for sto-
chastic optimization and overcome the conservatism of robust optimization on the one hand, and give consideration to economy and 
robustness on the other hand. 

In this paper, the rescheduling decision is transformed to a prediction error function in Eqs.(57) and (58), so the final result of two- 
stage scheduling based on DRO is the pre-scheduling result. The composition of pre-scheduling cost under different optimization 
methods shown in Table 4. 

As shown in Table 4, by comparison with deterministic optimization and stochastic optimization, DRO and robust optimization 
have higher pre-scheduling cost, due to the increase in electricity purchases from the municipal power grid by port. At the same time, 
both also have higher carbon emission cost. The main reason is that in order to improve the capacity of anti-risk in the intraday stage, 
the pre-scheduling scheme increased the electricity purchased from the municipal power grid, which is dominated by thermal power 
plants. The increase in electricity purchase results in lower nature gas purchase cost of robust optimization and DRO. Robust opti-
mization is expected to have highest power fluctuation cost based on the worst-case scenario, and there was no significant difference 
among the others. The sales revenue of liquid ammonia is 243.66 $ in robust optimization, and that of DRO is 294.91 $. Compared with 
243.66 $, a 21.03 per cent rise on the sales revenue of liquid ammonia of DRO. 

The detailed results of pre-scheduling based on DRO are shown in Fig. 7. 
By comparison with absorption cooler in Table 2, electric cooler has higher cooling efficiency. As shown in Fig. 7 (a) and Fig. 7 (d), 

the cooling load is mainly supplied by electric cooler, while the rest is supplied by absorption cooler. During the period from 8:00 to 
19:00, the renewable energy power generation is less than the electric load. Due to the high electricity purchase price during this 
period, the cooling load is mainly supplied by absorption cooler, in order to reduce the cost of electricity purchased from the municipal 
power grid (MPD). 

As shown in Fig. 7 (b) and Fig. 7 (d), the renewable energy power generation is less than the electric load, and both the electric and 
heating loads are mainly supplied by gas turbines, during the period from 8:00 to 19:00. Surplus thermal energy is stored in the heat 
energy storage device, which can shift the above thermal energy to the period of 21:00–6:00 for use, lowering the cost of thermal 
energy supply. During the period from 21:00 to 6:00, the renewable energy power generation is relatively high, so the gas turbine will 
be kept at lowest possible power to provide reserve capacity. The heating load is mainly supplied by the gas boiler. 

As shown in Fig. 7 (c) and Fig. 7 (d), hydrogen generation by water electrolysis can improve the capacity of renewable energy 
utilization, during the periods of 6:00–7:00 and 21:00–5:00. The ammonia synthesis system also tends to operate during this period. 
During the period from 9:00 to 18:00, the ammonia synthesis system operates stably on a lower power level, in order to reduce the cost 
of electricity purchased from the municipal power grid. During the period from 21:00 to 6:00, there was no significant power fluc-
tuation between port and municipal power grid. The mainly reason is that ammonia synthesis after hydrogen production by water 
electrolysis can adapt to the uncertain properties of renewable energy, which can effectively stabilize power fluctuation. As shown in 
Fig. 7 (d), the power exchange between the port and the municipal power grid is mainly used as a supplementary method, when the 
port energy system is unable to satisfy the electric load demand or consume renewable energy power generation. Renewable energy 

Table 3 
Scheduling results under different optimization methods.  

Name Pre-scheduling cost/$ Rescheduling cost/$ Total scheduling cost/$ 

Deterministic optimization 6756.67 0 6756.67 
Stochastic optimization 6757.77 635.81 7393.58 
Robust optimization 8429.96 9569.44 17999.4 
Distributionally robust optimization 7001.95 2736.01 9737.96  

Table 4 
Composition of pre-scheduling cost under different optimization methods.  

Name Deterministic optimization Stochastic optimization Robust optimization Distributionally robust optimization 

Electricity purchase/$ 1185.43 1130.52 4158.11 1694.43 
Electricity sale/$ − 635.89 − 729.30 − 739.77 − 726.20 
Nature gas purchase/$ 4932.62 5070.17 3374.94 4771.72 
Carbon emission/$ 1339.94 1369.26 1616.95 1406.03 
Power fluctuation/$ 144.01 157.33 263.39 150.88 
Liquid ammonia sale/$ − 209.44 − 240.21 − 243.66 − 294.91 
Pre-scheduling cost/$ 6756.67 6757.77 8429.96 7001.95  
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still constitutes the main body of energy at the port area. 

