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Wound healing is a complex and integrated process of the interaction of
various components within the injured tissue. Accumulating evidence
suggested that stem cell-derived exosomal transcriptomes could serve as
key regulatory molecules in wound healing in stem cell therapy. Stem cell-
derived exosomal transcriptomes mainly consist of long noncoding RNAs
(lncRNAs), microRNAs (miRNAs), circular RNAs (circRNAs) and messenger
RNAs (mRNAs). In this article we presented a brief introduction on the
wound repair process and exosomal transcriptomes. Meanwhile, we
summarized our current knowledge of the involvement of exosomal
transcriptomes in physiological and pathological wound repair process
including inflammation, angiogenesis, and scar formation.
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Introduction

Skin wounds are classified primarily into acute and chronic wounds. Acute wounds

included cuts, scrapes, burns, trauma, needle punctures, and surgical incisions. While

chronic wounds refer to wounds like diabetic foot ulcers, pressure ulcers and infected

wounds (1). The healing of wound is the process of tissue regeneration involving the

synergistic and integrated actions of cells and intercellular factors, cells and cells, cells

and the microenvironment. The normal wound healing involves four successive but

overlapping phases, including the hemostasis phase, the inflammatory phase, the

proliferative phase, and the remodeling phase (2). Many factors affect and interfere

with normal wound healing, such as infection, medication, complex comorbidities,

age, obesity, smoking and nutrition (3, 4). Any disturbance in these four phases

affects wound healing or even proper functioning of the skin, results in the formation

of chronic non-healing wounds or repaired with hypertrophic scar tissue or keloids (5).

Currently, therapeutic research on wound healing is focused on the use of small

molecules, including growth factors, insulin, stromal cell-derived factor-1,

antimicrobial peptides, platelet rich plasma, and so on (6). In addition, silk

biomaterials, artificial skin grafts, honey are also potential therapeutic means for
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389&sol;fsurg.2022.933781&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fsurg.2022.933781
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fsurg.2022.933781/full
https://www.frontiersin.org/articles/10.3389/fsurg.2022.933781/full
https://www.frontiersin.org/articles/10.3389/fsurg.2022.933781/full
https://www.frontiersin.org/journals/Surgery
https://doi.org/10.3389/fsurg.2022.933781
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Chen et al. 10.3389/fsurg.2022.933781
wound healing (7–9). In recent decades, stem cell therapy has

become a promising approach in wound healing due to its

distinguished functions on tissue regeneration,

immunoregulation and angiogenesis (10). Stem cells

participate in the regulation of inflammatory, proliferative and

remodeling phases via paracrine of cytokines, chemokines and

growth factors. Stem cells ranging from immature pluripotent

stem cells to more restricted multipotent progenitor cells have

been investigated for their abilities in facilitating wound

healing in several animal models and clinical trials (11).

However, because stem cells do not readily survive in the

wound microenvironment in a large portion of cases, their

effects in wound healing may be difficult to be accomplished

(12). One fundamental hurdle is that reactive oxygen species

can weaken stem cell function and therefore impair wound

healing (13). In addition, small molecules are easily degraded

in wound fluids and carry risks of drug resistance, new

therapies are still being explored.

Stem cell-derived exosomes have demonstrated great

potentials to provide therapeutical benefits in nearly all stages

of wound healing process, including alleviating inflammation

(14), promoting vascularization (15), promoting proliferation

and migration of epithelial cells and fibroblasts (16), while

reducing scar formation (17). However, the exact mechanism

of action remains to be explored. Growing evidences have

shown that exosome-derived transcriptomes (RNAs)

participate in comprehensive biological and functional aspects

of physiological conditions (18–20). Therefore, stem cell

derived exosomal transcriptomes attracted great research

interests (21–24). In this review, we summarized the process

of wound healing and several key RNAs of exosome

transcriptomes involved, such as messenger RNAs (mRNAs),

microRNAs (miRNAs), long non-coding RNAs (lncRNAs)

and circular RNAs (circRNAs), with the focus on the effects

of several transcriptional molecules of stem cell derived

exosomes on wound healing.
Wound healing process

Wound healing is a complex and dynamic process to skin

injury. Wound healing is classically divided into four

overlapping phases: hemostasis, inflammation, proliferation

and remodeling. During the hemostatic phase, platelets and

circulating coagulant factors accumulate and interact at the

site of tissue injury, followed by activation of endothelial cells.

