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Background: Post-stroke cognitive impairment (PSCI) after lacunar infarction

was worth attention in recent years. An easy-to-use score model to predict

the risk of PSCI was rare. This study aimed to explore the association between

serum amyloid A (SAA) and cognitive impairment, and it also developed a

nomogram for predicting the risk of PSCI in lacunar infarction patients.

Methods: A total of 313 patients with lacunar infarction were enrolled

in this retrospective study between January 2021 and December 2021.

They were divided into a training set and a validation set at 70%:30%

randomly. The Chinese version of the Mini-Mental State Examination (MMSE)

was performed to identify cognitive impairment 3 months after discharge.

Univariate andmultivariate logistic regression analyses were used to determine

the independent risk factors for PSCI in the training set. A nomogram was

developed based on the five variables, and the calibration curve and the

receiver operating characteristic (ROC) curve were drawn to assess the

predictive ability of the nomogram between the training set and the validation

set. The decision curve analysis (DCA) was also conducted in both sets.

Results: In total, 52/313 (16.61%) participants were identified with PSCI.

The SAA levels in patients with PSCI were significantly higher than non-

PSCI patients in the training set (P < 0.001). After multivariate analysis, age,

diabetes mellitus, white blood count, cystatin C, and SAA were independent

risk predictors of PSCI. The nomogram demonstrated a good discrimination

performance between the training set (AUC = 0.860) and the validation set

(AUC = 0.811). The DCA showed that the nomogram had a well clinical utility

in the two sets.

Conclusion: The increased SAA is associated with PSCI in lacunar infarction

patients, and the nomogram developed with SAA can increase prognostic

information for the early detection of PSCI.
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Introduction

Stroke is the second leading cause of death around the world,

which endangers the life quality and safety of patients due to

high morbidity and high disability (1). Especially, post-stroke

cognitive impairment (PSCI) is the most common critical issue

concerning population health and the burden on caregivers

in an aging society (2, 3). The survivors of stroke have an

increased risk of progressive cognitive impairment, even minor

stroke (4). The presence of PSCI also affects the treatment

of stroke patients in turn and nearly increases two-fold the

risk of adverse outcomes (5). Lacunar infarction accounts for

about 25% of stroke patients, and approximately half of the

patients develop cognitive impairment in subsequent years

(6). With the increased duration of ischemia and decreased

mortality with minor stroke, the number of patients with PSCI

will be increased (7). Therefore, it is crucial to realize the

associations between PSCI and predictive factors, especially in

high-risk patients.

The available evidence confirms that hypertension, diabetes,

smoking, and other vascular risk factors are highly correlated

with the increased risks of PSCI (8). Besides, frontal lobe

dysfunction and brain gray matter atrophy were also associated

with cognitive impairment in lacunar patients (9). Recently, the

developed SIGNAL2 scale and CHANGE scale based on the

clinical characteristics and neuroimaging variables were useful

to identify PSCI after stroke (10, 11). However, the scale depends

on the neurologist’s appraising of the MRI and was difficult

to promote in the community. In addition, the expression of

biomarkers, such as interleukin 6 (IL-6), C-reactive protein

(CRP), serum uric acid (UA), and malondialdehyde (MDA),

was also independently associated with PSCI in increasing

studies (12, 13). Therefore, it is necessary to explore reliable

biomarkers to identify patients at higher risk of PSCI easily

and conveniently.

Serum amyloid A (SAA) protein is a protein of only 104

amino acids and is mainly synthesized in the liver (14). As an

acute phase protein (APP), SAA was significantly upregulated

in acute and chronic inflammatory conditions (such as trauma,

infection, and ischemia), which was in response to the elevator

of the inflammatory cytokines IL-6 and tumor necrosis factor

(TNF)-α during the acute-phase response (15). Schweizer et al.’s

study (16) found that SAA was a novel blood biomarker,

which was independent to predict post-stroke infection among

ischemic stroke patients. A recent study confirmed that the

increased secretion of SAA could activate the inflammatory

response of microglia and stimulate NLRP3 activation in

microglia after stroke, which induced neurological inflammation

(17). Although studies have indicated that elevated SAA was

associated with short-term cognitive impairment after ischemic

stroke (18), the role of SAA has not yet been evaluated in the

cognitive impairment after lacunar infarction.