5.4. Sensitivity analysis of distributionally robust optimization scheduling 

Distributionally robust optimization is an uncertain optimization method that combines stochastic optimization and robust opti-
mization. Through the analysis in Part III, the Wasserstein distance-based sphere radius has a clear meaning, the sphere radius of its 
Wasserstein distance-based fuzzy set determines whether DRO favors risk neutral stochastic optimization or risk averse robust opti-
mization. The sensitivity analysis in Section 5.4 can provide intuitive data as a reference for decision-makers. The original work of this 
paper is to do the sensitive analysis of α and M. But according to feedback from decision-makers, it is indeed not as intuitive as the 
sensitivity analysis of Wasserstein distance. Therefore, in order to meet the demand of project, this section conducted a sensitivity 
analysis of Wasserstein distance-based sphere radius, without addressing the sensitivity analysis of α and M. The relationship between 
pre-scheduling cost and Wasserstein distance-based sphere radius is shown in Fig. 8, which indicates the impact of Wasserstein 
distance-based sphere radius on risk preference. 

As shown in Fig. 8, the pre-scheduling costs of stochastic optimization and robust optimization are constant, which have nothing to 
do with Wasserstein distance-based sphere radius. The pre-scheduling cost of DRO falls between stochastic optimization and robust 
optimization, and varies with the Wasserstein distance-based sphere radius. As the Wasserstein distance-based sphere radius increases, 
the pre-scheduling cost of DRO gradually deviates from risk neutral stochastic optimization and leans towards risk averse robust 
optimization. 

When leaning towards stochastic optimization, pre-scheduling decision tends to be economic. It indicates that the decision-maker 
believes that the probability distribution of uncertain variables is accurate enough or historical data is adequate to construct the fuzzy 
set. When leaning towards robust optimization, pre-scheduling decision tends towards robustness. It indicates that the decision-maker 
believes that significant risks will arise in the future, and priority should be given to the reliability of the pre-scheduling decision. In 
summary, DRO can reflect the decision-making risk preference of the port energy system by adjusting the Wasserstein distance-based 
sphere radius. It can achieve reasonable scheduling that balances economy and robustness. 

When the Wasserstein distance-based sphere radius remains constant, distributionally robust optimization scheduling is also 
affected by the number of scenarios, which is used to build the Wasserstein distance-based fuzzy set. The relationship between pre- 
scheduling cost (Black dots), calculation time (red line) and number of scenarios is shown in Fig. 9. 

As shown in Fig. 9, when the number of scenarios is small, the pre-scheduling cost is divergent and the variance is large. It indicates 
that a small number of scenarios are difficult to accurately reflect the true distribution of renewable energy power generation, which 
has significant uncertainty. As the number of scenarios increases, the variance gradually decreases, which can promote the Wasserstein 

Fig. 7. Results of pre-scheduling based on distributionally robust optimization.  
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distance-based fuzzy set to converge to the true distribution. However, the calculation time increases sharply with the increase of the 
number of scenarios. Therefore, it is necessary to analyze the computational efficiency of the scheduling model based on DRO. 

Before the model reconstruction, there were 2111 decision variables of pre-scheduling and rescheduling. After the model recon-
struction, there were 3071 decision variables of pre-scheduling and linear decision rule. The number of decision variables after model 
reconstruction significantly increased. However, when the number of scenarios in Fig. 9 is greater than 15, the pre-scheduling cost will 
no longer fluctuate significantly, and the calculation time is in the range of 1200 s–6600 s. It can meet the demands of day-ahead 
scheduling calculation time. Therefore, this paper proposed model can meet the demand for computing efficiency. 

In addition, DRO considers the uncertainty of probability distribution, and has the advantages of stochastic optimization and robust 
optimization, which are illustrated by the following example. Assuming that the prediction error of renewable energy power gener-
ation corresponds to the normal distribution, five different mean values are selected to generate renewable energy power generation 
scenarios by Latin hypercube sampling. The pre-scheduling costs under different mean values are shown in Table 5. 

