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Abstract

Proteins with desired functions and properties are important in fields like nanotechnology and biomedicine. De novo protein design
enables the production of previously unseen proteins from the ground up and is believed as a key point for handling real social
challenges. Recent introduction of deep learning into design methods exhibits a transformative influence and is expected to represent
a promising and exciting future direction. In this review, we retrospect the major aspects of current advances in deep-learning-based
design procedures and illustrate their novelty in comparison with conventional knowledge-based approaches through noticeable
cases. We not only describe deep learning developments in structure-based protein design and direct sequence design, but also
highlight recent applications of deep reinforcement learning in protein design. The future perspectives on design goals, challenges
and opportunities are also comprehensively discussed.
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Introduction
Among all molecules in our sophisticated and wonder-
ful world, proteins that participate in most biochemical
reactions have been under the spotlight of fundamen-
tal scientific researches as well as medical and indus-
trial applications for decades. According to the ‘cen-
tral dogma,’ the basic biological principle articulated by
Francis Crick in 1958, proteins are the executive ends
of information flow systems in living organisms, each
performing one or a few specifically encoded functions
that jointly define the corresponding organism in turn.
A wide variety of native proteins such as nuclear pro-
teins, membrane proteins, hemoproteins, lipoproteins,
heat-shock proteins, contractile proteins, etc. manifest
strikingly excellent properties compared with man-made
machines, including extremely high efficiency, economy
and precision in operation, self-assembly upon synthesis
and so on. Considering their enormous quantity, fantastic
quality and consequent pluripotency, protein materials
have attracted extensive attentions since they could pro-
vide possible solutions for many serious social chal-
lenges.

Due to the strictly limited working environment
and relatively short operation life, native proteins,
however, cannot meet the surging demands of human

beings satisfactorily. Furthermore, since native proteins
are optimized gradually through millions of years of
evolution under the selective pressure of nature, they
in principle are unlikely to handle challenges arising
from human society within hundreds of years. Therefore,
artificial protein modification, and even one step further,
the design of brand-new proteins from scratch emerges
as the times require. Fortunately, protein design becomes
technically possible with the long-drawn accumulation
of knowledge from past biochemical and biophysical
studies of proteins [1].

Many impressive achievements have been made
through protein design over the past decade, which
intensively impacted and promoted synthetic biology
in both academia and industry. Advances in immune sig-
naling [2, 3], targeted therapeutics [4, 5], sense-response
systems [6], protein switches [7, 8], self-assembly
materials [9, 10] and other fields not mentioned here
have shown the exciting potential of utilizing proteins
as functional and reproducible materials. In addition,
these breakthroughs in protein design also expand our
exploration and understanding of protein sequence,
structure and function spaces. Taking sequence space as
an example, since all native protein sequences originated
from a few ancient accidental events and gradually
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evolved with haphazard mutation and oriented selective
pressure, they exist in the sequence space in the form
of sprinkling clusters called protein families instead of
even dispersion. The properties and functions of protein
sequences located in the vast remaining space would
never be sampled by natural evolution within a limited
time scale, which thus endows the great significance of
protein design.

The earlier protein design approaches such as directed
evolution [11, 12] and the following rational engineering
[13, 14] mainly focus on the imitation and/or acceleration
of natural evolutionary processes. Through rounds of
mutation library construction and high-throughput
screening, these methods could successfully obtain
proteins with improved performance or even new func-
tions by chance [15–18]. Nevertheless, these approaches
always confront the tradeoff between assay fidelity and
throughput, and more importantly, their explorations
are still restricted around the corresponding initial
native proteins. With the development of computational
devices and algorithms, shortages mentioned above are
gradually overcome by computer-assisted protein engi-
neering, which avoids the relatively random mutation
strategy and provides some definite design blueprints
based on biophysical and biochemical principles of
proteins. Among many computer-assisted protein engi-
neering methodologies, de novo protein design aiming
to generate new proteins not existing in nature has
drawn the most attention [1]. With copious valuable
achievements, de novo protein design was nominated as
one of the top 10 annual breakthroughs by Science in 2016
[19].

Basically, the task of de novo protein design is to find
new sequences targeted for desired functions. In practice,
however, there are some impediments in the construc-
tion of direct mapping between the protein sequence
and function spaces. For example, information encoded
in a protein sequence is hard to extract from the tar-
get sequence alone, since it is simply a permutation or
combination of 20 kinds of amino acid residues. Besides,
different protein functions could barely be quantitatively
articulated. Since proteins need to form particular ter-
tiary structures to perform their specific functions and
structures usually contain richer information, e.g. the
Cartesian coordinates of atoms stored in PDB files, pro-
tein structures are perfect media for the bidirectional
mapping between sequences and functions. In addition,
massive protein structural data accumulated from pre-
vious researches, such as protein fold classification, con-
sequent clustering and reaction mechanism information
described by binding interfaces, catalytic centers and
allosteric regulations, would also be extremely helpful.
Thus, de novo protein design proceeds mainly in the
structure-based manner.

Structure-based de novo protein design usually has
three domains or stages, i.e. backbone generation,
sequence fitness and candidate scoring, exemplified
by Top 7 [20], the first globular protein that was

designed without natural homologs, as well as other
famous related works. Generally, a specific folding
topology with predefined secondary structural elements
and/or geometric constraints (e.g. inter-residue distances
and orientations) is designed at the first step. Then,
compatible peptide fragments are picked under the
evaluation by sequence-independent energy functions
and several sequence-structure optimization iterations
are executed. During these iterations, rotamers are
substituted randomly based on the energy functions,
following the Metropolis-Hastings algorithm. After that,
candidates are scored, rated and selected to generate the
final design outputs [21].