Therefore, we aimed to develop and verify a nomogram to

predict the risk of PSCI in lacunar infarction patients, which will

be convenient for clinicians to identify cognitive disorders early

and conveniently.

Methods

Study design and patients

This study retrospectively enrolled patients with lacunar

infarction who were hospitalized at the Second Affiliated

Hospital of Wannan Medical College between January 2021

and December 2021. All patients were admitted to the hospital

within 7 days of symptom onset with a National Institute of

Health Stroke Scale (NIHSS) score≤3. This study was approved

by the Institutional Review Board of the Second Affiliated

Hospital of Wannan Medical College (No. WYEFYLS202205)

and conducted by the guiding principles of the Declaration

of Helsinki.

The inclusion criteria were as follows: (1) age >18 years;

(2) patients who met the diagnostic criteria for lacunar

infarction confirmed on cranial computed tomography (CT)

scan or magnetic resonance imaging (MRI) examination; and

(3) patients who were able to complete scale measurements.

The patients were excluded if they had any of the following:

(1) previous diagnosis with dementia or Alzheimer’s disease;

(2) cardioembolic source or large-vessel diseases (large artery

stenosis >50%); (3) patients with incomplete clinical data; (4)

had been treated with intervention and thrombolytic therapy;

and (5) loss to follow-up.

Finally, a total of 313 patients were enrolled in this study and

were randomly divided into a training set and a validation set at

70%:30% (Figure 1).

Baseline clinical characteristics collection

The baseline clinical characteristics were collected within

24 h of admission from the health information system

(HIS). The first part was demographic characteristics, such

as age, gender, education time, initial National Institutes

of Health Stroke Scale (NIHSS) score, and vital signs

(blood pressure, heart rate, temperature, breath rate). The

second part was comorbidities (diabetes mellitus, atrial

fibrillation, coronary heart disease, hypertension, tumor, and

chronic obstructive pulmonary disease). The third part was

laboratory examinations, which included red blood count,

white blood count, hemoglobin, platelet, cystatin C, and

total cholesterol.

Serum amyloid A

All blood samples were collected in the morning from all

patients within 24 h of admission, and all patients were fasting

for more than 8 h. The blood samples were collected with
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FIGURE 1

Schematic of patient’s inclusion process and flowchart with the study.

heparin anticoagulant tubes and centrifuged at 1,000 g for 5min

to separate serum. The serum amyloid A level was measured

by the latex-enhanced immunoturbidimetric method with the

automatic biochemical analyzer (Hitachi-7600). The reference

value of serum amyloid A ranged from 0 to 10.00 mg/L. All

sample testing was performed by laboratory personnel blinded

to the study.

Lacunar infarction definition

All patients routinely completed MRI examination or CT

scanning. Lacunar infarction was defined as lacunar infarcts

<20mm in the subcortical or brain stem verified by CT or MRI

(19, 20). Radiologic images were read by a radiologist and were

reviewed by an experienced neurologist.

Assessment of cognitive function

Cognitive function was evaluated by experienced

neurological physicians using the Chinese version of the

Mini-Mental State Examination (MMSE) scale 3 months after

lacunar infarction (21). The MMSE scale was widely used in

cognitive function assessment in China (22, 23). The total score

of MMSE was 30, and the lower scores indicated the worse

cognitive function. According to the previous studies, a score of

MMSE <24 was considered as a cognitive impairment in this

study (24, 25).

Statistical analysis

The statistical analysis was performed by using SPSS

25.0 and R software (version 3.6.2). Continuous variables
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with normal distribution were expressed as mean ±

standard deviation, and the interquartile range were not

normally distributed. Categorical variables were presented as

frequency (percentage).

