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A B S T R A C T

Background: Esophageal squamous cell carcinoma (ESCC) is among the most prevalent causes of cancer-
related death in adults. Tumor microenvironment (TME) has been associated with therapeutic failure and
lethal outcomes for patients. However, published reports on the heterogeneity and TME in ESCC are scanty.
Methods: Five tumor samples and five corresponding non-malignant samples were subjected to scRNA-seq
analysis. Bulk RNA sequencing data were retrieved in publicly available databases.
Findings: From the scRNA-seq data, a total of 128,688 cells were enrolled for subsequent analyses. Gene
expression and CNV status exhibited high heterogeneity of tumor cells. We further identified a list of tumor-
specific genes and four malignant signatures, which are potential new markers for ESCC. Metabolic analysis
revealed that energy supply-related pathways are pivotal in cancer metabolic reprogramming. Moreover,
significant differences were found in stromal and immune cells between the esophagus normal and tumor
tissues, which promoted carcinogenesis at both cellular and molecular levels in ESCC. Immune checkpoints,
regarded as potential targets for immunotherapy in ESCC were significantly highly expressed in ESCC, includ-
ing LAG3 and HAVCR2. Eventually, we constructed a cell-to-cell communication atlas based on cancer cells
and immune cells and performed the flow cytometry, qRT-PCR, immunofluorescence, and immunohis-
tochemistry analyses to validate the results.
Interpretation: This study demonstrates a widespread reprogramming across multiple cellular elements
within the TME in ESCC, particularly in transcriptional states, cellular functions, and cell-to-cell interactions.
The findings offer an insight into the exploration of TME and heterogeneity in the ESCC and provide new
therapeutic targets for its clinical management in the future.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

As one of the most prevalent causes of cancer-related death in
adults, esophageal squamous cell carcinoma is associated with an
abysmal overall 5-year survival rate (10%) and a disappointing 5-
year post esophagostomy survival rate (15�40%) [1�3]. With the
advancement in research, compelling evidence suggests that ESCC
is much more complicated than previously thought since it tran-
spires as a mixture of diverse cells [4]. The tumor microenviron-
ment (TME), which comprises different stromal and tumor cells,
is closely related to tumor processes, including proliferation,
invasion, metastasis, and resistance to drugs [5,6]. Besides, het-
erogeneity, a general feature for tumors, is highly associated with
therapeutic failure and lethal outcomes for patients [7,8]. Previ-
ously, numerous researchers found that heterogeneity could be
attributed to the different sensitivity of treatment in malignant
tumors [9�11]. However, heterogeneity and TME in ESCC are yet
to be extensively explored.

Over the past decades, most transcriptome analyses of ESCC
patients are based on traditional RNA sequencing (RNA-seq) data,
raising our awareness of the genesis and development of ESCC.
However, with traditional RNA-seq technology, one can primarily
explore tumors on a whole sample level, but this is a limited
approach to explore the cellular diversity and molecular complex-
ity of tumor cells. In recent years, single-cell sequencing, geared
on the cellular and molecular characteristics, has provided an
insight into the mechanisms underlying the normal physiological
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Research in Context

Evidence before this study

ESCC is classified among the most malignant and fatal carci-
nomas in adults. However, its general prognosis is univer-
sally poor regardless of the advances in treatments, which
is attributed to a high degree of heterogeneity that poten-
tially complicates the treatment and contributes to failure
in ESCC patients. The tumor microenvironment (TME) plays
an indispensable role in therapeutic failure and lethal out-
comes for patients. However, the heterogeneity and TME,
particularly in malignant cells are yet to be explored exten-
sively at the single-cell level.

Added-value of this study

In this work, we reveal the great heterogeneity of tumor cells in
both gene expression and CNV status at a single cell level.
Through metabolic analysis, we suggest that OXPHOS is crucial
in cancer metabolic reprogramming. Besides, our exploration of
immune cells demonstrates that LAG3 and HAVCR2 are poten-
tial checkpoint molecules for immunotherapy in ESCC. This
study also constructed a landscape of cellular communications,
which revealed the existence of complex intercellular commu-
nication networks in ESCC.

Implications of all the available evidence

Our study comprehensively characterized the widespread
reprogramming across multiple cellular elements within the
TME in ESCC. Also, it established a list of prognostic signatures
and potential therapeutic targets for ESCC patients. Therefore,
we believe that our findings will serve as a valuable resource,
to drive further exploration of ESCC pathogenesis.
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or biochemical processes and diseases at a single cell level
[12�14]. For instance, Lambrechts et al. [15] undertaken a single-
cell analysis on lung cancer to explore the stromal cell types of
lung tumors. They explored the phenotypes and biological behav-
iors of the different stromal cell types, which were fundamental
in lung cancer diagnosis and treatment. Elsewhere, Zhang et al.
[16] applied a single-cell analysis to explore the immune cells in
hepatocellular carcinoma. They uncovered a dynamic nature of
immune cells and communication across distinct cell types. These
findings were valuable in the exploration of the potential thera-
peutic targets of liver cancer.

Herein, we adopted both traditional RNA-seq and scRNA-seq
techniques to investigate cancer cells and the TME of ESCC.
Through the analysis of tumor cells and finding their match with
non-malignant tissues at a much larger scale, great heterogeneity
of tumor cells was revealed in gene expression and CNV status.
Moreover, we identified a list of tumor-specific genes and four
malignant signatures, which are potential new targets for ESCC.
The metabolic analysis demonstrated the pivotal roles of the
energy supply-related pathways in cancer metabolic reprogram-
ming. Meanwhile, this work characterized the single-cell expres-
sion profiles for immune cell lineages in esophagus normal and
cancerous tissues. To better explore the interactions between
immune cells and malignant cells in ESCC, a landscape of cellular
metabolisms and communications was constructed within the
single-cell resolution. We believe these findings will enrich our
understanding of cellular and molecular differences between
ESCC and non-tumor tissues.
2. Materials and methods

2.1. Ethics statement

Approval for this study was issued by the Ethics Committee of
Zhongshan Hospital, Fudan University, China (B2021�137R). Patients
gave informed consent at hospitalization.

2.2. Patients

scRNA-seq and clinical data were collected from patients diag-
nosed with ESCC. We selected 10 samples (five ESCC and five corre-
sponding non-malignant samples) from the Department of Thoracic
Surgery, Zhongshan Hospital, Fudan University (FDZSH). Another
twenty ESCC and twenty corresponding non-malignant samples
were also selected for flow cytometry and qRT-PCR analyses, whereas
eight ESCC and eight corresponding non-malignant samples were
included for immunohistochemistry and immunofluorescence. Non-
malignant samples were collected from match patients, from sites
displaced at least several centimeters from the tumor, and were sub-
jected to histopathology review to verify that they lack tumor cells.

Traditional RNA-seq data of ESCC were retrieved from TCGA
(https://tcgadata.nci.nih.gov/) database [17] and GEO database
(GSE53625) [18].

2.3. Preparation of single-cell suspensions

All fresh samples were processed as follows: Each sample was
minced into small pieces and digested in a gentle MACS C Tube con-
taining 200 mL enzyme H, 25 mL enzyme A, 100 mL enzyme R, and
4.7 mL Dulbecco’s Modified Essential Medium and incubated for
30 min at 37 °C. To remove the cell aggregates or other residual large
particles from the single-cell suspension, the cell suspension was fil-
tered through a 40-um nylon mesh. Red Blood Cell Lysis Solution (10
£) (Sigma-Aldrich, St. Louis, MO, USA), and Dead Cell Removal Kit
(Miltenyi Biotec) were further used to remove erythrocytes, and dead
cells, respectively

2.4. Library preparation and sequencing

Library preparation was conducted fusing the 10X Chromium sin-
gle-cell kit following the manufacturer’s protocol. The libraries were
sequenced on the Illumina sequencing platform (HiSeq X Ten; Illu-
mina, San Diego, CA, USA).