Despite the significant achievements [22–24], these
conventional approaches are mainly knowledge based,
relying on physical principles and statistical rules
[25]. With the plenty of data accumulated for protein
sequence, structure and function as well as their
relationships [26–28], research interests of protein design
gradually converted towards data-driven methods in
recent years [29]. Among them, deep learning techniques,
which have revolutionized many other fields like natural
language processing and computer vision [30], made the
most significant impacts.

Deep learning offers the simplest and also the most
general approximation and parameterization methodol-
ogy for high-order statistics and potentials by enlarging
the receptive field with the support of big data, and
thus could be integrated into all domains of structure-
based protein design for further improvements and even
breakthroughs. Besides, deep learning also sheds a light
on the direct protein sequence design for specific func-
tions or properties without the medium of structures. In
this review, we orient our discussion to advanced protein
design approaches based on deep learning techniques,
the benefits offered by them and the predictable trends.
It is noteworthy that many other advances that hugely
promoted protein design, exemplified by DNA synthesis,
protein structure prediction and protein manufacture,
would not be detailed here.

Briefings of deep learning techniques
related to this review
In a nutshell, deep learning trains an artificial neural
network or a combination of related networks to
approximate complicated unknown functions in a high-
dimensional abstract space. Artificial neurons or nodes
with non-linear activations are connected by specific
affine transformations with parameterized weights and
biases, which are modified in each training step through
the back propagation of gradients computed from losses,
i.e. the differences between current network outputs and
corresponding ground truths.

Discriminative models
Convolutional neural network (CNN) is one of the most
successful deep network architectures working with data
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Figure 1. An illustration of the internal architectures of (A) VAEs and (B) GANs. Arrows represent corresponding dataflow.

that have typical grid-structured topology like ordinary
pictures and protein inter-residue distance maps. There
are two major operators in an ordinary CNN: convolu-
tion and pooling, where convolution is a special linear
operation with pair-wised multiplication while pooling
is a proportional down-sampling manner. The unique
mechanism of CNN empowers it to overcome shortages
of common deep feedforward networks with approaches
like parameter sharing, sparse interaction and equivari-
ant representation, etc. Besides, convolution also makes
it possible to handle input data of variable sizes. Modern
practical implementations of CNN often involve huge
networks containing architectural variants and millions
of units. Among them, ResNet was one of the most
famous propellants that promoted the development of
protein bioinformatics in the last decade [31, 32].

Recurrent neural network (RNN) is another classic
network architecture suitable for processing sequential
data like natural languages and protein sequences. The
underlying idea to unfold recursive computation into a
computational graph with repetitive structure naturally
results in large-scale parameter sharing. Typically, RNN
produces a single output according to the information
of entire sequence extracted and stored in hidden units
with recurrent connections at the current time step.
Variants of RNN like long short-term memory (LSTM)
and gated recurrent unit (GRU) also played an important
role in natural language processing and bioinformatics
during the past decade [33–35]. Recently, a novel network
called transformer that contains encoder–decoder archi-
tecture and attention mechanism exhibited its superior
capability for sequence processing [36]. Within the trans-
former network, multi-head attention module consisting
of multiple self-attentions could capture correlations of

amino acid residues among different dimensions, which
makes it appropriate for representation learning of pro-
tein sequences [37].

Deep graph neural network (GNN) operates on graph, a
non-Euclidean data structure, and focuses on problems
like clustering, link prediction and node classification.
GNN has been widely applied to knowledge graphs, social
networks, drug discovery and protein bioinformatics [38–
41]. There are many kinds of GNNs, such as convolu-
tional GNN, recurrent GNN, graph autoencoder and so on,
which mainly generalize the corresponding operations
from Euclidean data with grid or sequential structure to
graph data. For example, similar to CNN, convolutional
GNN generates the representation of a node through
aggregating the features of its neighbors within the graph
to expand the receptive field of corresponding neuron.

Generative models
Unlike discriminative models widely used in protein
researches that construct mappings from the space of
the input data to that of the output label by maximizing
the respective likelihood of samples, generative models
such as generative adversarial networks (GANs) [42]
and variational auto-encoders (VAEs) [43] try to capture
the underlying data distribution of training set and
sample brand new instances according to the learned
distribution. It is noteworthy that the relationship
between GANs and VAEs is complicated. Although these
two frameworks have a large intersection, the VAE
architecture could be trained for some models that GANs
could not and vice versa.

As shown in Figure 1, GAN generally contains two
main parts: a generator and a discriminator. The gener-
ator takes samples from a learned distribution while the
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discriminator distinguishes the generator’s outputs from
real samples in training dataset. Essentially, the joint
training procedure of GAN is a two-player game. There-
fore, if both parts have sufficient model capacity and
enough network training is implemented, the Nash equi-
librium of this specific game would appear and the distri-
bution learned by the generator would be identical with
the one of training data. Meanwhile, the architecture
of ordinary VAE is similar to classical encoder–decoder
except the encoder estimates the mean and variance
of a normal distribution instead of producing a latent
variable directly. Combing the advantages of Bayesian
method, VAE with its elegant mathematical foundation,
simple structure as well as satisfactory training cost
and model performance, gradually becomes one of the
common options for generative models and influences
bioinformatics a lot.