Univariate analysis was applied to screen the potential

risk factors for PSCI. To determine independent risk factors

for PSCI in lacunar infarction patients, the variables with

P < 0.05 in the univariate analysis were included in the

multivariate logistic regression model. Then, the predictive

nomogram was developed based on the independent risk factors

by using the “rms” package in R software. The receiver operating

characteristic (ROC) curve was generated, and the area under

the curve (AUC) of ROCwas used to evaluate the discrimination

of the nomogram. Meanwhile, the AUC of the nomogram was

compared with all the independent risk variables. Finally, the

net benefit of the decision curve analysis (DCA) was drawn to

estimate the clinical value of the nomogram in the training set

and validation set, respectively. Linear regression analysis was

used to analyze the association between the serum SAA and the

MMSE score. The statistical significance for all variables was

set at P < 0.05 (two-sided tests), and the regression coefficients

reported 95% confidence intervals (CI).

Results

Clinical characteristics of patients in the
training and validation set

A total of 313 patients with lacunar infarction were included

in this study, of which 219 patients were in the training set and

94 patients were in the validation set; 38 (17.40%) patients in the

training set and 14 (14.90%) patients in the validation set were

diagnosed with PSCI, respectively. The characteristics of patients

in the training set and the validation set were no significant

differences in Table 1 (P > 0.05).

Baseline characteristics of patients
stratified by PSCI in the training set

Descriptive analysis revealed that significant differences

between the two groups were confirmed for age (P < 0.001),

years of education (P = 0.001), diabetes mellitus (P = 0.006),

white blood count (P < 0.001), APTT (P = 0.036), cystatin C (P

< 0.001), ApoA1 (P= 0.005), and serum amyloid A (P < 0.001)

in Table 2.

Identifying the independent risk factors
for PSCI

All the potential risk factors (P < 0.05) in the univariate

regression analysis were included in the multivariate regression

model. Multivariate logistic regression analysis revealed that age

(OR = 1.099, 95%CI: 1.012–1.193, P = 0.025), diabetes mellitus

(OR = 2.679, 95% CI: 1.029–6.976, P = 0.044), white blood

count (OR = 1.271, 95% CI: 1.028–1.572, P = 0.027), cystatin

C (OR = 3.118, 95% CI:1.053–9.228, P = 0.040), and serum

amyloid A (OR = 1.031, 95% CI: 1.009–1.054, P = 0.007) were

independent risk predictors of PSCI in patients with lacunar

infarction (Table 3).

The predictive nomogram development

The nomogram was developed for predicting the risk of

PSCI probability based on the results from the multivariate

logistic model, which included five variables (Figure 2). A

vertical line was drawn up to the “Point” axis to calculate the

score of each variable, and the total score was summarized by

the preliminary scores. The total score was located on the “Total

Points” axis, and then, the predicted risk of PSCI probability

could be located on the bottom axis.

The performance of the nomogram

The calibration curve of the nomogram for the

probability of PSCI demonstrated a good agreement between

prediction and observation for both sets (Figure 3). The

Hosmer-Lemeshow H test indicated that the model did

not depart from perfect fit, which had non-statistical

significance in the training set (P = 0.336) and validation

set (P = 0.399).

The AUC for the nomogram was 0.860 (95% CI: 0.794–

0.925) in the training set (Figure 4A) and was confirmed to

be 0.811 (95% CI: 0.686–0.936) through internal validation

in the validation set (Figure 4B), which demonstrated that

the nomogram had a greater discriminatory performance.

In addition, the discrimination ability of the nomogram

calculated by the AUC was superior to the other risk factors

in the training set: age (0.734, 95%CI: 0.643–0.824, P <

0.001), diabetes mellitus (0.599, 95% CI: 0.493–0.704, P =

0.056), white blood count (0.691, 95% CI: 0.592–0.791, P

< 0.001), cystatin C (0.711, 95% CI: 0.625–0.797, P <

0.001), and serum amyloid A (0.760, 95% CI: 0.674–0.846,

P < 0.001; Figure 4A).

Clinical use

Moreover, the DCA was used to assess the clinical validity of

the nomogram, which indicated the predictive nomogram to be

clinically useful (Figure 5).
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TABLE 1 Baseline and clinical characteristics of lacunar infarction patients in the training set and validation set.