2.5. Single-cell RNA-seq data preprocessing

The Cell Ranger software pipeline (version 3.0.0) was adopted to
process the 10X genomics raw data. The Cell Ranger was applied to
demultiplex raw base call files into FASTQ files, and for alignment, fil-
tering, barcode counting, and UMI counting.

2.6. The 10x scRNA-seq data analysis

scRNA-seq data analyses were performed using R version 3.6.1
with the following criteria for cell filtering: (1) The number of
expressed genes lower than 200 or larger than 5000; (2) 10% or more
of UMIs were mapped to mitochondrial or ribosomal genes cells
were eliminated if they met one of the standards. To detect the dou-
blets, first, cells with UMI/gene numbers were eliminated from the
limit of mean values § two-fold of SD, and then the R package “Dou-
bletFinder [19]” was applied with recommendatory parameters.
Moreover, to remove the batch effects in single-cell RNA-sequencing
data, the mutual nearest neighbors(MNN) presented by Haghverdi
et al. was performed with the R package ‘batchelor’ in our study [20].

https://tcgadata.nci.nih.gov/
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After quality standardization, the Seurat R package [21] was
applied to analyze the scRNA-seq data. First, scRNA-seq data was
converted to a Seurat object, and then we used the “FindVariableFea-
tures” function to detect the top 2000 highly variable genes. After
that, principal component analysis (PCA) was applied to reduce the
dimension of the scRNA-seq data based on the 2000 genes. The “Run-
TSNE” function was applied to perform t-distributed stochastic
neighbor embedding (TSNE) to analyze the scRNA-seq data. The
“FindClusters” (set the “resolution” parameter to 0.5) and “FindAll-
Markers” functions were adopted for cell clustering analysis and
detect all gene expression markers for identity classes. To identify
the marker genes for each cluster, the cutoff threshold values, adj. P
value<0.01 and fold change >0.5 were used.

Eventually, according to SingleR package [22], CellMarker dataset
[23], and previous reports [15,24], we annotated different cell types
(cell clusters were annotated with the dominant expression cell
markers).

2.7. Analysis of sub-clusters in epithelial cells, stromal cells, and immune
cells

Following primary annotation, epithelial cells, stromal cells, and
immune cells were extracted via the “SubsetData” function. Then, we
applied the “FindClusters” and “FindAllMarkers functions and reclus-
tered the selected cells by TSNE. The sub-clusters were annotated by
the dominant expression cell markers. The following cutoff threshold
values were applied to reveal the marker genes for each cluster:
adjust P value<0.01 and fold change >0.5. We also inferred the high-
risk genes for ESCC using CIPHER as described in previous studies
[25,26].

2.8. Estimation of the copy number variations

The R package “scCancer” [27] was used to estimate the initial
copy number variations (CNVs) in each region. The expression level
of each cell acted as the input file with recommendatory parameters.
Immune cells served as the background to calculate the CNVs score.
The CNV value of each cell was calculated as the quadratic sum of the
CNV region. Also, we applied the R package “inferCNV” to calculate
CNVs in tumor cells as described previously [28,29].

2.9. Definition of cell scores and signature

To calculate the M1/M2 polarization and pro-/anti-inflammatory
potential of macrophage cells, GSVA analysis was conducted. We
retrieved the gene sets associated with the above functions from pre-
vious studies [5,30].

To define the resident, cytotoxic, exhausted, and costimulatory
score for T cells, we used the average expression of published signa-
ture gene lists for resident, cytotoxicity, exhausted, and costimula-
tory of T cells.

2.10. Identification of gene expression signatures of malignant cells

We selected the identified marker genes in tumor cells compared
between malignant and non-malignant epithelial cells to identify the
gene expression signatures of malignant cells. Then, we applied
unsupervised NMF via the NMF R package [31] to reveal the malig-
nant signatures of tumor cells. Finally, the functional enrichment
analyses were performed to define the type of malignant signatures.

2.11. Trajectory analysis

We performed the trajectory analysis via the R package monocle2
to explore the tumor�reprogramming processes in single cells [32].
First, the function “newCellDataSet” was applied to construct the
monocle subject. After that, the differentially expressed genes identi-
fied via Seurat were selected for trajectory analysis. The “reduceDi-
mension” function was applied to reduce dimensions, and we placed
cells onto a pseudotime trajectory by “orderCells” functions. State,
composed of cells primarily from non-malignant tissues, was defined
as “root cell”.

2.12. Analyses of metabolic pathways

To assess the pathway activity of each cell type, we applied an
algorithm developed by Xiao et al. [9]. Briefly, the analysis of the met-
abolic program was according to the mean expression level of the
metabolic gene across cell types.

Because there is a potential impact by multiple environmental
factors on metabolic reprogramming in tumors, such as nutrient sup-
ply and location-specific elements, exploration of the intersections
between these factors and mitochondrial activity in malignant cells is
critical in understanding the metabolic reprogramming of tumors
such as ESCC. Therefore, we calculated the average expression level
of genes in terms of hypoxia, glycolysis, and OXPHOS which acted as
indicators for oxygen supply, glucose supply, and mitochondrial
activity, respectively. Data of genes responsive to the three sets of
genes (known to respond to hypoxia, glycolysis, and OXPHOS),
applied in the calculation were retrieved from the MsigDB database
because the nutritional status of cells is not available in the present
single-cell samples. Next, with the average expression level of genes
in hypoxia, glycolysis, and OXPHOS as indicators for oxygen supply,
glucose supply, and mitochondrial activity, we explored the relation-
ship between environmental factors and mitochondrial activity in
malignant cells, respectively.

2.13. Survival statistical analysis

CIBERSORTx [33], a newmachine-learning method, was applied to
evaluate the clinical relevance of genes in bulk RNA sequencing data.
Briefly, we first applied our single-cell data for the construction of a
signature matrix. Then, based on the signature matrix, gene expres-
sion profiles for each cell type were impute in the bulk RNA sequenc-
ing data using the ‘High-Resolution mode’. Following the retrieval of
the cancer cell-specific gene expression profiles bulk RNA sequencing
data, we applied the single-sample gene set enrichment analysis
(ssGSEA) [34] to calculate the malignant signatures scores. Then,
patients in TCGA and GEO database were categorized into high and
low expression groups; this was according to the median value of the
ssGSEA score for each malignant signature gene set. Kaplan�Meier
and log-rank tests were applied to construct and compare survival
curves. Additionally, Cox regression analysis was undertaken to eval-
uate the prognostic value of each malignant signature. The statistical
threshold for significance was adj. P values < 0.05.

2.14. Functional enrichment analyses

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses were performed via Metascape
(http://metascape.Org) [35]. Notably, P < 0.01 and the number of
enriched genes > 3 acted as the thresholds for a significant difference
in GO or KEGG pathways.