Deep reinforcement learning
Combining the great fitting power of deep learning for
high-dimensional function and the ability of reinforce-
ment learning to interact with surroundings in various
situations, deep reinforcement learning techniques con-
tributed to many areas including protein design [44–52].
Basically, deep reinforcement learning divides the world
into two parts, an environment and an agent. Within
every training step, the agent chooses an available action
according to its own policy, which slightly changes the
environment, and then receives feedbacks called rewards
from the environment. The positive rewards encourage
the agent to strengthen its policy, i.e. making the same
choice in a similar situation for the next time, while the
negative ones spur the agent to change its policy.

Deep learning in structure-based protein
design
Structure-based protein design could be treated as the
reverse process of protein structure prediction. For the
latter, some potential structures should be modeled for
a given sequence, while for the former, some feasible
sequences should be optimized for a backbone with the
designed topology (Figure 2). Protein homology plays an
important role in protein structure prediction, providing
massive evolutionary information for precise inferences.
Recently, deep learning has revolutionized protein
structure prediction in many ways, from early efforts in
the protein inter-residue contact prediction and contact-
assisted structure modeling [31, 53–57] to the subsequent
accurate prediction of inter-residue geometric properties
and geometric-constraint-based protein folding [32, 58–
62]. Furthermore, attention networks with the most
advanced end-to-end training procedure developed by
Google DeepMind shocked the public in the 14th Critical
Assessment of protein Structure Prediction (CASP)
experiments by providing a wonderful solution for the
structure prediction of single-domain proteins [63–65].
Deep learning techniques utilized in protein structure

prediction like the convolutional neural networks could
efficiently capture fold-level structural features from
co-evolutionary information harbored in the multiple
sequence alignment [66]. These successes deepened our
understanding of the sequence–structure relationship
for proteins, which is also the foundation of structure-
based design, and provided a bunch of practical tools
that could be directly used in design problems.

In addition to circumstantial improvement of protein
design through advances in structure prediction, cus-
tomized deep learning approaches also made consid-
erable contributions to protein design directly nowa-
days. Novel network architectures, training procedures
and data manipulations aiming to serve various design
objectives in diverse design stages sprang up continu-
ously, vigorously promoting the exploration of proteins.
We will detail these novelties, illustrate the differences
between these approaches and conventional knowledge-
based ones, and articulate corresponding significance in
the following sections.

Backbone sampling and generation
Functions and structures of proteins are closely corre-
lated. A protein will perform its unique function only
when its specific 3D structure is correctly folded. Hence,
generating a backbone conformation under some partic-
ular design purposes becomes the first step in general
protein design routines. Just like the immense space of
protein sequence, the space of backbone structure is
also extremely vast, with thousands of degrees of free-
dom even for small peptides. Nevertheless, designable
backbones usually cluster into minute regions that dis-
perse sparsely in the space [67], because protein domains
stabilized by complicated atom-level forces like hydro-
gen bonds and hydrophobic interactions have to adopt
exquisite shapes with well packed cores and properly
exposed interfaces.

The earliest routines redesigned existing native pro-
tein structures to get possible backbones with improved
structural stability and perhaps new functions [68, 69] or
systematically sampled helical bundles [23, 70, 71] under
the constraints of Crick’s parameterization. Ensuing
de novo design methods generated protein backbones
mainly through the combination of fragment-assembly-
based simulations and human intuition [20, 72–81],
exemplified by the famous Top7 mentioned previously
[20]. As shown in Table 1, modern deep-learning-based
approaches trained generative models to either generate
2D inter-residue geometric feature maps of sampled
backbones or directly output their atom coordinates.

GANs were used to generate protein inter-residue
distance maps for the completion of corrupted structures
[82–84]. This task aimed to infer plausible backbones of
missing residues for the target protein, analogous to an
image-inpainting problem, i.e. inpainting a large distance
map with small size-fixed patches (Figure 3). For exam-
ple, deep convolutional GAN (dcGAN) [85] was chosen
to learn a mapping from a low-dimensional standard
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Figure 2. An illustration of two inverse processes, i.e. protein structure prediction (upper) and structure-based protein design (lower).

Table 1. Brief summary of recent researches focused on structure-based protein design

Reference order Research objective Data resource Network architecture

[82] Complete corrupted structures Protein structures from PDB database dcGAN
[91] Hallucinate novel proteins through protein

structure prediction networks
Completely arbitrary protein sequences
with fixed length of 100 amino acids

trRosetta network within residue
substitution step of a simulated
annealing trajectory

[93] Generate coordinates of immunoglobulin
backbones

Antibody structures from AbDb database VAE

[39] Generate protein sequence with given
geometric and amino acid constraints

Proteins extracted from UniProt database,
sequence repository Gene3D

GNN

[110] Optimize over protein sequences and
structures simultaneously by
backpropagating gradients through protein
structure prediction networks

Proteins collected from a
structure-refinement research (redundancy
with trRosetta training set were reduced)

trRosetta network

[61] Rate candidate predicted structures
without explicit standards and answers

Known correct rankings RankNet and LambdaRank

To maximize the usage of limited exhibition space in this paper, we only choose one research as representative from a bunch of researches with similar objectives
or procedures.

normal distribution z to an unknown high-dimensional
probability distribution in the space of protein inter-
residue distance map with a fixed size [82]. After inpaint-
ing, backbone structures were obtained using either the
alternating direction method of multipliers (ADMM) algo-
rithm [86] to trace Cα positions with concrete coordinates
or Rosetta [21] to sample fragments according to the
generated distance constraints. Although satisfactory
outcomes have been achieved by these works, some
limitations still exist. For example, the distance maps
generated via the dcGAN method mentioned above [82]
were restricted to 16-, 64- and 128-residue fragments
instead of arbitrary length for the intrinsic properties
of dcGAN. This shortage, especially its incompetence
to larger protein fragments, slashed its practicality.
Meanwhile, VAEs that performed conditional generation
through the introduction of a representative latent space

were also shown to be very useful for protein backbone
design [87–89]. With all these successful trials, the ability
of generative models to produce protein backbones with
multiple structural elements (e.g. secondary structures)
has been validated and further related researches would
surely acquire a greater depth in the coming future.