Inflammation state involves complex mechanisms among

resident immune cells, circulating leucocytes and their pro-

inflammatory cytokines and chemokines. Uncontrolled and

excessive inflammation promotes tissue injury and delays

healing, thereby causing chronic wounds or scars. The

proliferative phase of healing is characterized by extensive

activation of keratinocytes, epidermal stem cells, fibroblasts,
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macrophages and endothelial cells to orchestrate wound

closure and angiogenesis. Extracellular matrix (ECM)

remodeling spans the entire wound healing process.

Fibroblasts, myofibroblasts, collagen, transforming growth

factor (TGF)-β, proteoglycans and matrix metalloproteinases

are major players involved in ECM remodeling, balancing

collagen synthesis and degradation (25, 26).

Disturbance of any of the above stages of the normal wound

healing process can lead to pathological wound healing, which

mainly includes two types: excessive scarring and chronic

wound healing. Persistent activation of TGF-β pathway

provided a deviant signal to myofibroblasts, leading to

continuous production of ECM triggering pathological

scarring (27). Hyper-proliferation of fibroblasts and excessive

collagen deposition may lead to hypertrophic scar formation

as well (28). Chronic wounds are typically caused by a

temporal arrest in the inflammation phase with no further

progress to the stages of healing. Chronic wounds are

characterized by massive immune cell infiltration, excessive

levels of proinflammatory cytokines, persistent infection, the

formation of biofilms of drug-resistant microorganisms, and

appearance of senescent cells which are unresponsive to

restorative stimuli (29, 30).
Exosomes and exosomal
transcriptomes

Exosomes are bioactive membranous vesicles with a

diameter of 40–100 nm secreted by many type of cells. They

were discovered for the first time in sheep reticulocytes in

1983 (31). Exosome formation begins with endocytosis on the

surface of the cell membrane with the formation of early

endosomes via inward budding (32). Recently, various nucleic

acids have been identified within exosomes, including mRNAs

and non-coding RNAs such as miRNAs, lncRNAs, circRNAs,

ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small

nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs)

and piwi-interacting RNAs (piRNAs). These RNAs are

transferred from parent cells to recipient cells through

exosomes to exert specific functions (33, 34). Secreted

exosomes can be transferred to recipient cells via endocytosis,

direct membrane fusion, and receptor ligand interactions.

Exosomes are associated with a wide spectrum of

physiological and pathological processes including but not

limited to immune responses, viral pathogenicity, pregnancy,

cardiovascular diseases, central nervous system-related

diseases, cancer progression and so on. In addition, exosomes

have potential as diagnostic and therapeutic tools for a variety

of diseases, including neurodegenerative diseases,

cardiovascular dysfunction, and cancer (35).

Exosomal transcriptomes mainly contain mRNAs,

lncRNAs, miRNAs and circRNAs, which have been
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intensively studied in a number of studies. mRNAs,

macromolecules carry codes from the DNA in the nucleus to

the cytoplasm (the ribosomes), where protein synthesis

occurs, were first found highly enriched in exosomes released

by mast cells (36, 37). mRNAs in exosomes differ significantly

from those in the cytoplasm of the donor cells (37). Exosomal

mRNAs could be transferred to other cells and be translated

into proteins in the target cells (37, 38). Exosomes derived

from cells growing under oxidative stress may induce

tolerance of the recipient cells to external stress by mRNAs

transported by exosomes (39). In addition, exosomal mRNAs

may potentially play a role in epigenetic inheritance in

mammals (40).

Although 70% of the human genome is transcribed into

RNAs, only 2% of these transcripts are translated into

proteins. The remaining transcripts are defined as noncoding

RNAs, including lncRNAs, miRNAs and circRNAs, which

participate in the regulation of mRNA and protein function,

in the binding with DNA to modulate gene transcription, or

in acting as the competing endogenous RNA (ceRNA) or

miRNA sponges to regulate gene expression (Figure 1).