2.15. Construction of a cell to cell interaction network

To investigate cell-to-cell interaction between the tumor and non-
malignant cells, R package “CellChat” [36] and “CellPhoneDB” Python
package [29] were applied. The ligand-receptor pairs in CellChat
retrieved from previous studies were divided into four groups includ-
ing, cytokine/chemokine, immune checkpoint, growth factor, and
others [37]. The crosstalk between cell analyses conducted via

http://metascape.Org
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“CellChat” was as follows: (1) “createCellChat” function was applied
to create “CellChat” object; (2) the “computeCommunProb,” “compu-
teCommunProbPathway,” and “aggregateNet” functions were
adopted to infer the cellular communication network; (3) “netVisua-
l_aggregate,” “netVisual_signalingRole,” and “netVisual_bubble”
were adopted to visualize crosstalk among cells. “CellPhoneDB” was
then applied with recommendatory parameters.
2.16. Flow cytometry and qRT-PCR

Phosphate-buffer saline with 20 mg/mL human IgG and 3% fetal
bovine serum was applied to block non-specific antibodies for
15 min. Then, cells and allophycocyanin-conjugated mouse anti-
human EPCAM (5 mL/106 cells; cat. no.: 566,658, BD Biosciences,
RRID: AB_2,869,815) [38], BV510-conjugated mouse anti-human
CD45 (5 mL/106 cells; cat. no.: 563,204, BD Biosciences, RRID:
AB_2,738,067), or PE-conjugated mouse anti-human KRT5 (10 mL/
106 cells; cat. no.: AB_224,985, Abcam) were incubated on ice for
30 min. Next, FACSAria III (BD Biosciences) was applied to quantitate
and isolate stained cells. Results were analyzed using the FlowJo soft-
ware (TreeStar, Woodburn, OR, USA). Upon isolation of tumor cells
expressing EPCAM and non-malignant cells expressing KRT5, we
adopted the kit (Illumina, San Diego, USA) for RNA extraction and
reverse transcription on the sorted cells. QuantStudio 5 (Thermo
Fisher Scientific) was employed for sequencing.
2.17. Immunohistochemistry and immunofluorescence

Immunohistochemistry was conducted as stipulated by the man-
ufacturer’s [39]. Paraffin-embedded slides were incubated with anti-
aSMA (Mouse, CY1132, Abways). Primary antibody detection was
achieved using avidin-biotin-peroxidase complexes with DAB sub-
strate solution (Gene Tech, China).

Immunofluorescence (IF) specific for IGFBP2 (Rabbit, DF7765,
Affinity Biosciences, RRID: AB_2,841,231), ODC1 (Rabbit, DF6712,
Affinity Biosciences, RRID: AB_2,838,674), SPINK5 (Rabbit, DF4462,
Affinity Biosciences, RRID: AB_2,836,817), and CSTB (Rabbit, AF0256,
Affinity Biosciences, RRID: AB_2,833,431) was performed as previ-
ously described. Briefly, the paraffin-embedded slides were dewaxed
and rehydrated. After antigen retrieval, block of endogenous peroxi-
dase activity and non-specific antigens, and incubation with primary
antibodies and horseradish peroxidase-conjugated secondary anti-
body, the slides were incubated with Opal tyramide signal amplifica-
tion (TSA) Fuorochromes (Opal 2-Color Manual IHC Kit, G1236,
Servicebio Co., Ltd) for 10 min at room temperature. After the second
run, the slides were stained with DAPI.
2.18. Statistical analysis

The statistical tools, methods, and threshold for each analysis are
explicitly described with the results or detailed in the figure legends
or Materials and Methods. Comparison of non-malignant and malig-
nant esophagus was performed by Wilcoxon test in immunohis-
tochemistry and immunofluorescence. Comparison of non-malignant
and malignant esophagus was performed by Wilcoxon test in
qRT-PCR.
2.19. Role of funding source

The funding sources played no role in the study design, data col-
lection, data analysis, interpretation, writing of the report, and the
decision of paper submission.
3. Results

3.1. A single-cell atlas of the non-malignant and malignant esophagus

After the selection of five patients, including five tumor samples
and five corresponding non-malignant samples in pair, we character-
ized the single-cell transcriptome atlas of the non-malignant and
malignant esophagus (Fig. 1a and Supplementary Table 1). As a result,
6672 doublets were identified, accounting for less than 5% of the total
cells, which we eliminated from the analysis (Supplementary Fig. 1a).
After quality control check, 128,688 cells were subjected to down-
stream analyses, of which 53,554 and 75,134 cells were derived from
tumor samples and normal samples, respectively (Fig. 1b and c). We
identified the cell populations of these cells through dimensionality
reduction and unsupervised clustering via the Seurat package. Based
on the TSNE plots (Fig. 1b), cells selected for downstream analyses
were clustered into eight clusters. According to the cell markers from
previous studies (Methods Details), these clusters were revealed as
eight cell types: Epithelial cells (marked by KRT13 and SPRR3), mast
cells (marked by TPSB2 and CPA3), endothelial cells (marked by VWF
and RAMP2), fibroblasts (marked by DCN and COL1A1), T cells
(marked by CD3D and CD3E), myeloid cells (marked by LYZ and
C1QB), B cells (marked by CD79A and IGKC), and cancer cells (marked
by EPCAM and SOX2). Detailed distributions of these marker genes in
each cluster are outlined in Supplementary Fig. 1b and c.

Since previous studies had demonstrated that cytokines,
nuclear factor-kB (NF-kB), and hypoxia signaling pathways are
essential in tumor development [40,41], we plotted these genes
in ESCC and non-malignant esophageal cells, respectively. Com-
pared to non-malignant esophageal cells, both VEGFA and HIF1A
showed significant elevations in all cell types in ESCC (Fig. 1d).
Then, trajectory analysis was applied to explore the dynamic
changes in expressions of VEGFA and HIF1A and scores of the
hypoxia pathway. Notably, high expressions VEGFA and HIF1A
were reported with the larger pseudotime in epithelial cells,
especially in tumor cells (Supplementary Fig. 1d). Besides, the
hypoxia scores were significantly high in malignant cells (Supple-
mentary Fig. 1e). In summary, these findings demonstrated that
hypoxia might be a pivotal role in the promotion of ESCC tumori-
genesis. Additionally, myeloid is potentially a more dominant
source of cytokines and nuclear factor-kB (NF-kB), especially in
ESCC, compared to other cell types. Therefore, myeloid cells have
potential regulatory effects on the inflammatory response via the
activation of the NF-kB signaling pathway.
3.2. Metabolic reprogramming in ESCC

Considering metabolic reprogramming as a hallmark of cancer, we
performed a series of analyses over metabolic pathways on different
cell types. More significantly up-regulated metabolic pathways were
enriched in cancer cells compared to the other cell types (Fig. 2a and
b). Notably, the enrichment of the oxidative phosphorylation
(OXPHOS), the glycolysis and gluconeogenesis, and the tricarboxylic
acid cycle (TCA cycle) depicted a significant mitochondrial activity in
the esophageal metabolisms. In Fig. 2c, a significantly close intercon-
nection is depicted between the hypoxia and glycolysis signatures (P
< 0.001, Pearson’s R = 0.74). OXPHOS activity exhibited a positive cor-
relation with either hypoxia (P< 0.001, Pearson’s R = 0.78) or glycoly-
sis (P<0.001, Pearson’s R = 0.83).

Besides, we evaluated the heterogeneity of metabolic pathways in
malignant cells for each patient to enhance the reliability of our
results. OXPHOS provided the highest contribution to the metabolic
heterogeneities among malignant cells from different tumors in the
ESCC patients (Fig. 2d). It was inferred that OXPHOS may play an
important role in cancer metabolic reprogramming.