Deep neural networks originally trained for image
recognition could be used to generate ‘hallucinations’
with a transformed style [90]. Similarly, information
of protein sequence–structure relationships stored in
billions of parameters in the powerful protein structure
prediction networks could also be utilized inversely
to generate new sequences and structures [91]. Com-
pletely random sequences of 100 residues were fed
into trRosetta network [32], a well-performed predictor
of protein inter-residue geometric properties based
on sequence alignments, to derive the background
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Figure 3. GANs are used as an inpainting tool to repair the inter-residue
distance map for a corrupted protein structure. The missing part of
the original corrupted distance map (upper) is highlighted with green
dashed squares and the corresponding structure is represented in cyan
(dotted line for corruptions). The distance map is repaired (lower) and the
structure translated from it is represented in violet.

inter-residue distance distributions. Then, a Monte
Carlo simulated annealing trajectory was produced for
each initial random sequence to iteratively optimize
this sequence and get compatible structures. Within
the trajectory, a random single residue substitution
was initiated at an arbitrary position and the distance
distribution map of this mutated sequence would be
immediately predicted by trRosetta for every time step.
This substitution would be accepted only if the Kullback–
Leibler divergence between distance distributions of the
new sequence and corresponding background satisfied
the Metropolis criterion. Through this procedure, diverse
sequences and designable structures not observed in
nature were generated. Subsequent in vitro synthe-
sis showed that these ‘protein hallucinations’ were
monomeric and stable, possessing designed structural
elements. Furthermore, although constructed through
trRosetta [32], this hallucination approach could be easily
extended to more advanced protein structure prediction
networks like AlphaFold2 [63] and RoseTTAFold [65] to
improve its ‘hallucinating power.’ The significance of this
work is not limited in showing a feasible exploration for
structure or sequence generation. More importantly, it
also exhibits a more straightforward avenue to construct
supporting scaffolds around predetermined activation
sites for protein design, where structures are not required
to be mapped out beforehand.

The translation from protein inter-residue geometric
matrices to backbone coordinates could also be under-
taken by approaches related to deep learning [32, 61,
92]. Some of them incorporated energy based optimiza-
tion [32, 93] while others employed self-adaptive data
screening [61]. It is notable that some researches skipped
two-dimensional structural representations and gener-
ated backbones with 3D atom coordinates directly. For

example, a VAE-based architecture modeled backbone
flexibility of immunoglobulin proteins via catching the
related structure distribution, compressing it into a low-
dimensional latent space and interpolating that space
to sample structures with predefined complementarity
determining regions (CDRs) [93].

Sequence design in protein fitness landscape
Almost all information of a protein is encoded in its
sequence. However, inferring possible sequences for a
predefined structure with desired function from the vast
multidimensional sequence space termed as the pro-
tein fitness landscape [94] is extremely struggling and
impossible to be handled with brute force, considering
the countless permutations formed by the 20 usual pro-
teinogenic amino acids [95].

Generally, protein fitness landscape searching meth-
ods cluster residue side-chain conformations as different
rotamers [96], abstract the sequence optimization of a
given backbone to a discrete energy minimization prob-
lem and then search combinations of rotamers around
the global minimum [97]. The energy optimization
process is analogous to mountain hiking (minimizing
energy equivalent to maximizing its opposite), during
which a hiker tries to arrive at the global optimal point
through a meandering route consisting of multiple
tiny trail steps. Despite the previous achievements,
traditional approaches confronted restrictions like the
powerlessness in multi-body interaction design and the
excessive homology of outputs. Although similar in gen-
eral, the learning process of deep neural network differs
from conventional energy minimization in several ways.
Thus, deep learning with its intrinsic advantages and
training techniques accumulated in earlier researches
could substantially mitigate the limitations of regular
procedures either by replacing the entire optimization
routine or by eliciting local amelioration within their
frameworks.

Deterministic approaches could solve the fitness prob-
lem accurately for small backbones [98] but become
powerless for large ones due to the exponential increase
of computational complexity. Statistical sampling meth-
ods, exemplified by Monte Carlo simulations, have been
used to solve this dilemma and could achieve acceptable
approximations in practice [99]. Because the backbone
energy evaluated by existing force fields is highly sen-
sitive to conformational changes, backbone flexibility is
usually considered in these methods by simultaneously
optimizing rotamers and the corresponding local struc-
tures [100–103]. Besides, the hydrogen-bond network is
also an important point that should be carefully attended
to in sequence optimization procedures [104].