Variables Total

(n = 313)

Training set

(n = 219)

Validation set

(n = 94)

t/z/χ2
P-value

Demographic characteristics

Age, years, Mean± SD 69.57± 10.83 69.62± 10.81 69.45± 10.95 0.127 0.899

Male, n (%) 153 (48.90) 102 (46.60) 51 (54.30) 1.552 0.213

Education, years, median (IQR) 5.00 (3.00, 6.00) 5.00 (3.00, 6.00) 5.00 (3.00, 8.00) −0.955 0.340

Comorbidity

Diabetes mellitus, n (%) 65 (20.80) 45 (20.50) 20 (21.30) 0.021 0.884

Atrial fibrillation, n (%) 43 (13.70) 25 (11.40) 18 (19.10) 3.319 0.068

Coronary heart disease, n (%) 53 (16.90) 41 (18.70) 12 (12.80) 1.658 0.198

Hypertension, n (%) 153 (48.90) 113 (51.60) 40 (42.60) 2.153 0.142

COPD, n (%) 42 (13.40) 33 (15.10) 9 (9.60) 1.709 0.191

Tumor, n (%) 33 (10.50) 25 (11.40) 8 (8.50) 0.588 0.443

Laboratory examination

WBC,×109/L, median (IQR) 5.47 (4.52, 6.80) 5.46 (4.54, 6.91) 5.49 (4.47, 6.46) −1.155 0.248

RBC,×1012/L, median (IQR) 4.20 (3.82, 4.55) 4.19 (3.81, 4.56) 4.23 (3.90, 4.54) −0.306 0.760

HB, g/L, median (IQR) 127.00 (115.00, 139.00) 127.00 (114.00, 139.00) 127.00 (117.00, 140.00) −0.539 0.590

PLT,×1012/L, median (IQR) 164.00 (135.00, 212.00) 166.00 (140.00, 208.00) 159.50 (123.75, 216.50) −1.292 0.196

PT, s, median (IQR) 11.00 (10.40, 12.05) 10.90 (10.40, 12.10) 11.10 (10.50, 11.93) −0.399 0.690

APTT, s, median (IQR) 25.30 (22.80, 28.60) 25.00 (22.80, 28.40) 25.50 (22.80, 28.78) −0.625 0.532

FIB, g/L, median (IQR) 2.40 (2.10, 2.96) 2.50 (2.10, 3.00) 2.30 (2.00, 2.90) −1.315 0.188

CysC, mg/L, median (IQR) 1.03 (0.87, 1.23) 1.03 (0.87, 1.23) 1.02 (0.87,1.22) −0.591 0.555

ApoA1, g/L, median (IQR) 1.32 (1.12, 1.59) 1.33 (1.12, 1.59) 1.30 (1.11,1.55) −0.559 0.576

ApoB, g/L, median (IQR) 0.83 (0.66, 1.02) 0.81 (0.63, 1.03) 0.88 (0.71, 1.02) −1.292 0.196

SAA, mg/L, median (IQR) 9.00 (4.50, 19.50) 9.30 (4.80, 21.10) 8.10 (3.75, 17.20) −1.249 0.212

TC, mmol/L, median (IQR) 4.09 (3.40, 4.87) 4.09 (3.39, 4.84) 4.09 (3.39, 4.96) −0.290 0.772

LDL, mmol/L, median (IQR) 2.15 (1.51, 22.74) 2.12 (1.49, 2.71) 2.19 (1.51, 2.76) −0.458 0.647

TG, mmol/L, median (IQR) 1.16 (0.83, 1.64) 1.18 (0.84, 1.62) 1.14 (0.74, 1.67) −0.940 0.347

ALT, µ/L, median (IQR) 14.00 (10.00, 21.00) 15.00 (10.00, 21.00) 14.00 (9.75, 20.25) −0.472 0.637

AST, µ/L, median (IQR) 22.00 (18.00, 27.00) 22.00 (18.00, 27.00) 22.00 (17.00, 27.00) −0.450 0.653

ALB, g/L, median (IQR) 40.30 (37.60, 43.20) 40.10 (37.30, 43.00) 40.70 (38.30, 43.33) −1.145 0.252

GLO, g/L, median (IQR) 28.10 (25.10, 30.95) 28.10 (25.10, 30.80) 27.85 (24.73, 31.40) −0.292 0.771

TBIL, µmol/L, median (IQR) 11.70 (9.20, 14.95) 11.70 (9.10, 14.80) 11.65 (9.75, 16.20) −0.287 0.774