Fig. 1. A Single-cell atlas of esophagus non-malignant tissues and esophageal squamous cell carcinoma.
(a) Workflow depicting collection and processing of specimens of ESCC tumors and non-malignant esophageal tissue for scRNA-seq analysis.
(b) TSNE of the 128,688 cells profiled here, with each cell color coded for: its sample type of origin (ESCC (n = 5) or non-malignant esophageal tissue (n = 5)), the corresponding

patient, the corresponding sample, the associated cell type, the transcript counts, and the transcript features.
(c) The proportion of each cell type in non-malignant and ESCC samples.
(d) Dot plot of representative genes in the cytokines, the nuclear factor-kB (NF-kB), and hypoxia signaling pathways mapped onto cell types in non-malignant and ESCC samples,

respectively.
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Fig. 2. Metabolic landscape for ESCC.
(a) Metabolic pathway activities in each cell type (split metabolic pathways into different spatial positions). Statistically non-significant values (random permutation test p >

0.05) are shown as blank.
(b) Distributions of pathway activities in different cell types.
(c) Comparing activities of glycolysis, OXPHOS, and response to hypoxia in the malignant cells. Spearman's rank correlation was used for analysis.
(d) Metabolic pathways enriched in genes with the highest contribution to the metabolic heterogeneities among malignant cells from different tumors.
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3.3. Classification of tumor and normal epithelium in the non-malignant
and malignant esophagus

Considering ESCC as a major type of esophageal cancer that tran-
spires from esophageal epithelial cells, we evaluated the characteris-
tics of 86,925 epithelial cells across different esophagus lesions.

First, these epithelial cells were identified as tumor cells and non-
malignant epithelial cells and then followed by a re-clustering pro-
cess: non-malignant epithelial cells (marked by SPRR3 and KRT13)
and cancer cells (marked by EPCAM and SOX2) (Fig. 3a and b).
Besides, to verify their cell attributes, we traced back to their origins.
Notably, cells expressing high levels of normal epithelial marker
genes were mostly derived from normal tissues, whereas all epithe-
lial cells defined in the cancer cluster originated from tumor samples
(Fig. 3a).

Furthermore, we validated the above clusters by estimating their
copy number variations (CNVs) based on the averaged expression
patterns across the genome intervals (Supplementary Materials
Details). In Fig. 3c, we show that compared to normal epithelial cell
types, the cancer cells cluster exhibited remarkably higher CNV lev-
els, which demonstrated the reasonability of our cell annotations.

Upon the identification of malignant epithelium from non-malig-
nant epithelium, we performed differential gene expression analysis
between tumor cells and non-malignant epithelial cells. As shown in
Fig. 3d and e, a list of tumor-specific genes (such as IGFBP2, IGFBP3,
ODC1, and SOX4) were significantly highly expressed in tumor cells
(adj. P<0.01). In contrast, genes associated with anti-tumor or pro-
inflammatory, including CRCT1, CRNN, SPINK5, and CSTB, were sig-
nificantly highly expressed in non-malignant epithelial cells (adj.
P<0.01). Furthermore, these three genes were validated using flow
cytometry and qRT-PCR in twenty patients. The two markers, EPCAM
and KRT5, were used to successfully isolate cancer cells from other
epithelial cells (Supplementary Fig. 2a). According to the qRT-PCR
results, the expression levels of IGFBP2 (P < 0.01), IGFBP3 (P < 0.01),
ODC1 (P < 0.01), and SOX4 (P < 0.01) were significantly higher in
ESCC cancer cells. In contrast, CRCT1 (P < 0.01), CRNN (P < 0.01),
SPINK5 (P < 0.01), and CSTB (P < 0.01) were highly expressed in nor-
mal epithelial cells (Supplementary Fig. 2b, comparison of non-malig-
nant and malignant esophagus was performed by Wilcoxon test). To
confirm this phenomenon at the protein level, immunofluorescence
analyses were applied. We found IGFBP2 and ODC1 were almost
expressed in ESCC tissues, while CSTB and SPINK5 were mainly up-
regulated in esophagus non-malignant tissues (Fig. 3f). These results
implied that the gain of IGFBP2 and ODC1 or the loss of CSTB and
SPINK5 can be a new alarm for ESCC.

Following the trajectory analysis to explore the potential transi-
tion between malignant and non-malignant epithelium, dynamics
changes of marker genes in epithelium revealed the progression of



Fig. 3. The single-cell transcriptomes of epithelial cells in non-malignant and malignant esophagus.
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esophagus non-malignant tissues into malignant tissues (Fig. 3g and
Supplementary Fig. 2c), which confirmed that the tumor-specific
genes promote ESCC.

Subsequently, we performed GSVA analysis to characterize the
biological functions between malignant and non-malignant epithelial
cells. Compared to non-malignant epithelial cells, pathways closely
associated with cell proliferation, cancer progression, and metastasis
(such as epithelial-mesenchymal transition, unfolded protein
response, and MTORC1 signaling pathways) were highly enriched in
tumor cells (Fig. 3h). Pseudotime analysis was then conducted to
explore the dynamic changes in expressions of Hallmark pathways in
epithelial cells. Notably, we revealed that pathways for tumorigenesis
and development were significantly up-regulated with the larger
pseudotime (Supplementary Fig. 2d). Collectively, this is the first
report on the characterization of the difference between malignant
and non-malignant epithelial cells in ESCC at a single-cell level and
uncovers a list of potential biomarkers for ESCC.
3.4. Construction of the transcriptional landscape revealing the
heterogeneity of ESCC malignant cells

To investigate whether the malignant cells were heterogeneous,
we focused on malignant cells and re-clustered 15,644 tumor cells,
and identified five sub-clusters (Fig. 4a). Intriguingly, we found that
malignant cells formed patient-specific clusters. For instance, cluster
1 was mainly formed by cells from Patient 3, whereas cells in cluster
2 were mostly from Patient 4 (Fig. 4b). Additionally, differential gene
expression analysis revealed the high-risk genes for each ESCC
patient via the disease-gene prediction algorithm CIPHER [25,26].
Our results demonstrated that different patients exhibited distinct
expression patterns, for different high-risk genes (Fig. 4b). For
instance, EGR1 was highly expressed in Patient 2, whereas S100A8/9
was found to be a high-risk ESCC gene in Patient 4. In addition, we
applied the R package for CNV analysis of malignant cells and found
that compared to non-malignant epithelial cells, all tumor cells
exhibited a relative variation in CNV profiles; tumor cells in each
sub-cluster showed distinct CNV status. Compared to other sub-clus-
ters, cluster 1 demonstrated an apparent CNV loss in chromosome 4
and chromosome 5. However, on cluster 2, an obvious CNV gain in
chromosome 1 was detected (Fig. 4c). These findings demonstrated a
high heterogeneity of tumor cells in both gene expression and CNV
status.