LncRNAs are a category of cellular RNAs which are longer

than 200 nucleotides in length but in lack of the open reading

frames. This class comprises, among others, long intergenic

noncoding RNAs (lincRNAs), antisense RNAs, and sense

overlapping lncRNAs. LncRNAs may serve as biomarkers of

cancer, such as nuclear enriched abundant transcript 1

(NEAT1), HOX Transcript Antisense RNA (HOTAIR),

metastasis-associated lung adenocarcinoma transcript 1

(MALAT-1), H19. Moreover, lncRNAs participated in cancer

development, progression, metastasis and prognosis (41), and

other diseases like cerebrovascular diseases, cardiac diseases,

inflammatory bowel diseases, metabolic syndrome related

disorders as well (42–45).The abundance of exosomal

lncRNAs correlates with their expression levels in the cell of

origin (46).

Among the RNAs in exosomes, miRNAs have attracted the

most attention due to their roles in gene expression regulation.

MiRNAs are a class of 17–24 nt, small, noncoding and

evolutionarily conserved RNAs, They can mediate post-

transcriptional gene silencing by targeting the 3′-UTR of

target mRNAs under the control of the RNA-induced

silencing complex (47–49). MiRNAs can regulate cell

proliferation and differentiation (50), and thus participate in

development (51, 52). They can also serve as therapeutic

targets and prognostic markers for diseases and cancers (53, 54).

CircRNAs are a new category of single-stranded RNAs

characterized by their covalently closed loop structures lacking

of 5′ caps or a 3′ poly(A) tails in all eukaryotic cells. They

are generated through a particular mechanism of alternative

splicing called “back-splicing”. In 2015, Li et al. reported for

the first time that exosomes contained abundant circRNAs.

Genome-wide RNA-seq analysis found that circRNAs were
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enriched in the exosomes relative to the parental cells. It has

been reported that the sorting of circRNAs to exosomes can

be controlled by modulating the levels of relevant miRNAs

in parental cells and can transfer bioactive substance to

target cells (55). It has been confirmed that circRNAs could

exert biological functions in multiple aspects, including

participating in neuronal development (56) and the

pathogenesis of cancer, cardiovascular, neurological, and

autoimmune diseases (57–60). In addition, circRNAs serve

as potential biomarkers for many diseases (61), especially

cancer (62).
Advantages of exosomes and
exosomal transcriptomes in wound
healing

Harsh wound microenvironments, such as deficiency of

nutritional factors, enhanced inflammatory response, increased

reactive oxygen species, and impaired vasculature, all resulted

in poor survival of the transplanted stem cells (63).

Stem cell derived exosomes carrying bioactive contents of

parental stem cells, transmit signals and participate in the

remodeling of extracellular matrix through paracrine

mechanism. Exosomes are less immunogenic, more stable and

easier to store relative to their donor stem cells, and therefore

can be used as an alternative therapy for stem cells in wound

healing regulation. There have been clinical trials on stem cell

derived exosomes for the treatment of diabetic wounds

registered on the Clinicaltrial.gov website [NCT05243368].

Besides, patents on stem cell derived exosomes as wound

dressings have been published [CN114376989A&

CN114377194A]. However, the low yields of stem cell derived

exosomes require a large number of stem cells to be

consumed. Exosome components are complex and can hardly

be purified due to the limitation of extraction techniques. The

transcriptomes of exsomes, however, as intercellular transport

cargos of exosomes, is relatively well-defined in composition

and more suitable for research. Moreover, their functions in

wound healing can be defined by loss- or gain-of-function

experiments after overexpression or knockdown their

expressions in the parent cells. Unlike the great risks such as

mutagenesis, toxicity, and limited capacity for genetic cargo

posed by viral vectors, exosomal RNAs transferring presented

good safety and biocompatibility (64).

At present, research on stem cell derived exosomes mainly

focuses on those derived from mesenchymal stem cells (65–

67). However, there are still some studies on exosomes from

other sources of stem cells, such as pluripotent stem cells (68,

69) or embryonic stem cells (70). Consistent with the major

functions of the parental cells, exosomes derived from MSCs

embrace immunomodulatory as well as regenerative effects on

the recipient cells (21, 71).
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FIGURE 1

Intercellular transcriptomes delivery by exosomes. Exosomal noncoding RNAs, mainly microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and
circular RNAs (circRNAs) from donor cells act as competitive endogenous RNAs (ceRNAs) for binding to common miRNA response elements
(MREs) from recipient cells altering their activity.