GLU, mmol/L, median (IQR) 5.52 (4.77, 7.22) 5.61 (4.79, 7.54) 5.40 (4.64, 6.88) −1.563 0.118

CREA, µmol/L, median (IQR) 73.00 (62.00, 87.30) 72.00 (62.00, 88.00) 74.90 (63.00, 86.25) −0.401 0.688

CK, mmol/L, median (IQR) 77.00 (55.50, 109.50) 81.00 (58.00, 117.00) 71.50 (52.75, 94.50) −1.839 0.066

UA, mmol/L, median (IQR) 332.80 (275.00, 402.00) 330.00 (275.00, 392.30) 344.00 (275.25, 418.25) −1.046 0.296

MMSE, score, median (IQR) 26.00 (25.00, 28.00) 26.00 (25.00, 28.00) 27.00 (25.00, 28.00) −1.611 0.107

Subtypes of lacunar infarction 6.418 0.268

Pure motor hemiparesis, n (%) 47 (15.00) 36 (16.40) 11 (11.70)

Pure sensory stroke, n (%) 83 (26.50) 64 (29.20) 19 (20.20)

Sensorimotor syndrome, n (%) 55 (17.60) 38 (17.40) 17 (18.10)

Ataxic hemiparesis, n (%) 40 (12.80) 27 (12.30) 13 (13.80)

Dysarthria clumsy, n (%) 36 (11.50) 23 (10.50) 13 (13.80)

Atypical lacunar syndromes, n (%) 52 (16.60) 31 (14.20) 21 (22.30)

SD, standard deviation; IQR, interquartile range; COPD, chronic obstructive pulmonary disease; RBC, red blood count; WBC, white blood count; HB, hemoglobin; PLT, platelet; CysC,

cystatin C; TC, total cholesterol; LDL, low-density lipoprotein; TG, triglyceride; ALB, albumin; TBIL, total bilirubin; CREA, creatinine; BUN, blood urea nitrogen; UA, uric acid; ALT,

alanine transaminase; SAA, serum amyloid A; MMSE, Mini-Mental State Examination.
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TABLE 2 Baseline and clinical characteristics of lacunar infarction patients in the training set.

Variables Total

(n = 219)

PSCI

(n = 38)

Non-PSCI

(n = 181)

t/z/χ2
P-value

Demographic characteristics

Age, years, Mean± SD 69.62± 10.81 76.47± 10.07 68.18± 10.42 4.486 <0.001

Male, n (%) 102 (46.60) 16 (42.10) 86 (47.50) 0.369 0.543

Education, years, median (IQR) 5.00 (3.00, 6.00) 3 (0.00, 5.00) 5.00 (3.00, 6.00) −3.350 0.001

Comorbidity

Diabetes mellitus, n (%) 45 (20.50) 14 (36.80) 31 (17.10) 7.477 0.006

Atrial fibrillation, n (%) 25 (11.40) 7 (18.40) 18 (9.90) 2.231 0.135

Coronary heart disease, n (%) 41 (18.70) 10 (26.30) 31 (17.10) 1.743 0.187

Hypertension, n (%) 113 (51.60) 25 (65.80) 88 (48.60) 3.708 0.054

COPD, n (%) 33 (15.10) 7 (18.40) 26 (14.40) 0.404 0.525

Tumor, n (%) 25 (11.40) 3 (7.90) 22 (12.20) 0.564 0.453

Laboratory examination

WBC,×109/L, median (IQR) 5.46 (4.54, 6.91) 6.97 (5.43, 8.16) 5.29 (4.47, 6.63) −3.705 <0.001

RBC,×1012/L, median (IQR) 4.19 (3.81, 4.56) 4.12 (3.66, 4.43) 4.20 (3.82, 4.57) −0.941 0.347

HB, g/L, median (IQR) 127.00 (114.00, 139.00) 118.00 (106.50, 137.50) 128.00 (116.50, 139.00) −1.559 0.119

PLT,×1012/L, median (IQR) 166.00 (140.00, 208.00) 191.50 (143.50, 249.25) 164.00 (138.50, 200.00) −1.507 0.132

PT, s, median (IQR) 10.90 (10.40, 12.10) 11.40 (10.50, 12.98) 10.90 (10.40, 12.05) −1.754 0.079