Furthermore, the functions of different tumor cell subtypes were
explored through a comparison of pathway activities in Hallmark sig-
natures and metabolism. GSVA analyses revealed the distinct path-
way activities among these patients. For instance, MYC targets and
G2M-checkpoint pathways were mainly enriched in Patient 1. On the
contrary, interferon-alpha response and IL2-STAT5 signaling path-
ways were activated in Patient 4 (Fig. 4d). Through metabolic path-
way analyses, we established the different metabolic re-
programming patterns in different patients. Patient 2 exhibited sig-
nificantly higher oxidative phosphorylation and fatty acid elongation
in tumor cells compared to other patients. Other energy supply path-
ways (such as glycolysis and TCA cycle pathways) were enriched in
Patient 4 (Supplementary Fig. 3a). These results implied a high degree
of intertumour heterogeneity in malignant cells.
(a) The TSNE plot and overview of epithelial cells by the cell type and origin of the cells.
(b) Canonical cell markers were used to label epithelial subtypes as represented in the TS
(c) The TSNE plot of epithelial cells by the CNV’s levels of the cells.
(d) Heatmap showing the expression of marker genes in malignant and non-malignant e
(e) Violin plots showing the marker genes for each epithelial cell type.
(f) Immunofluorescence staining of tumor (n = 8) (up) / normal (n = 8) (down) tissue-spec

nant esophagus was performed byWilcoxon test.
(g) Pseudotime analysis for malignant and non-malignant epithelial cells.
(h) Differences in pathway activities scored per cell by GSVA between malignant and non
Next, after selecting the genes highly expressed in tumor cells, the
R package (31) NMF was applied to identify metagenes for malignant
cells. Eventually, we found 252 metagenes (Supplementary Table S2),
which were enrolled for hierarchical clustering analysis. The results
demonstrated high concordance among four malignant signatures,
including cell repair, cell differentiation, cell cycle, and immune cells
(Supplementary Fig. 3b). Then, the calculated scores of these signa-
tures demonstrated that those of the malignant signatures varied
across the malignant cells from different patients (Fig. 4e).

Using CIBERSORTx, we analyzed the correlations between these
malignant signatures and survival whereby each cell type was char-
acterized by unique expression profiles in our signature matrix (Sup-
plementary Fig. 3c). This demonstrated the reliability of our signature
matrix. Subsequently, based on the signature matrix, we impute gene
expression profiles for each cell type in the bulk RNA sequencing
data via the ‘High-Resolution mode’ in CIBERSORTx. Notably, the sur-
vival analyses demonstrated an obvious association between low cell
differentiation scores and poor prognosis of ESCC patients in both
TCGA and GEO database cohorts (Fig. 4f and g), which suggested the
metagenes for cell differentiation could serve as a prognostic marker
for ESCC patients. However, we only applied our own single-cell data
for the construction of a cell type specific gene expression profiles of
the TCGA data to evaluate the clinical relevance of genes in bulk RNA
sequencing data, which might have led to some inaccuracy in our
results. Therefore, more research is needed to explore the clinical rel-
evance of these genes in future.
3.5. Stromal cells could contribute to remodeling and angiogenesis

To evaluate the dynamics of stromal cells in the TME, stromal cells
(including endothelial cells (ECs) and fibroblasts) were selected and
re-clustered. First, four stroma cell clusters were identified after a
sub-clustering process, including endothelial C1, endothelial C2,
myofibroblasts, and COL14A1-positive fibroblasts (Fig. 5a). Detailed
distributions and expression of their marker genes in each cell type
are outlined in Supplementary Fig. 4a and Supplementary Fig. 4b. We
noted differences between the distribution of each of these four clus-
ters. Endothelial C1 was presented largely in the non-malignant
esophageal cell cluster, whereas COL14A1-positive fibroblasts were
found in both cell clusters, and endothelial C2 and myofibroblasts
were mainly distributed in the ESCC (Fig. 5a). According to previous
reports, myofibroblasts exert crucial effects on tumor progression.
and were suggested to be associated with cancer- in the stromal envi-
ronment [42,43]. As such, we used alpha-smooth muscle actin
(a-SMA), a product of the ACTA2 gene and the marker protein of
myofibroblasts, to verify the infiltration of myofibroblasts. As
depicted in Fig. 5b and c, ACTA2 was mainly expressed in the myofi-
broblasts, similar results were confirmed through IHC staining.

Due to the distinctive distributions among these four clusters of
stroma cells, we performed functional enrichment analyses. In partic-
ular, GSVA analysis revealed that although myofibroblasts and
COL14A1-positive fibroblasts shared several up-regulated pathways,
E2F-target, apical-junction-related, and other pathways were exclu-
sively upregulated in myofibroblasts (Fig. 5d). Contrarily, reactive
oxygen species pathway, IL-6/Jak/Stat3 signaling, and metabolic
pathways (such as Adipogenesis and xenobiotic metabolism
NE plot.

pithelial cells.

ific genes in ESCC and non-malignant tissues. Comparison of non-malignant and malig-

-malignant epithelial cells. The scores of pathways are normalized.



Fig. 4. Malignant cell clusters and common malignant signatures revealed in ESCC.
(a) The TSNE plot and overview of the malignant cells.
(b) Complex heatmap showing the expression of marker genes in each malignant epithelial sub-cluster. Top: Pie charts showing the proportions of cells originating from each

patient detected in each cluster, colored by patient. Bottom: Relative expression map of marker genes associated with each cell sub-cluster. Mean expression values are scaled by
mean-centering, and transformed to a scale from �2 to 2.
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Fig. 5. The scRNA profiles for stromal cell lineages in non-malignant tissues and esophageal squamous cell carcinoma.
(a) The TSNE plot and overview of the stromal cells.
(b) Feature plot of ACTA2 in stromal cells.
(c) IHC staining of a-SMA on formalin-fixed and paraffin-embedded slides for the independent biospecimens (n = 8). All replicates showed the similar results.
(d) Differences in pathway activities scored per cell by GSVA among the different stromal cell subtypes. The scores of pathways are normalized.
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pathways) were upregulated in the COL14A1-positive fibroblasts
rather than myofibroblasts. Also, endothelial C2 were mainly
enriched in the pathways associated with the regulation of the devel-
opments and cell fate determiners of stromal cells (e.g., WNT path-
ways, angiogenesis, and P53 pathway). Besides, pathways related to
inflammatory reactions and damage repairs, such as DNA repair and
interferon response-related pathways, were up-regulated in endo-
thelial C1. These findings confirmed the dynamics by which stromal
cells within the TME promote tumorigenesis and development.

3.6. Diverse B cell subtypes in ESCC

B cells have been revealed to enormously impact molding immune
response in the TME and are closely related to the overall survival for
patients with tumors [44,45]. Herein, we re-clustered the B cells and
identified 3 sub-clusters in our study (Fig. 6a). Then, based on particular
cell markers, we defined cluster 1 as plasma B cells (marked by IGHG1
(c) Heatmap showing large-scale CNVs of each malignant epithelial sub-cluster. The exp
the cancer cells are plotted in the left heatmap, with genes ordered from top to bottom acros

(d) Differences in pathway activities scored per cell by GSVA in each malignant epithelial
(e) Violin plots showing the scores for one of the four malignant signatures for malignan
(f) Prognostic values of the malignant signatures in TCGA (Right) and GEO (Left) database
(g) Kaplan�Meier curves showing overall survival in the TCGA (Right) and GEO (Left) da

cant results are indicated with red squares. (For interpretation of the references to color in th
and IGHG4), whereas clusters 2 and 3 were defined as follicular B cells
(marked by MS4A1) (Supplementary Fig. 5a). Notably, we also found
one of the B cell sub-clusters was mainly seen in normal tissues and
the other two B cell sub-clusters were mainly observed in tumor tis-
sues. Additionally, plasma B cells were mainly presented in ESCC tis-
sues, while non-malignant esophageal samples incorporated a
substantial number of follicular B cells (Fig. 6a). Analysis of cellular
reprogramming at the single-cell level revealed a transitional path of B
cells from the non-malignant-derived follicular B cells to tumor-derived
plasma B cells and tumor-derived follicular B cells (Fig. 6b); this demon-
strated the complex functions of B cells in ESCC.