Chen et al. 10.3389/fsurg.2022.933781
Transcriptomes of stem cell
exosomes and wound healing

The stem cell derived exosomal transcriptomes have been

shown to promote wound healing in terms of anti-

inflammation, cell proliferation and migration, blood vessel

formation, and inhibition of scar formation, and the effects

on wound healing of four transcriptomes, including miRNAs,

lncRNAs, circRNAs, as well as mRNAs, will be illustrated

below (see Figure 2).
Stem cell derived exosomal miRNAs and
wound healing

A number of studies have demonstrated that miRNAs were

the active molecules of stem cell derived exosomes to regulate

the functions of the recipient cells (72, 73). In wound healing

for examples, miRNAs in the stem cell derived-exosomes have

shown potent effects on regeneration, anti-inflammatory and

anti-scarring to the wounds (see Table 1).

Exosomal miRNAs on skin regeneration
During wound healing process, regeneration is mainly

manifested by promoting fibroblasts proliferation, boosting

vascularization, formation of granulation tissue, and enhancing

re-epithelialization, among other phathophyioloigcal events.
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Four miRNAs (miR-126-3p, miR-21-3p, miR-146a-3p and

miR-21-5p) were reported to have the potentials to enhance

the proliferation and migration of the fibroblasts and

endothelial cells, and to promote angiogenesis of human

endothelial cells through phosphatase and tension homologs

(PTEN), PI3K/AKT and ERK signaling pathways, respectively

(74–77). Local application of miRNA-21-3p-enriched umbilical

cord blood-exosomes into mouse skin wounds accelerated re-

epithelialization, reduced scar width, and enhanced

angiogenesis. Inhibition of PTEN and sprouty RTK

signaling antagonist 1 may be the key function of miR-21-

3p (75). MiR-146a-3p, derived from ADSC-exosomes could

promote the proliferation and migration of fibroblasts by

inducing the expressions of serpin family H member 1 and

p-ERK2 to rapidly reduce the wound area and foster the

formation of new blood vessels in rats with wounds (74).

An in vitro study by Tao et al. found that exosomes over-

expressing miR-126-3p derived from synovium

mesenchymal stem cells stimulated the proliferation of

human dermal fibroblasts and human dermal microvascular

endothelial cells (HMEC-1) in a dose-dependent manner,

and enhanced HMEC-1 migration and tube formation as

well. In addition, exosomes overloaded with miR-126-3p

accelerated re-epithelialization, activated angiogenesis, and

promoted collagen maturation in diabetic wound healing

(76). Gao et al. suggested that exosomes enriced in miR-

135a from human amniotic mesenchymal stem cells have
frontiersin.org

https://doi.org/10.3389/fsurg.2022.933781
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


FIGURE 2

Schematic demonstration of the exosomal RNAs derived from stem cells promote wound healing by enhancing angiogenesis, cell proliferation and
migration, reducing inflammation, and anti-scarring.
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shown efficacy in enhacing epidermal cell migration to

promote wound healing in SD rats. Furthermore,

knockdown of miR-135a in ADSC-exosomes validly

attenuated the effect of exosomes on BJ fibroblasts

migration. The study suggested that the abovementioned

function of miR-135a may be realized through inhibiting

the expression of large tumor suppressor kinase 2 (78).
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MiRNAs from other stem cell derived exosomes have been

reported to enhance cell proliferation and migration to improve

wound healing. MiR-200a-enriched embryonic stem cell derived

exosomes were capble of rejuvenating vascular endothelial cell

senescence and restore impaired proliferation, migration, and

tube formation by downregulating Keap1 to activated nuclear

factor erythroid2-related factor 2 (79).
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TABLE 1 Stem cell-exosome derived miRNA-mediated regulation of wound healing.