APTT, s, median (IQR) 25.00 (22.80, 28.40) 26.45 (23.85, 32.28) 24.70 (22.80, 28.05) −2.098 0.036

FIB, g/L, median (IQR) 2.50 (2.10, 3.00) 2.70 (2.15, 3.03) 2.40 (2.08, 2.99) −1.851 0.064

CysC, mg/L, median (IQR) 1.03 (0.87, 1.23) 1.24 (1.03, 1.58) 1.01 (0.86, 1.17) −4.089 <0.001

ApoA1, g/L, median (IQR) 1.33 (1.12, 1.59) 1.18 (1.06, 1.42) 1.37 (1.14, 1.61) −2.783 0.005

ApoB, g/L, median (IQR) 0.81 (0.63, 1.03) 0.79 (0.64, 1.00) 0.83 (0.63, 1.04) −0.542 0.588

SAA, mg/L, median (IQR) 9.30 (4.80, 21.10) 29.55 (10.15, 48.18) 8.40 (4.00, 15.10) −5.031 <0.001

TC, mmol/L, median (IQR) 4.09 (3.39, 4.84) 4.08 (3.56, 4.78) 4.09 (3.34, 4.85) −0.420 0.675

LDL, mmol/L, median (IQR) 2.12 (1.49, 2.71) 2.35 (1.88, 2.87) 2.09 (1.46, 2.66) −1.878 0.060

TG, mmol/L, median (IQR) 1.18 (0.84, 1.62) 1.12 (0.87, 1.35) 1.20 (0.83, 1.67) −0.396 0.692

ALT, µ/L, median (IQR) 15.00 (10.00, 21.00) 14.00 (8.00, 21.50) 15.00 (10.00, 21.00) −0.486 0.627

AST, µ/L, median (IQR) 22.00 (18.00, 27.00) 22.00 (18.75, 26.00) 22.00 (18.00, 27.50) −0.059 0.953

ALB, g/L, median (IQR) 40.10 (37.30, 43.00) 39.25 (36.38, 41.78) 40.20 (37.45, 43.20) −1.364 0.172

GLO, g/L, median (IQR) 28.10 (25.10, 30.80) 29.25 (25.10, 32.78) 27.90 (25.15, 30.45) −1.266 0.206

TBIL, µmol/L, median (IQR) 11.70 (9.10, 14.80) 12.45 (9.08, 14.95) 11.60 (9.05, 14.80) −0.504 0.614

GLU, mmol/L, median (IQR) 5.61 (4.79, 7.54) 6.32 (4.92, 9.19) 5.47 (4.77, 7.25) −1.705 0.088

CREA, µmol/L, median (IQR) 72.00 (62.00, 88.00) 79.35 (66.60, 89.00) 70.00 (61.00, 86.00) −1.960 0.050

CK, mmol/L, median (IQR) 81.00 (58.00, 117.00) 73.00 (54.75, 115.75) 81.00 (58.00, 117.50) −0.752 0.452

UA, mmol/L, median (IQR) 330.00 (275.00, 392.30) 360.00 (286.75, 400.10) 322.00 (266.50, 390.85) −1.677 0.094

PSCI, post-stroke cognitive impairment; SD, standard deviation; IQR, interquartile range; COPD, chronic obstructive pulmonary disease; RBC, red blood count; WBC, white blood count;

HB, hemoglobin; PLT, platelet; CysC, cystatin C; TC, total cholesterol; LDL, low-density lipoprotein; TG, triglyceride; ALB, albumin; TBIL, total bilirubin; CREA, creatinine; BUN, blood

urea nitrogen; UA, uric acid; ALT, alanine transaminase; SAA, serum amyloid A.

The association between the serum SAA
and the probability of PSCI, the serum
SAA, and the MMSE score

We found a positive correlation between the serum SAA

and the probability of PSCI, in which the predicted probabilities

for PSCI were more than 50% after 58 mg/L of serum amyloid

A (Figure 6A). Besides, linear regression analysis showed that

the level of serum SAA was negatively associated with the

MMSE score (regression equation: y = 54.75–1.54x, P < 0.001;

Figure 6B).