Further, we explored the two types of B cells, along with their fea-
tures and functions in ESCC. Differential expression analysis revealed
high MZB1, FKBP11, and IGHG3 levels in plasma B cells (Fig. 6c).
Notably, cluster 2 and cluster 3 were characterized by distinct
expression programs. In particular, CD74, S100A8, and CXCR4 were
activated in cluster 2, whereas HLA-DQA2, CCR7, and JUND were
ression values for non-malignant epithelial cells are plotted in the right heatmap, and
s the chromosomes.
sub-cluster. The scores of pathways are normalized.
t cells for each epithelial cell type.
. Cox regression survival analyses was used in our study.
tabase according to high vs low expression of the cell differentiation signature. Signifi-
is figure legend, the reader is referred to the web version of this article.)



Fig. 6. The scRNA profiles for B cells in non-malignant tissues and esophageal squamous cell carcinoma.
(a) The TSNE plot and overview of the B cells.
(b) Trajectory analysis for B Cells.
(c) Heatmap showing the expression of marker genes in each B cell cluster.
(d) Differences in pathway activities scored per cell by GSVA among the different B cell subtypes. The scores of pathways are normalized.
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enriched in cluster 3 (Fig. 6c). Next, we performed GSVA analysis to
explore the primary biological functions of these sub-clusters. As
shown in Fig. 6d, that cells in cluster 1 exerted essential roles in cell
proliferation and differentiation. The primary biological functions of
cluster 2 were highly associated with an inflammatory response.
Moreover, pathways related to energy supply (such as glycolysis and
OXPHO) were activated in cluster 3. Additionally, GSVA analysis of
each sub-cluster from each patient was undertaken to explore the
heterogeneity of B cells. In Supplementary Fig. 5b, the pattern of the
activated pathways varied across different patients and in different
sub-clusters in the same patient. However, pathways correlated with
tumor progression were more likely to be up-regulated in Patient 5,
diagnosed with stage III. Overall, these results provided insights into
further exploration of the role of B cells in ESCC.

3.7. Macrophages existed different phenotypes with pro-tumoral
functions

We selected 9801 myeloid cells for downstream analysis. Based on
the re-clustering results, macrophages and monocytes were much
more presented in the ESCC compared to non-malignant esophageal
tissues (Fig. 7a and b). Subsequently, the distribution of immune check-
points was evaluated in myeloid cells. Of note, some standard immune
checkpoints, including PDCD1LG2(PD1-L2) and CTLA4 exhibited rela-
tively low expressions in all myeloid cells, whereas CXCR4, TGFB1, and
HAVCR2 were highly expressed in most myeloid cells Fig. 7c and Sup-
plementary Fig. 6a. Moreover, different myeloid clusters had different
highly-expressed immune checkpoints, such as CD274 was found to be
highly expressed in DCs, and CD276 was up-regulated in most of the
macrophages. These results reflected a significant heterogeneity in
immunotherapy response in myeloid cells. Therefore, common up-reg-
ulated immune checkpoints (e.g., CXCR4, TGFB1, and HAVCR2) may
serve as potential immune targets for ESCC.

Because macrophages represent the most prevalent cell type in
myeloid cells, they were subjected to further analysis. As shown in
Figs. 7d,e and 6 sub-clusters were identified. Based on the known
marker genes of M1/M2 and pro/anti-inflammatory macrophages,
we estimated the phenotype for each sub-group. A dominant M2/
anti-inflammatory phenotype was detected in clusters 1 and 3,
whereas cluster 2 displayed an M1/pro-inflammatory phenotype
(Supplementary Fig. 6b). Besides, there was no clear distinction of
phenotype in clusters 4, 5, and 6. Further comprehensive dissection
of pathway analyses demonstrated that distinct biological functions
in each sub-cluster in macrophages (Fig. 7f). Collectively, these
results revealed the heterogeneity of the sub-clusters.

Furthermore, the transition states of macrophages were explored
through trajectory analysis. We found a tendency in macrophages from
M1/pro-inflammatory phenotype to M2/anti-inflammatory phenotype
to intermediate phenotype (Fig. 7g). According to the pseudotime, three
phases were detected in these sub-clusters (Fig. 7h). Also, M1/pro-
inflammatory phenotype-related genes (such as CCL2/5 and IL1A/1B)
were activated in phase 1, whereas M2/anti-inflammatory phenotype
-dominated gene set (such as C1QB, SPP1, and APOE) were mainly up-
regulated in phase 2. These observations implied the complex macro-
phage phenotypes process in ESCC, which was consistent with a previ-
ous report [46]. Intriguingly, macrophages in phase 3 expressed more
major histocompatibility complex (MHC)-II molecules (such as HLA-
DQA2, HLA-DPB1, and HLA-DRB5). Previously, MHC II was revealed to
mediate the presentation process of exogenous antigens [47]. Therefore,
our results suggest that MHC II that overexpress macrophages could
serve as a potential immune therapy target for ESCC.

3.8. T cell sub-cluster show antitumor immune response in ESCC

Herein, our focus was on the T cells, the most prevalent immune
cell type in ESCC and non-malignant esophageal tissues. The re-
clustering of T cells revealed 3 known populations, including NKT/
CD8+ T cells (marked by GZMB, NKG7, and GNLY), regulated/CD4+ T
cells (CD4, IL2RA, and FOXP3), and T follicular helper cells (MAF,
ICOS, and BTAF) (Figs. 8a, S7a and b). Also, NKT/CD8+ T, CD4+/Regu T
cells, and Tfh were mostly derived from tumor samples, whereby
6936, 1704, and 906 cells were detected from the malignant samples,
respectively.

Next, we assessed the genes associated with the function of T cells
to explore the functional status of each type of T cells. Of note, cyto-
kine and effector molecules and inhibitory receptors were highly
expressed in NKT/CD8+ T cells (Fig. 8b), which demonstrated that
NKT/CD8+ T cells in ESCC exert potential cytotoxic and inhibitory
effects. Numerous studies had also implicated immunotherapy as a
promising therapeutic strategy. The exploration of immune check-
points has always been essential to the development of immunother-
apy [48,49]. Notably, we found that inhibitory receptors, including
LAG3, PDCD1, and HAVCR2 were highly expressed in NKT/CD8+ T
cells. On the other hand, by exploring the expressions of these
immune checkpoints in each patient, LAG3 and HAVCR2 were almost
activated in all patients (Fig. 8b). Our flow cytometry and qRT-PCR
analysis further demonstrated that NKT/CD8+ T cells accounted for
the majority of T cells in ESCC (Supplementary Fig. 7c). Higher
expression of LAG3 and HAVCR2 were found in the NKT/CD8+ T cells
in ESCC (Supplementary Fig. 7d). In summary, these observations
revealed the potential role of LAG3 and HAVCR2 as checkpoint mole-
cules for immunotherapy in ESCC.

3.9. NKT/CD8+ T cells show great heterogeneity in ESCC and tend to be
exhausted

NKT/CD8+ T cells accounted for the majority of T cells in ESCC,
hence, we re-clustered these NKT/CD8+ T cells, and then categorized
them into four sub-groups, including cluster 1 (CCL4hiRGCChi), cluster
2 (CCR7hi RPS4Y1hi), cluster 3 (FOXP3hiSTMN1hi), and cluster 4
(HAVCR2hiCXCL13hi) (Figs. 8c, 8a and b).