Deep learning approaches excel at optimizing the
joint probability of residues under the given backbone
constraints. Thus, applying them to sequence fitness
problem could effectively alleviate or even address
the challenges in conventional methods. In analogy
to Sudoku puzzles, a deep GNN called ProteinSolver
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was proposed by converting the sequence fitness for a
predetermined backbone into a constraint satisfaction
problem, where amino acids were assigned such that
the atom-level inter-residue forces could be compatible
with the given fold [39]. Through training on more than
70 million sequences corresponding to over 80 thousand
structures, GNN elucidated the rules governing these
constraints by inferring hitherto hidden patterns. Unlike
other works in this topic that mainly used computational
metrics to validate the accuracy and quality of their
designs, in vitro validations of ProteinSolver by circular
dichroism experiments testified its capability to fit
protein sequences. It is noteworthy that ProteinSolver
was only trained and tested with the constraints derived
from existing proteins, and thus, its ability to sample
reasonable sequences of novel proteins still needs
further validation.

Another method based on conditional generative
model and graph representation also improved the relia-
bility and computational speed of sequence fitness com-
pared with traditional methods like Rosetta [38]. More
specifically, in this work, a spatial k-nearest neighbor
graph was used in a multi-head self-attention encoder
to develop the backbone representation independent of
sequence. Then, conditioned on previously generated s
amino acids and the given structure, the (s + 1) th residue
was predicted autoregressively by a decoder, similar to
common procedures in language modeling. Other deep-
learning-based methods constructed their networks with
various architectures including auto-encoders [105],
3D convolutional neural networks [106], DenseNets
[107] and GANs [84] to predict sequence probability
profiles from a given backbone structure. Since these
data-driven approaches are capable of assimilating
co-evolutionary information from protein sequence
databases, integrating high-dimensional hints, catching
the inconspicuous internal patterns and deducing
the most possible solutions, protein sequence profiles
generated by them usually exhibit better agreement
with the natural molecular evolution than those profiles
sampled by conventional knowledge-based methods
lacking the help of deep learning.

Deep learning also contributes to the energy evalu-
ation process of protein fitness landscape searching.
In comparison to traditional knowledge-based energy
functions that are typically combinations of statisti-
cal and empirical potential terms [21, 97, 108], deep
learning models could provide a more general and more
accurate description of the multidimensional potential
functions in the real world. A 3D convolutional neural
network was trained in an autoregressive manner to
learn the distribution of sequences conditioned on
a predetermined backbone directly from the protein
structure data [109]. In absence of any human-specified
priors, potentials learned by this network could precisely
predict side chain conformations without using any
conventional forcefields. In vitro experimental data,
especially the high-resolution crystal structures of

two designed TM-barrel proteins, validated the design
capability of this network and corresponding structural
agreements. Compared with the classical molecular
mechanics force fields with great complexity and cost,
this data-driven method only needed a few hours for
training, which exhibited its practical applicability and
huge potentiality.

In addition, networks originally constructed for
protein structure prediction could also be repurposed
for sequence design by energy landscape optimization.
With gradients backpropagated from the predefined
structures to input protein sequences through the
trRosetta network [32], sequences and structures could
be optimized simultaneously [110]. This research hints
that future combination of the low-resolution trRosetta
model that considers the full conformational landscape
and the high-resolution Rosetta model that is good at
single point energy estimation would further improve
protein design methodologies.

Scoring function and candidate rating
Usually, iterations of sequence–structure optimization
would produce a set of candidate sequences. To lighten
the burden of downstream laboratorial synthesis, it is
necessary to select a small subset of candidates that
have the largest probabilities for the intended protein
properties and functions. A typical approach is to rank all
candidates by scoring functions and only retain the top
k. One of the most frequently used scoring functions is
the potential energy mentioned above, since the chosen
sequence should be able to fold into the correct topology
with acceptable stability. Candidate rating is thus often
simplified as identifying sequence–structure pairs with
the lowest energies. Some summaries have been articu-
lated in the last two sections since this step has a close
relationship with previous steps and many researches
integrate them all together.

Scoring functions in the Rosetta program range from
statistical potentials established using Bayesian methods
[111] to complicated modern force fields [112]. Thus, rat-
ing systems of many protein design routines are derived
from Rosetta. Meanwhile, a distinct approach introduces
deep ranking networks called RankNet and LambdaRank
[113] in recommendation systems for candidate rating
[61]. Instead of directly optimizing potential items
for precise energy estimation, these networks update
themselves according to the discrete ranking fitness, i.e.
difference between current order ranked by the network
and the supposed one. Although this work is originally
proposed to address the protein structure prediction
problem, the underlying fundamental concept could be
easily generalized to protein design.

Deep learning in direct sequence design
As described above, the major task of protein design is
to find sequences capable of stably exhibiting desired
properties and conducting expected functions. Besides,
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Figure 4. An illustration of protein representation learning, direct protein sequence design and related downstream protein analysis applications. Protein
representations with fundamental features are obtained through protein language models (bottom). In combination with different kinds of top models,
these representation vectors could be used for either protein sequence design or other analysis tasks (top).

longer information pathway with more transit points
would generally introduce unnecessary transformation
and transmission of data, which might cause larger sig-
nal deviations. Thus, in principle, directly mapping the
spaces of protein sequence and function seems to be
advantageous over design procedures that need predeter-
mined structural topologies as intermedia. More impor-
tantly, due to advances in sequencing technology, the
accumulation speed of protein sequence data is much
faster than its structural counterpart, especially after the
introduction of metagenomics [114]. Tremendous num-
ber of unlabeled sequences in combination with the
powerful capability of deep learning for feature extrac-
tion, pattern recognition and objective generation make
it possible and valuable to directly explore the sequence
space and improve the protein design paradigm.