Discussion

Post-stroke cognitive impairment is a clinical syndrome

of cognitive impairment that occurs after an ischemic
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TABLE 3 Univariate and multivariate logistic regression analyses of risk factors for PSCI in the training set.

Variables Univariate logistic regression Multivariate logistic regression

β Odds ratio (95% CI) P-value β Odds ratio (95% CI) P-value

Age, years 1.092 1.047–1.138 <0.001 1.099 1.012–1.193 0.025

Education, years 0.828 0.737–0.930 0.001 1.098 0.863–1.396 0.446

Diabetes mellitus

No Ref Ref

Yes 2.823 1.315–6.061 0.008 2.679 1.029–6.976 0.044

WBC 1.440 1.195–1.736 <0.001 1.271 1.028–1.572 0.027

APTT 1.047 1.003–1.092 0.036 1.031 0.985–1.080 0.194

CysC 4.569 1.857–11.245 0.001 3.118 1.053–9.228 0.040

ApoA1 0.183 0.056–0.599 0.005 0.593 0.140–2.518 0.479

SAA 1.044 1.025–1.064 <0.001 1.031 1.009–1.054 0.007

WBC, white blood count; CysC, cystatin C; SAA, serum amyloid A; APTT, activated partial thromboplastin time.

FIGURE 2

The nomogram for predicting the risk of PSCI probability based on the 5 independent prognostic factors. For example, a 65-year-old (40 points)

patient with diabetes mellitus (25 points) with white blood counts of 12.0 × 109/L (55 points), serum amyloid A of 50 mg/L (35 points), and

cystatin C of 1.5 mg/L (42 points) arrived at a total point of 197, with a probability of 80% to develop PSCI.

stroke (18). Approximately 37.3% of respondents developed

PSCI in a retrospective study of 209 patients with mild

ischemic stroke (11). Therefore, it is important to assess

PSCI early and conveniently. In this study, we investigated

the association of SAA concentrations with the risk of

cognitive impairment after lacunar infarction. Several pivotal

results were found in this analysis. First, the increased

SAA levels were significantly associated with a higher

risk of PSCI. Second, we proved that several traditional

risk factors, such as age, diabetes mellitus, white blood

count, and cystatin C, were independent risk predictors

of PSCI in patients with lacunar infarction. Third, we
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FIGURE 3

Calibration curves of the nomogram in the training set and the validation set. (A) The nomogram in the training set (n = 219); (B) the nomogram

in the validation set (n = 94). The y-axis represents the observed rate of PSCI, and the x-axis represents the nomogram-predicted probability of

PSCI. The dotted lines represented by the nomogram are closer to the diagonal gray lines representing a better prediction.

FIGURE 4

The receiver operating characteristic (ROC) curve of the nomogram in the training set and the validation set. (A) ROC in the training set; (B) ROC

in the validation set.

constructed a nomogram model based on SSA that can predict

PSCI effectively.

Each brain’s morphology is unique, and aging changes brain

morphology in both healthy and pathological conditions (26).

Heart failure, atrial fibrillation, and renal insufficiency may

contribute to acute stroke with increasing age, especially in

patients over 85 years of age (27). Overton’s research found

that the older age groups had more possibility of having

cognitive impairment (28). Morley’s study also came to the

data that nearly 40% of the persons older than 65 years had

mild cognitive impairment in the United States (29). In our

study, we found a positive association between age and the

occurrence of cognitive impairment after lacunar infarction.

The key point of brain aging is the cellular senescence of

neurons and microglia (30). Evidence proved that since the

age of 40 years, about 5% of neuron cells are destroyed every

10 years, which directly leads to a decrease in brain volume

(29). In addition, as an important component of immunity for

the central nervous system, microglia plays an indispensable

role to maintain tissue homeostasis (31). Since microglia are
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FIGURE 5

The decision curve analysis (DCA) of the nomogram in the training set and validation set. (A) DCA in the training set; (B) DCA in the validation set.

FIGURE 6

The association between the serum SAA and the probability of PSCI, the serum SAA, and the MMSE score. (A) The association of SAA levels with

the probability of PSCI in patients with lacunar infarction; (B) The association between SAA levels and MMSE score.

found around lesions in neurodegenerative diseases such as

Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis,

the release of inflammatory factors mediated by microglia

is thought to be the key to the onset or progression of

neurodegenerative diseases (32).