Subsequently, we explored the expression of genes associated
with the function of T cells in each NKT/CD8+ T cells sub-group. As
depicted in Fig. 8d, cluster 2 exhibited higher expressions of naïve T
cell markers (such as CCR7, TCF7, and LEF1), whereas genes related to
inhibitory status (including TIGIT, CTLA4, and HAVCR2) and cytotoxic
status (including GNLY, GZMB, and PRF1) were both highly expressed
in cluster 4. Notably, the cytotoxic genes, including IL2, IL17A, GZMK,
IFNG, and NKG7 were mainly enriched in cluster 1, whereas T-regu-
lated genes were highly expressed in cluster 3. Since cells in NKT/
CD8+ T cluster 1 were mainly originated from Patient 2, cells in NKT/
CD8+ T cluster 4 primarily derived from Patient 4, and other clusters
were made of several cells from different patients of origin; therefore,
GSVA analysis was performed to explore the biological functions of
these NKT/CD8+ T cells among different patients. Consequently, path-
way analyses revealed that pathways related to tumor development,
including IL-6/JAK/STAT3 and Notch pathways, were up-regulated in
cluster 4, whereas metabolic pathways (including glycolysis and
OXPHO) were enriched in cluster 1. Moreover, cells in cluster 3 were
characterized by activated hypoxia, interferon-alpha/gamma
response, and inflammatory response pathways. Interestingly, we
found that only KRAS-related pathways and wnt/b-catenin signaling
were activated in cluster 2 (Supplementary Fig. 8c). Therefore, these
findings demonstrated the strong heterogeneity in NKT/CD8+ T cells.

Additionally, we performed pseudotime-ordered analysis to
explore the dynamic states and cell transitions of NKT/CD8+ T cells
via Monocle (Fig. 8e). To reveal the functional alterations of NKT/CD8
+ T cells during the pseudotime, first, the cytotoxic and exhausted
scores of each NKT/CD8+ T cell were calculated and then visualized in
the monocle plot. Cluster 1 had the highest cytotoxic scores whereas,
cluster 2 and cluster 3 had the lowest exhausted scores (Fig. 8e).
Intriguingly, cluster 4 both had comparatively higher cytotoxic and



Fig. 7. The scRNA profiles for myeloid cells in non-malignant tissues and esophageal squamous cell carcinoma.
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exhausted scores. During these transitions, the exhausted score was
increased, whereas the cytotoxic score was decreased which might
induce tumor progression.

Transcriptional changes associated with transitional states were
also explored, and three phases were identified in NKT/CD8+ T cells.
Cluster 2 and cluster 3 were predominantly phase 1 cells, expressing
higher CCR7 and lower GNLY and GZMB levels. Cells in phase 2 exhib-
ited high expression levels of GNLY, SA100A9, and GZMB (Fig. 8f).
Interestingly, phases 2 included most cells from cluster 1 and a few
cells from cluster 4, while phases 3 (characterized by exhaustion-
related genes) incorporated part of cells from cluster 4 (Fig. 8f). These
results confirmed that cluster 4 exerted both inhibitory and cytotoxic
effects.
3.10. Crosstalks between cancer and immune cells

Tumorigenesis is an elaborate multistep process that would be
affected by numerous factors. Recent studies have highlighted the
importance of cell-to-cell communications in the evolution of various
tumors [50,51]. The crosstalks between cancer and immune cells
were assessed via the R package 'CellChat’ and “cellphonedb” (Materi-
als Details).

The results revealed complex cell-cell interaction networks
between cancer and immune cells (Fig. 9a and b). Next, we explored
the role of tumor and immune cells in remodeling the TME in ESCC
through the exploration of cell-cell communications between tumor
and immune cells, respectively. Of note, immune cells exhibited rela-
tively higher expressions of immune response genes (including MIF,
ALCAM, COPA), whereas the corresponding genes (especially CD74)
were significantly highly expressed in tumor cells (Fig. 9c and e). We
inferred that these immune response communication pairs are cru-
cial roles in the promotion of immune cell infiltration into ESCC.
Some known inhibitory interactions (such as CD274-PDCD1,
PDCD1LG2-PDCD1, and CD86-CTLA4) were not detected between
tumor and T cells (Fig. 9c). In contrast, other inhibitory pairs, includ-
ing LGALS9-HAVCR2 and TIGIT-NECTIN2 were identified between
NKT/CD8+ T C4 cluster and tumor cells (Fig. 9c). Also, some critical
stimulatory interactions, such as EGFR-TGFB1, CD2-CD58, and MIF-
TNFRSF10D pairs were found between tumor and T cells (Fig. 9c). Our
qRT-PCR results also revealed that CD74, LGALS9, and TIGIT were
highly expressed in tumor cells, while MIF, HAVCR2, and NECTIN2
were highly expressed in T cells (Supplementary Fig. 9, Wilcoxon test
was used to compare the gene expression level between T cells and
tumor cells).

Through assessment of the interactions between macrophages
and malignant cells, we detected the inhibitory interactions including
LGALS9-SORL1, LGALS9-SLC1A5, and LGALS9-PTPRK in malignant
cells and M2/anti-inflammatory macrophages (Fig. 9d). Interestingly,
immune response-related ligand HLA-DPA1 was expressed in the
vast majority of myeloid cells, whereas its receptor, TNFSF9, was
identified in tumor cells. Cell-cell interactions between malignant
cells and B cells were significantly fewer compared to other immune
cells (Fig. 9e). However, there were some common widely expressed
interactions between B cells and tumor cells. In summary, our results
(a) The TSNE plot and overview of the myeloid cells.
(b) Heatmap showing the expression of marker genes in each myeloid cell cluster.
(c) Violin plots of immune checkpoints upregulated or downregulated in myeloid cells.
(d) The TSNE plot and overview of the macrophages.
(e) Heatmap showing the expression of marker genes in each macrophage cell cluster.
(f) Differences in pathway activities scored per cell by GSVA among the different macrop
(g) Pseudotime-ordered analysis of macrophages. Macrophage cell subtypes are labeled b
(h) Dynamic changes in gene expression of macrophage subtypes during the transition (d
revealed that TME specific cellular communication has the potential
to shape the unique TME of ESCC.
4. Discussion

Reports implicate ESCC as one of the most malignant and fatal car-
cinomas in adults. However, its general prognosis remains univer-
sally poor regardless of the advances in treatments [52,53] and is
associated with a high degree of heterogeneity that potentially com-
plicates the treatment and contributes to failure in ESCC patients
[54]. Accordingly, extensive exploration of the heterogeneity of ESCC
is critical to unraveling the therapeutic targets for the management
of ESCC patients. In the present study, we used 128,688 cells
retrieved from five patients, including pairs of five tumor samples
and five corresponding non-malignant samples to construct a single-
cell transcriptome atlas of normal esophageal tissues and ESCC.