Exosome
derived
miRNAs

Donor cells Recipient cells Potential target factor Functions References

miR-125a-3p ADSCs HUVECs PTEN↓ Promote cell viability, migration and
angiogenesis

(106)

miR-21-3p Umbilical cord blood Fibroblasts and
endothelial cells

PTEN↓
SPRY1↓

Promote fibroblast proliferation and
migration, enhance endothelial cell angiogenic
activity

(75)

miR -146a ADSCs Fibroblasts Serpin family H member 1 and
p-ERK2↑

Promote the migration and proliferation of
fibroblasts, and neovascularization

(74)

miR-21-5p BMSCs Fibroblasts and
HUVECs

SPRY2↓; PI3K/AKT and
ERK1/2↑

Promote the proliferation, migration and
angiogenesis of fibroblasts and HUVECs

(77)

miR-221-3p BMSCs Endothelial cells AKT/eNOS↑ Promote endothelial cells proliferation,
migration, tube formation and VEGF levels

(107)

miR-126-3p Synovium
mesenchymal stem
cells

Fibroblasts and
HMEC-1

— Promote proliferation of human dermal
fibroblasts and human dermal microvascular
endothelial cells (HMEC-1);
Promote g HMEC-1 migration and tube
formation
Promote collagen maturation

(76)

miR-126 BMSCs HUVECs PI3K/AKT ↑ Promote the HUVECs proliferation, migration
and angiogenesis

(108)

miR-21-5p and let-
7c-5p

BMSCs HUVECs – Enhance cell proliferation rate, migration and
tube formation

(109)

miR-200a Embryonic stem cells Endothelial cells Kelch-like ECH- associated
protein 1↓ nuclear factor
erythroid2-related factor 2↑

Rejuvenate the senescence of endothelial cells
and recover compromised proliferation,
migratory capacity, and tube formation

(79)

miR-125a ADSCs Endothelial cells DLL4↓ Promote endothelial cell angiogenesis (110)

miR-21 ADSCs HaCaT cells PI3K/AKT ↑ Enhance the migration and proliferation (111)

miR-135a Human amnion
mesenchymal stem
cells

BJ cells Large tumor suppressor kinase
2↓

Promote cell migration and transformation (78)

miR-378 ADSCs HaCaT cells Caspase-3↑ Promote proliferation and migration and
reducing apoptosis

(112)

miR -93-3p BMSCs HaCaT cells Apoptotic peptidase activating
factor 1 ↓

Promote proliferation and migration and
reducing apoptosis

(113)

miR-100-5p and
miR-1246

Stem cells of human
deciduous exfoliated
teeth

HUVECs VEGFA↓ Inhibite cell proliferation and migration and
inducing apoptosis

(80)

miR-181c UCMSCs Macrophages TLR4↓ Alleviate inflammation (81)

let-7b UCMSCs Macrophages TLR4/NF-κB/STAT3/AKT↓ Regulate macrophage plasticity and alleviating
inflammation

(82)

miR-223 BMSCs Macrophages Pknox1↓ Promote macrophage toward M2 polarization (83)

miR-19b ADSCs Fibroblasts CCL1↓TGF-β↑ Regulate inflammation (84)

miR -192-5p ADSCs Fibroblasts IL-17RA↓Smad↓ Anti- fibrosis (87)

miR-21-5p and
miR-125b-5p

UCMSCs Fibroblasts TGF-β receptor type II and
TGF-β receptor type I ↓

Anti-myofibroblast differentiation (17)

miR-29a ADSCs Fibroblasts TGF-β2/Smad3↓ Inhibit fibrosis and scar hyperplasia of
fibroblasts

(86)

miR-21, mir-23a,
miR-125b, and miR-
145

UCMSCs Myofibroblasts TGF-β/SMAD2↓ Suppress α-smooth muscle actin formation
and collagen deposition

(88)