Different from protein fitness landscape searching for
a given backbone, direct sequence design learns a mean-
ingful distribution of sequence representation in a latent
space and generates sequences in real space according
to speculative representations derived from the learned
distribution (Figure 4). Therefore, generative models are
more widely used in this area compared with discrim-
inative ones (as exhibited in Table 2). In this section,
we will focus on two major aspects of direct protein
sequence design with concrete cases to look through the
past achievements and anticipate the future trends.

Representation learning
Although deep learning has shown huge success in
many sub-fields of protein bioinformatics, there are
still two major obstacles impeding its further devel-
opment. The first one is the expensive cost of protein

characterization, which leads to the data scarcity of
sequence-label pairs for the training of deep neural
networks. The second one is the lack of method
generalization, since most domain-specific deep learning
methods have not sufficiently exploited the fundamental
features of protein sequences and thus are hard to be
transferred from one problem to another through simple
fine-tuning. One possible solution to overcome these
obstacles is the representation learning using protein
language models. Protein sequence and natural language
both have internal long-range dependencies of distant
contexts. Thus, inspired by natural language processing
[115], protein language models treat a complete sequence
as a paragraph or a sentence and the amino acids
within it as single words [116, 117]. Through supervised
or unsupervised training, a dictionary of word vectors,
i.e. amino acid embeddings, could be optimized and
the representation of a protein sequence with its
fundamental features could be inferred in a latent space.

A method called unified representation (UniRep)
trained a multiplicative long–short-term-memory RNN
(mLSTM RNN) [35] with 1900 hidden units to learn the
fundamental representation of protein sequences and
encode arbitrary sequences into length-fixed vectors
[33]. UniRep was trained with approximately 24 million
sequences from the UniRef50 database [118] and its
self-supervised training procedure [119] utilized input
sequences themselves as the corresponding labels.
Specifically, it iterated through amino acids of a sequence
sequentially and compared the true next residue with
the one predicted by the model based on its dynamic
summary of all previously visited residues. With this
training procedure, the model of UniRep gradually
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Table 2. Brief summary of recent researches focused on direct protein sequence design

Reference order Research objective Data resource Network architecture

[33] Extract fundamental features of unlabeled protein
sequences into a statistical representation

Protein sequences from UniRef50
database

mLSTM RNN

[37] Train a deep contextual protein language model to
produce generalized features

Protein sequences from UniParc
database

Transformer

[34] Build precise virtual protein fitness landscape based
on protein sequence representation

A few mutants of natural target
protein and their functional
characterizations

Single-layer linear regression
model on the top of UniRep

[127] Generate synthetic genes coding proteins with
desirable functions or biophysical properties

Peptides with 5–50 residues from
UniProt dataset

WGAN with an external feedback
loop

[121] Generate functional protein sequences by learning
natural sequence diversity

Bacterial MDH sequences from
UniProt dataset

Tailored GAN with temporal
convolution and self-attention

To maximize the usage of limited exhibition space in this paper, we only choose one research as representative from a bunch of researches with similar objectives
or procedures.

maximized the conditional probability of correct amino
acid type for next residue and learned a progressively
better protein sequence representation by adjusting its
parameters and revising its hidden state construction
manner. In the absent of any evolutionary, struc-
tural, physicochemical and other kinds of related data
explicitly, representation vectors of protein sequences
encoded by UniRep intrinsically contained the required
information and thus could be easily clustered by these
properties. When evaluated on a comprehensive set
of critical protein engineering problems, UniRep with
simple linear or non-linear models trained on the top
of it showed generalizable and superior performance.
Although the data mining ability of RNN architecture
used by UniRep might be inferior compared with current
popular ones in the field of nature language processing
like transformer, the basic conceptions it came up with
and the impressive extensions it showed still influenced
following researches a lot.

Trained on 250 million sequences with breadth and
diversity from the UniParc database [120], a deep
transformer called ESM-1b also learned protein sequence
representations with fundamental features [37]. The
model consisted of 33 layers, having around 650 M
parameters. It utilized another self-supervised strategy,
masking language modeling objective, for its train-
ing. ESM-1b Transformer integrated residue contexts
across the entire input protein sequence through
many stacked self-attention modules. It constructed a
complicated representation space for protein sequences.
Representation vectors derived from this space carried
distinguishable protein features of the correspond-
ing sequences. For example, secondary and tertiary
structural properties could be identified from the
generated sequence representations. Superiority over
other state-of-the-art input features across a wide range
of applications like mutational effect prediction further
testified its generalizability and advantages. Further-
more, with the rapid accumulation of protein sequence
data and the usage of network architectures with
higher complexity and capability, the future versions
of ESM-1b were expected to have additional improve-
ments in protein sequence representation. However, the

training cost of such a huge protein language model
would not be something that ordinary small research
groups could afford and it would be meaningless to
repeat the construction of these infrastructures for
the whole academic community. Thus, the sharing
spirit existed in this work and many other famous
researches should be advocated and kept for a long
time.

Other works focusing on representation learning
adopted deep generative model architectures like GANs,
VAEs and autoregressive ones. They compressed discrete
protein sequences into a continuous latent space by cap-
turing contextual information within these sequences
[121–123]. For example, trained by sequences from the
Swiss-Prot database, a VAE model called BioSeqVAE
learned good sequence representations, which could
be used as input features for multiple downstream
applications [124]. Since different researches of repre-
sentation learning generally use self-built datasets and
have no unified evaluation process or standard, it is
difficult for people to compare them and consider the
accuracy and efficiency, advantages and disadvantages
of each [125]. Hence, a work introduced a set of protein
bioinformatics tasks with clear definitions, data and
assessing metrics to construct a standard evaluation
system for protein transfer learning [126]. This task
set called tasks assessing protein embeddings (TAPE)
contained five concrete problems within three major
aspects: protein structure prediction, remote protein
homolog detection and protein design. The authors also
benchmarked several representation learning methods,
of which the methodology could be easily generalized to
recent works mentioned above.