As shown in Table 5, the deterministic optimization does not consider prediction errors, resulting in the lowest pre-scheduling cost 
and overly optimistic risk expectation. Meanwhile, its pre-scheduling cost remains unchanged, and it’s impossible to adjust the risk 
expectation based on historical prediction error data. 

Stochastic optimization is based on probability distribution information to conduct optimal scheduling. When the actual value of 
renewable energy power generation is greater than the predicted value (i.e., the mean value is greater than 0), its pre-scheduling cost 
approaches the pre-scheduling cost of deterministic optimization, reflecting optimistic risk expectation. When the actual output of 
renewable energy is less than the predicted output (i.e., the mean value is less than 0), its pre-scheduling cost increases as the mean 
value decreases, reflecting negative risk expectation. However, it does not consider the uncertainty of probability distribution, so its 
robustness is poor. 

Robust optimization has the highest pre-scheduling cost, indicating its strongest robustness. But it does not utilize probability 
distribution information, so its economy is the worst. It shows an overly negative attitude towards risk expectation. 

Fig. 8. Pre-scheduling cost under different Wasserstein distance-based sphere radius.  

Fig. 9. Pre-scheduling costs and their calculation time under different number of scenarios.  

Table 5 
Pre-scheduling costs under different mean values.  

Mean values/MW − 1 − 0.5 0 0.5 1 

Deterministic optimization/$ 6756.67 6756.67 6756.67 6756.67 6756.67 
Stochastic optimization/$ 7189.95 6897.13 6757.77 6768.08 6814.63 
Robust optimization/$ 8653.52 8655.12 8429.96 8071.03 7632.76 
Distributionally robust optimization/$ 7699.94 7327.65 7001.95 6800.40 6760.25  
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The trend of the pre-scheduling cost of DRO changing with the mean value is the same as that of stochastic optimization, indicating 
that it has the characteristic of reflecting risk expectation as stochastic optimization. Its higher pre-scheduling cost indicates that it has 
the robustness as robust optimization. 

6. Conclusions 

In order to effectively address the uncertainty risks of port energy system caused by intermittence and fluctuation of renewable 
energy, this paper proposes a scheduling method for port energy system based on distributionally robust optimization (DRO). This 
method organically integrates Wasserstein distance-based fuzzy set, "electricity, green hydrogen, ammonia synthesis", and dis-
tributionally robust optimization, and uses ammonia synthesis after hydrogen production by water electrolysis (P2H2A) as a flexible 
resource to improve the capacity of renewable energy utilization, which helps to achieve optimal scheduling of the port energy system. 
Finally, based on the real data of port energy system, example analysis was conducted, and the following conclusions were obtained.  

(1) The time series scheduling model of P2H2A is intuitive to quantify the capacity for adjust the speed of the change of load rate. 
P2H2A can provide low-carbon flexible resources for the port energy system, has the ability to adapt to the uncertainty of 
renewable energy, and can effectively improve the economy of the port energy system scheduling scheme.  

(2) The scheduling method based on DRO, which realizes combined operation of day-ahead stage and intraday stage, overcomes the 
shortcomings as the poor risk-resistance of stochastic optimization and too conservative of robust optimization. It can simul-
taneously have the advantages as stochastic optimization reflecting risk expectation based on historical prediction error data 
and robust optimization with strong robustness.  

(3) Wasserstein distance-based fuzzy set is used to characterize the uncertainty of renewable energy power generation. Under the 
two risk preferences of risk neutral and risk averse, DRO can balance the economy and robustness of scheduling schemes by 
flexibly adjusting the Wasserstein distance-based sphere radius. It helps the port energy system consider the uncertainty of 
renewable energy generation to balance the economy and robustness of scheduling schemes. 

In order to further improve the real-time and practical performance of scheduling method, the next research focus will be on 
exploring the construction of a multiple time scales collaborative scheduling framework considering the uncertainty of load, which 
integrates DRO, rolling optimization of intraday stage, and real-time compensation mechanisms. 
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