ADSC, adipose-derived mesenchymal stem cell; BMSC, bone marrow-derived mesenchymal stem cell; UCMSC, human umbilical cord-derived mesenchymal stem

cells. HUVECs, human umbilical vein endothelial cells; HMEC-1, human dermal microvascular endothelial cells; PTEN, phosphatase and tensin homolog; SPRY,

sprouty RTK signaling antagonist; TGF-β, transforming growth factor-β; ↑, upregulated; ↓, downregulated.
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Although most stem cell-exosomes derived miRNAs can

promote cell proliferation, migration, and angiogenesis, a

small proportion of miRNAs play a part in inhibiting wound

healing. Exosomes enriched with miR-100-5p and miR-1246

from human deciduous tooth exfoliated dental stem cells were

found to decrease cell proliferation and migration of

HUVECs, induce cell apoptosis, and suppress tube like

structure formation of HUVECs by downregulating several

angiogenesis related factors, including VEGFA, MMP-9 and

angiopoietin 1 (80), suggesting that miR-100-5p and miR-

1246 play an anti-angiogenic role in wound healing.

Exosomal miRNAs on anti-inflammation
The inflammatory response performs multiple tasks at the

wound site by improving wound debridement and producing

chemokines, metabolites, and growth factors. If this

orchestrated response becomes dysregulated, wounds can

become chronic or progressive fibrosis, both of which can

impair tissue function and ultimately lead to organ failure and

even death. Investigations have shown that miR-181c in

UCMSC exosomes played a critical role in regulating burn

induced inflammation. Exosomes overexpressing miR-181c

potently inhibited toll-like receptor 4 (TLR4) signaling and

attenuated inflammation in skin-burned rats, and significantly

reduced lipopolysaccharide (LPS) induced TLR4 expression

and inflammatory responses in macrophages (81). Besides,

macrophages have been shown to play a central role in the

inflammatory phase of tissue repair, such as the removal of

dead cells, debris and pathogens. The dynamic plasticity

allows them to mediate tissue damage and repair functions.

For instance, LPS-pretreated UCMSC-derived exosomes can

uniquely express miR let-7b, and upregulate of the expression

of anti-inflammatory cytokines and promote M2 macrophage

activation. Let-7b regulated macrophage polarization by

downregulating TLR4/NF-κB/STAT3/AKT signaling pathway

(82). In another study, miR-223 derived from BMSC-

exosomes regulated macrophage polarization by targeting

pknox1, suggesting that macrophage M2 polarization may

accelerate wound healing via miR-223 (83). MiR-19b, derived

from ADSC exosomes, were significantly increased in

recipient cells and were able to decrease inflammatory CCL1

levels acting through TGF-β pathway in H2O2 pretreated

HaCaT cells (84).

Exosomal miRNAs on anti-scarring
Skin fibrosis results from poor wound healing following

severe tissue damage such as severe burns, trauma, and major

surgery. Pathological skin fibrosis tends to cause scarring.

Dysregulation of each stage of wound healing, including the

inflammatory, proliferative and remodeling stages, can lead to

skin fibrosis (85). In vivo, ADSC derived exosomes over-

expressing miR-29a inhibited the proliferation, migration,

fibrosis and scar hyperplasia of human hypertrophic scar
Frontiers in Surgery 07
fibroblasts after scald wound in mice by targeting TGF-β2/

Smad3 signaling pathway (86). Besides, ADSC exosomal miR-

192-5p reduced pro-fibrotic protein levels and ameliorated

hypertrophic scar fibrosis in mice through the IL-17RA /Smad

axis (87).

Myofibroblasts aggregation also results in excessive scarring.

A study examined UCMSC exosomal miRNAs by high-

throughput sequencing and found that a group of specific

miRNAs (miR-21, miR-23a, miR-125b and miR-145) played a

key role during myofibroblast formation. In vivo and in vitro

studies have validated that these miRNAs inhibited α-smooth

muscle actin formation and collagen deposition through

suppressing TGFβ/Smad2 axis (88).UCB exosomes were

identified to contain abundant miRNAs. MiR-21-5p and miR-

125b-5p from UCB exosomes were found essential for TGF-

β1-induced anti-myofibroblast differentiation in human

dermal fibroblasts by repressing receptor type II (TGFBR2)

and TGF-β receptor type I (TGFBR1) respectively (17).
Stem cell derived exosomal lncRNAs and
wound healing

Stem cell-derived exosomal lncRNAs promotes wound

healing in cell proliferation, migration, angiogenesis, anti-

inflammatory and anti-fibrosis (see Table 2).