Sequence generation
Representation learning has laid a solid foundation
for sequence generation. By condensing, integrating
and extracting fundamental features within sequence
statistics, learned representations embody protein
properties like function, structure, stability, dynamics,
half-life, binding, etc. Therefore, in combination with
downstream generative models or methods, proteins of
desired functions but with unseen sequences could be
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Figure 5. Deep-reinforcement-learning-based protein design is analogous to natural protein synthesis process. (A) An illustration of the natural protein
synthesis process. (B) Protein sequence generation from left to right by deep reinforcement learning. The agent takes an available action (what kind of
amino acid to pick in the next step) according to its policy conditioned on the current state.

generated in a high throughput manner. For example,
a low-N protein engineering method [34] was reported
based on representation learning of UniRep [33]. A simple
supervised top model taking the sequence represen-
tations as input was trained on a limited number (as
few as 24 sequences, and this is the source of its name
‘low-N’) of functionally assayed random mutants of
the target protein to rate arbitrary sequences. Then, in
silico directed evolution was executed through a Markov
Chain Monte Carlo procedure on the surrogate fitness
landscape provided by sequence representations and the
rating model.

GANs also played an important role in direct protein
sequence generation. A Wasserstein GAN (WGAN)
[84] combined with a novel external feedback-loop
mechanism (denoted as a function analyzer) was trained
to generate DNA sequences encoding proteins [127]. The
function analyzer could be in any form, differentiable
or non-differentiable, as long as it took a sequence as
input and output a score. The training procedure of this
so-called FBGAN system contained two parts. Firstly,
the WGAN was pretrained with general DNA sequences
converted from protein sequences reversely to generate
valid genes. Within every training step, sequences
produced by the generator of WGAN were fed into the
function analyzer to evaluate their related properties and
those with scores exceeding a predetermined threshold
were chosen to replace the oldest samples in the original
training set of the discriminator. This feedback-loop
mechanism finetuned the distribution mapping between
the latent space and the real DNA sequence space for
specific downstream optimization objectives. Successful
applications on the generation of antimicrobial peptides
[128] and helical proteins supported the good generaliz-
ability of this model. In addition, this unique network
architecture and training procedure could be easily

extended to other domains beyond genomics and protein
sequences. However, there were also some compromises
in this work beyond its success. For example, FBGAN
focused on gene sequence generation though the
research objective was protein sequence design, because
gene sequences had clear codon structures to instruct
start/stop positions and much simpler vocabulary
(only four nucleotides) compared with proteins. Thus,
direct generation of longer and more complex protein
sequences would still be an important task for follow-up
researches of FBGAN.

ProteinGAN was another GAN architecture con-
structed to expand functional protein sequence space
[121]. Implemented with customized temporal convo-
lutional network [129] and self-attention mechanism
[130], ProteinGAN could not only learn useful sequence
motifs and critical long-range inter-residue interactions
simultaneously, but also concentrate on functional areas
like catalytic centers. To validate its contribution to real
protein engineering, ProteinGAN was trained on a family
of bacterial malate dehydrogenase (MDH) enzymes. By
uniformly interpolating the latent space, the model
successfully generated 20 thousand protein sequences
exhibiting sequence properties highly correlated with
the latent dimensions, which supported its ability to
capture the intrinsic features of native sequences and
their inter-relationships. Among 55 generated sequences
tested experimentally, 24% of them stably existed in
physiological solutions with blatant catalytic activity,
which further demonstrated its potential to generate
new, diverse functional protein sequences.

Other direct sequence generative models adopted
different architectures suitable for specific genera-
tion demands [87, 88, 122, 131]. For example, an
attention-based transformer model was trained on
the Swiss-Prot database to generate functional signal
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peptide sequences and experimental tests proved its
practicality [131]. As all roads lead to Rome, distinct
networks with various customized training procedures
all serve one similar goal: learning to sample diverse
protein sequences that are previously unseen in nature
and to enhance the likelihood of those satisfying desired
criteria.

Design with deep reinforcement learning
Protein design approaches based on deep reinforce-
ment learning are just like in silico simulations of
natural protein synthesis processes (Figure 5). With
the application of more advanced technologies, these
methods can help us excavate more intrinsic principles
of proteins and get more high-quality functional protein
materials. For example, DyNA PPO [132] was such a
deep reinforcement learning model based on proximal-
policy optimization [133] for sequence design. The model
generated sequences from left to right one amino acid
after another, with the overall procedure regarded as
a Markov decision process. Before the completion of
sequence generation, the reward to the agent remained 0.
At the end of each round, sequence fitness measurement
given by a panel of machine learning models that tried
to approximate surrogate fitness functions was taken
as the final reward. DyNA PPO balanced the tradeoff in
reward estimation by using a bunch of models to learn
different aspects of the sequence fitness landscape but
only using the most suitable one with sufficient accuracy
to update its policy. Although its superiority has been
shown in the large-scale benchmarking across several
methods, the report of DyNA PPO did not exhibit any
verification through wet lab experiments. Thus, its prac-
ticability still needs to be testified in future researches.
Alternatively, reinforcement learning could be used to
finetune some pre-trained generative models for protein
design. For example, a RNN was tuned by a policy-based
reinforcement learning approach to generate desirable
compounds [134]. The most important inspiration from
this research would be the attempt and success of
decreasing the catastrophic forgetting risk [135], a
common problem for protein generative models.