Using the single-cell transcriptome atlas, the cellular and molecu-
lar characteristics of esophageal epithelial cells were identified in the
tumor and normal samples systematically. Although there are pub-
lished reports on scRNAseq of ESCC [46], our study is far much differ-
ent because our data including tumor cells. We re-clustered
epithelial cells, including tumor cells and non-malignant epithelial
cells, and identified a list of tumor-specific genes, which could serve
as new targets for ESCC. Besides, the present work also revealed the
great heterogeneity of tumor cells in both gene expression and CNV
status. Furthermore, the gene expression signatures reflecting the
intra-tumoral transcriptional heterogeneity of malignant cells were
explored through unsupervised NMF analysis. Consequently, four
malignant signatures, including cell repair, cell differentiation, cell
cycle, and cell immune were detected, this was followed by the anal-
ysis of the correlations between the malignant signatures and sur-
vival in both TCGA and GEO databases via CIBERSORTx. As a result,
low cell differentiation scores exhibited an obvious association with
the poor prognosis of ESCC patients in both TCGA and GEO database
cohorts, which implicate the cell differentiation metagenes as a
potential prognostic marker for ESCC patients.

Scholars had demonstrated metabolic reprogramming to be an
essential player in proliferation and metastasis and the mechanisms
of drug resistance in tumors [55,56]. Hence, understanding the char-
acteristics of metabolisms both in malignant and non-malignant cells
has potential value as they provide a novel and reliable basis for the
treatment of ESCC patients. Herein, a vast metabolic heterogeneity
was revealed in ESCC and corroborated the mitochondrial activity,
OXPHOS-related signaling. Particularly, as one of the most indispens-
able metabolic pathways for cellular energy and metabolism which
had been demonstrated to be primarily utilized in the ATP synthesis
in tumors [57,58]. Furthermore, we found that the OXPHOS-related
pathway was up-regulated, which concur with reports from a previ-
ous study conducted at a single-cell level [59,9]. Nevertheless, this
finding result, to some extent, was discordant with several previous
reports, which had reported that the glycolysis pathway was mainly
up-regulated in tumor cells, whereas OXPHOS-related pathways
were primarily enriched in the non-malignant cells [60,61]. The
inconsistency may be mainly attributed to different units used for
analyses between the traditional and single-cell RNA sequencing
hage cell subtypes. The scores of pathways are normalized.
y colors.
ivided into 3 phases), subtypes are labeled by colors (upper panel).



Fig. 8. The scRNA profiles for T cells in non-malignant tissues and esophageal squamous cell carcinoma.
(a) The TSNE plot and overview of the T cells.
(b) Average expression of selected T cell function-associated genes of naïve markers, inhibitory receptors, cytokines, and effector molecules, co-stimulatory molecules, and Treg

markers in each T cell subtype.
(c) The TSNE plot and overview of the NKT/CD8 + T cells.
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(d) Average expression of selected T cell function-associated genes of naïve markers, inhibitory receptors, cytokines, and effector molecules, co-stimulatory molecules, and Treg
markers in each NKT/CD8 + T cell subtype.

(e) Pseudotime-ordered analysis of NKT/CD8 + T cells. The dynamics of exhausted (upper panel) or cytotoxic signals (lower panel) in NKT/CD8 + T cells.
(f) Dynamic changes in gene expression of NKT/CD8 + T cell subtypes during the transition (divided into 3 phases), subtypes are labeled by colors (upper panel).

Fig. 9. Crosstalk between cancer and immune cells.
(a) Overview of selected ligand-receptor interactions of tumor cells and immune cells. The line thickness is proportional to the number of ligands when cognate receptors are

present in the recipient cell type. The loops indicate autocrine circuits.
(b) Detailed view of the ligands expressed by each cell type and the other cell types. Numbers indicate the quantity of ligand-receptor pairs for each intercellular link.
(c�e) Bubble plot showing the selected ligand-receptor interactions between cancer cells and T cell (c), myeloid cells (d), and B cells (e). P values are indicated by circle size, with

the scale to the right (permutation test).
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methods. With traditional RNA sequencing, the average expression
levels of each gene are evaluated in each tumor sample which com-
prises multiple cell types other than cancer cells, particularly, T cells
that in most cases, account for a large proportion. Of note, we also
observed that the hypoxia pathway and the OXPHOS pathway
presents obviously positive correlation, which was also discordant
with previous studies. To our knowledge, OXPHOS has been reported
to regulate the response to hypoxia by working as a sensor of oxygen
availability through stabilization of hypoxia-induced factors (HIF)
[62,63]. Besides, the interactions between OXPHOS and hypoxia are
highly dynamic in living cells and consistent results have been
reported in another research using scRNA-seq in tumor [64]. There-
fore, we hypothesize that the positive feedback from OXPHOS activity
to HIF signaling in response to oxygen availability, which may lead to
the interaction between the hypoxia pathway and the OXPHOS path-
way, results in a positive correlation between OXPHOS and hypoxia,
which is a unique feature of single malignant cells in the tumor envi-
ronments. However, further studies are warranted to explore the
functions of OXPHOS, glycolysis, and hypoxia at a single-cell level in
ESCC and other cancer cells. Overall, the present work unraveled the
metabolic reprogramming of cell type within the tumor microenvi-
ronment, which had been reported in ESCC at the single-cell level but
without substantial facts.

With the advanced understanding of tumor immunology, immu-
notherapy has achieved great success in various neoplasms. Cur-
rently, most immunotherapies have been focused on T cells and they
exert therapeutic effects by enhancing their aptitude to recognize
and kill tumor cells [65]. However, only a minority of patients can
benefit from current immunotherapies; thus, it is desirable to explore
the immune lineages to uncover novel therapeutic targets for treat-
ments. In our study, we found that two B cell sub-clusters were
mainly derived from tumor tissues, which indicated the potential
heterogeneity of tumor-associated B cells in our study. Florent Petit-
prez et al. [66] found that a high infiltration of B cells could form ter-
tiary lymphoid structures to enhance the therapeutic efficacy of
immunotherapies, which is associated with a better prognosis.
Researchers [67] also reported that B cells could suppress tumors by
activating immune effector cells or producing antibodies. Overall,
there are numerous suggestions that tumor-associated B cells may
play a much more prominent role in immunotherapies than previ-
ously appreciated. Howbeit, there is a need to explore the underlying
functions of B cells in immunotherapies in the future.

The critical role of myeloid has been confirmed in various tumors
using scRNAseq [68�70]. Herein, explored the distribution of
immune checkpoints in myeloid cells and implicated HAVCR2 as
potential immune targets for ESCC. We also confirmed the complex
macrophage phenotypes process in ESCC, which concurred with
other research findings [46]. Besides, in T cell analysis, our main focus
was the NKT/CD8+ T cells. Through monocle analysis, the dynamic
states and cell transitions of NKT/CD8+ T cells were explored; nota-
bly, three phases were identified in NKT/CD8+ cells. Elsewhere, Sun
et al. [71] had demonstrated that the exhausted signature of CD8+
cells was upregulated in hepatocellular carcinoma, whereas the cyto-
toxic signature was decreased. Indeed, we also confirmed the high
exhausted score and low cytotoxic score during the cell transitions of
NKT/CD8+ T cells. Lastly, the dynamic changes in expressions of tran-
scription factors were explored in macrophages and NKT/CD8+ T
cells. Eventually, a single-cell transcriptome atlas was constructed
using the scRNA-seq data, which provided a series of in-depth analy-
ses on epithelial cells, stromal cells, and immune cells both in the
normal esophagus tissues and ESCC.

Our study had some limitations. First, our limited sample sizes
may lead to the bias of our results. Second, the patients included in
our study were surgically resected ESCC patients rather than patients
with recurrence and metastasis. However, through the above efforts,
we believe that our study will contribute to the comprehension of
the TME and cellular heterogeneity in ESCC patients and serve as a
valuable resource for in-depth exploration of the pathogenesis of
ESCC and identification of the potential therapeutic targets in the
future.
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