The lncRNA MALAT 1, a lncRNA abundant in exosomes

from ADSCs, was validated to have the function in promoting

human dermal fibroblasts migration and ischemic wound

healing (89). Another study demonstrated that MALAT1-

enriched exosomes derived from ADSCs promoted cell

proliferation, migration and apoptosis in H2O2 induced

HaCaT and human dermal fibroblasts by targeting miR-124

and activating the Wnt/β-catenin pathway (90).

LncRNA H19 (H19) was one of the first discovered

lncRNAs and was found enriched in MSC-exosomes. ADSC

exosomes inhibited the expression of miR-19b via lncRNA

H19, thereby upregulating SOX9 to activate the Wnt/β-

catenin pathway, resulting in accelerating the proliferation,

migration and invasion of human skin fibroblasts. In vivo

experiments also confirmed that exosomes from ADSCs

promoted mouse skin wound healing through H19 (91). In a

streptozotocin-induced diabetic foot mouse model, BMSCs-

derived lncRNA H19 transferred to fibroblasts via exosomes,

prevented fibroblasts apoptosis and inflammation by

attenuating miR-152-3p-mediated PTEN repression to

improve diabetic wound healing (92).

Another lncRNA KLF3-AS1 from BMSC exosomes induced

angiogenesis to promote wound healing in diabetic skin. KLF3-

AS1 accelerated the proliferation, migration and tube formation

of HUVECs, while inhibited the apoptosis of HUVECs

challenged by high glucose. In vivo, exosomes from BMSCs

over-expressing KLF3-AS1 also promoted skin wound healing
frontiersin.org
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TABLE 2 Stem cell-exosome derived lncRNA/cirRNA-mediated regulation of wound healing.

Exosome derived
lncRNAs/circRNA

Donor
cells

Recipient
cells

Potential target
factor

Functions References

lncRNA MALAT 1 ADSCs Fibroblasts – Enhance cell migration (89)

lncRNA MALAT 1 ADSCs HaCaT and
fibroblasts

miR-124
Wnt/β-catenin↑

Promote cell proliferation, migration (90)

lncRNA H19 ADSCs Fibroblasts miR-19b↓
SOX9↑
Wnt/β-catenin↑

Accelerate fibroblasts proliferation, migration and
invasion

(91)

lncRNA H19 BMSCs Fibroblasts miR-152-3p↓
PTEN↑
PI3K/AKT↓

Prevent the apoptosis and inflammation of fibroblasts (92)

lncRNA KLF3-AS1 BMSCs HUVECs miR-383↓
VEGFA↑

Accelerate the proliferation, migration and tube
formation of HUVECs
Inhibit the apoptosis of HUVECs challenged by high
glucose

(93)

lncRNA GAS 5 ADSCs Fibroblasts TLR-7↓ Modulate inflammation and accelerate the healing of
chronic recalcitrant wounds

(94)

circRNA 0000250 ADSCs EPCs miR-128-3p↓
SIRT1↑

Enhance autophagy, reduce apoptosis of EPCs,
facilitate skin angiogenesis

(96)

ADSC, adipose-derived mesenchymal stem cell; BMSC, bone marrow-derived mesenchymal stem cell; EPCs, endothelial progenitor cells; PTEN, phosphatasetensin

homolog; ↑, upregulated; ↓, downregulated.
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in diabetic mice through increasing angiogenesis, and decreasing

inflammation and miR-383 expression (93). Besides, LncRNA

GAS 5, which is highly enriched in exosomes from ADSCs, was

found to attenuate LPS induced inflammation in human skin

fibroblasts, indicating it may have a role in promoting healing

of chronic recalcitrant wounds (94). HOTAIR, a long

noncoding RNA from extracellular vesicles of BMSCs, was

confirmed to participate in promoting angiogenesis and wound

healing in diabetic db/db mouse (95).
Stem cell derived exosomal circRNAs and
wound healing