Conclusions and future perspectives
In the last decade, protein design has achieved great suc-
cesses, helping mankind deal with social challenges in
multiple facets. Examples could be found everywhere in
our daily life, including designed small-molecule binding
proteins that are used in in vivo biosensors [136, 137],
designed biomedical inhibitors that aim to prevent viral
infections [138], designed enzymes that have attractive
catalytic efficiencies [139–141], designed highly symmet-
ric self-assembly materials that endow vaccine appli-
cations with multivalent presentation of antigens [10,
142], etc. Recently, deep learning techniques have shown
preliminary but impressive impacts to the field of protein

design. Through their incredible power of extracting and
integrating statistical patterns within existing protein
data, artificial deep neural networks learn fundamental
protein features, store them in billions of parameters and
generalize them for inferences in different sub-fields.

However, roadblocks still stand in our path to routinely
design arbitrary proteins using deep learning methods.
For example, our understanding to protein folding mech-
anism, one of the most important and essential problems
in bioinformatics and also the paramount theoretical
principle of all kinds of protein design methods, is far
from sufficiency. Many efforts combining deep learning,
physical modeling and in silico simulations have been
made in this area. Perhaps deep reinforcement learning
trying to build policies and find possible trajectories from
extended protein chains to well-folded structures would
also be helpful.

Diverse and abundant well-annotated data are nec-
essary for all fields adopting deep learning, just as the
influence of ImageNet database [143] to the development
of computer vision. However, for protein design with a
specific objective, related data of protein functions and
properties are usually not only scarce but also collected
without unified and standard experimental conditions.
The scarcity of training data would hinder the accu-
rate design, consequently leading to the demand for
additional experimental optimization. Although some
databases exemplified by ProtaBank [144] have been con-
structed to alleviate this phenomenon, lots of efforts
still need to be made. Another important direction to
overcome this deficiency might be the few-shot learning
[145, 146], and to our knowledge, related exploration has
not been tried yet.

Scoring accuracy and computational speed of energy
functions in protein design also need to be further
improved, since they guide the optimization direction
and are used repeatedly in every step. Compared with
traditional potential terms, energy functions learned
by deep neural networks evaluate designs more pre-
cisely but slowly. The adoption of more advanced and
lightweight network architectures as well as knowledge
distillation [147] and network pruning [148] may partially
handle this dilemma. Another plight for both protein
design and its reverse procedure, protein structure
prediction, is that current approaches for optimization
are usually adept in landscapes with only one minimum,
while many proteins perform their functions and
properties through structural transformation among
different conformations. This requires deep learning
methods to design proteins with multiple and distinct
energy minima. Future researchers should attend to such
complexity.

Another important and imminent assignment of
deep-learning-based protein design is promoting its
application scope. Many researches of this field focused
on algorithm development and in silico evaluation with
barely few experimental verifications and practical
applications. Taking pharmacy and therapeutics as



12 | Ding et al.

an example, although conventional drug discovery
methodologies concentrated on molecular dynamics
simulations and molecular docking [40] have made great
achievements, protein design approaches are gradually
showing their impressive capability and promising
future. There are many roadmaps involving protein
design in this field, which aim at various diseases
afflicting human beings. One possible procedure is
designing a modular protein sensor-actuator switch
where small ligands could directly change downstream
transductions of corresponding cellular signal pathway
by binding to the designed targets [6, 73, 149]. Another
approach might be designing mimetics of natural
immune proteins with augmented therapeutic affinity
and activity but diminished immunogenicity and toxicity
[2, 150, 151]. Besides, through treating short peptides
(usually less than 50 residues) as small molecules and
utilizing knowledge about protein–protein interactions
(PPI) [41] instead of drug–target interactions (DTI), high-
throughput protein design methods could be constructed
for therapeutics with specific targets [4, 152]. In the
context of current worldwide pandemic of COVID-19,
protein design is especially important since designed
mini-protein inhibitors of ACE2 receptor (coronavirus
binder) have provided a good start for corresponding
therapeutics [5, 153]. However, almost all above successes
were achieved by traditional knowledge-based design
methodologies. Getting out the in-silico limit and putting
the advanced data-driven algorithms into effect should
be another key point of future researches focusing on
deep-learning-based protein design.

Many challenges confronting protein design could be
ameliorated or even handled by combining deep learning
efforts with complementary advances in conventional de
novo methods, while others still await the development
of new methodologies from the ground up. No matter
which case it is, proteins are important gifts from nature
to mankind, and with the blueprints glimpsed by deep
learning, we could craft desired tools as we want to make
our world a better place after iterations of trials and
errors.

Key Points

• Recently, the introduction of deep learning has shown
preliminary but transformative influence to the field of
protein design.

• Deep learning could provide fast, high-throughput and
precise in silico protein design methodologies.

• We retrospect current advances in deep-learning-based
protein design procedures mainly within the past 2
years and illustrate their novelty, advantage and signif-
icance in comparison with traditional knowledge-based
approaches through important milestones. We also com-
prehensively discuss the coming challenges and oppor-
tunities in the near future.

• This review could help people get familiar with this field
and promote relevant researches.
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