The roles of circRNAs in wound healing have also received

increasing attention because studies have shown that circRNAs

involved in the physiological process of wound healing (see

Table 2). CircRNAs are crucial in regulating different disease

microenvironments. ADSC-exosomes containing high

concentrations of mmu_circ_0000250 facilitated the recovery

of endothelial progenitor cells (EPCs) function by enhancing

autophagy, and reducing apoptosis of EPCs under high

glucose conditions. In diabetic mouse wounds,

mmu_circ_0000250-enriched exosomes facilitated skin

angiogenesis and inhibited apoptosis through autophagy

activation via inhibiting miR-128-3p and upregulating SIRT1

(96). Circ-Gcap14 from hypoxic preconditioned ADSCs

increased the expression of angiogenic growth factors and

accelerated diabetic wound closure by inhibiting downstream

miR-18a-5p and promoting the expression of HIF-1α in a

mouse wound model (97).
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Stem cell derived exosomal mRNAs and
wound healing

Current studies have confirmed that mRNAs are enriched in

exosomes, can be transferred to recipient cells and perform

coding functions. Few studies have focused on the

contribution of exosomal mRNAs in wound healing. A study

revealed that microvesicles derived from UCMSCs improved

the dedifferentiation and proliferation of damaged tubular

cells by transferring hepatocyte growth factor (HGF) mRNAs

and enhancing HGF synthesis, thereby accelerating renal

regeneration and delaying fibrosis (98). Deregibus et al. first

reported that endothelial progenitor cell-derived microvesicles

improved angiogenesis through transfered mRNAs associated

with PI3K/AKT and endothelial NOS signaling pathways (99).

Future research may focus on how to transport functional

mRNAs to encode active molecules for wound healing.
Conclusion and perspective

In recent years, there have been a large number of studies
confirming that exosomes derived from different stem cell
types are effective for wound healing (15, 79, 81, 100, 101).
Since the targets of exosomes on recipient cells are not well-
defined, the investigation of their molecular mechanisms is
necessary. The skin wound healing process is a precisely
regulated, therefore, the functions of the transcriptomes of
exosomes on skin wound healing are complex. At present, the
majority of the research work concentrated on how miRNAs
from the stem cell derived exosomal transcriptomes act on
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fibroblast proliferation and migration in wound healing, and yet
a few studies aimed at lncRNAs, circRNAs and mRNAs. This
article reviews the major effects of mRNAs, miRNAs, lnc
RNAs, circRNAs, and other stem cell derived exosomal
transcriptomes on wound healing. Most of these exosomal
RNAs were derived from mesenchymal stem cells, especially
ADSCs and BMSCs. Although these RNAs are from different
sources, their functions are nearly identical.

Exosomes are abundant in RNAs, including coding or non
coding RNAs (ncRNAs). It is worth exploring whether RNAs
interact with each other. The prevailing hypothesis is
competitive endogenous RNA (ceRNA) hypothesis regarding
the interplay between RNAs currently. The current research
on stem cell derived exosomes and ceRNAs is still lacking.
Han et al. investigated the interaction between differentially
expressed lncRNAs, miRNAs and mRNAs during wound
healing in normal individuals. After analyzing the ceRNA
network, four up-regulated lncRNAs (MEG8, MEG3,
MIR181A1HG, MIR4435-2HG) were found express during
wound healing. MEG8/MEG3 may regulate fibroblast
proliferation, differentiation and apoptosis via hsa-miR-296-
3p/miR-6763-5p (102).With this lead, more studies regarding
the interaction between ceRNA and other RNAs in wound
healing are warranted.

To date, there have been a number of studies on the clinical
application of ncRNAs which served as biomarkers for judging
disease progression and prognosis of patients (103–105).
However, the application of stem cell-derived exosomal
transcriptomes remains at the basic research stage, and some
urgent concerns need to be solved before clinical translation.
For example, which source of exosomal transcriptomes is with
the most potent efficacy? Which ncRNA plays the major
regulatory role? Do lncRNAs alone or co-working with other
exosomal components such as lipids and proteins participate
in wound healing? How to improve the yields of specific
RNAs from exosomes? Although the above challenges exist,
with the rise of gene editing technology and the continuous
development of RNA delivery techniques, it is foreseeable that
stem cell derived exosomal transcriptomes can be widely used
in the field of regenerative medicine in the near future.
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