Diabetes mellitus is a kind of noninfectious and multiple

organs affected chronic disease (33). Liccini’s research concluded

that 20% of patients aged between 50 and 65 years were

diagnosed with diabetes mellitus who had cognitive impairment,

and the situation may be more severe in diabetes mellitus who

had metabolic syndrome (34–36). Van Sloten et al. revealed

that diabetes-related microvascular dysfunction affected the

exchange of gases, nutrients, proteins, and metabolites in the

human body environment (37), which was a key factor in the

occurrence of cognitive impairment (38). In addition, the health

of people with diabetes could be negatively affected due to

cognitive impairment. Therefore, we need to face up to the

fact that stroke patients with diabetes have more prevalence

of cognitive impairment (39), and clinicians should pay more

attention to the cognitive abilities of diabetes patients.

Inflammatory responses are closely related to ischemic

stroke; it could promote the development of ischemic injury

and neuronal death after stroke (40, 41). The higher white cell

counts within the normal range were associated with cognitive

impairment in older adults (42, 43). Studies based on population

have confirmed the relationship between inflammation and

cognitive impairment, that is, the inflammatory states can

negatively impact cognitive function (44, 45). Furthermore, the

animal experiment revealed that white blood cells promoted

the immune system to degenerate brain tissue in stroke animal

models (46). In our study, we confirmed that white blood count

played an important role in predicting cognitive impairment
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after lacunar infarction. This suggested that neuronal

inflammation prevention may reduce cognitive impairment and

improve neurological outcomes in stroke patients.

Cystatin C is an endogenous cysteine proteinase inhibitor

that exists nearly in all human cells and body fluids; it belongs to

the type 2 cystatin superfamily (47, 48). Sarnak’s research showed

that higher levels of cystatin C were associated with cognitive

impairment (49). Meanwhile, the higher serum cystatin C was

an independent risk factor for PSCI in patients with acute mild

ischemic stroke (50), which can provide early prediction of

cognitive decline in the elderly (51). This is consistent with the

conclusion of our study. Cognitive impairment could have a

negative impact on the daily life of patients; therefore, reducing

the level of serum cystatin C may provide a new treatment for

the prevention of PSCI, and it is of great significance to timely

predict the occurrence of cognitive impairment (52).

Serum amyloid A is a protein secreted by hepatocytes (53).

The synthesis of SAA is associated with inflammatory cytokines,

which can rise rapidly when infection and inflammation occur

(18, 54). It is widely used as a follow-up marker for diagnosis,

prognosis, or treatment of disease (55, 56). SAA has been

recognized as being associated with cognitive impairment

(57). Xu’s research found the relationship between cognitive

function and SAA levels in patients with vascular dementia

and investigated the higher levels of SAA in patients with

vascular dementia (58, 59). The elevation of SAA exacerbates

neuroinflammation and changes the morphology of microglia

to increase their activity, eventually leading to brain damage and

memory loss (54, 60, 61). Therefore, for patients with lacunar

infarction with elevated SAA, it is necessary for clinicians

and healthcare organizations to take preventive actions against

cognitive impairment that may occur in the future.

The nomogram based on the five variables would improve

the predictive ability for PSCI in lacunar infarction patients.

Compared with five independent risk factors, the nomogram

exhibited good discrimination ability by the ROC analysis.

In addition, DCA was applied in the training set and

validation set, which confirmed the net benefit based on the

threshold probability.

There were some limitations in this study. First, the study

detected only the serum SAA levels within 24 h of admission,

but did not examine the serum SAA levels before the stroke

and within 3 months of discharge dynamically. Second, the

patients did not perform the cognitive function assessment

during admission, although patients with neurological disease

and dementia were excluded. Third, the independent variables

included in the study lack the relevant indicators of magnetic

resonance imaging (cerebral atrophy and gray matter lesions),

genetic risk factors, and environmental risk factors. Finally, there

might be some bias in the selection of patients, because this study

enrolled mild stroke patients with NHISS <3 only. Therefore,

these issues need further exploration in the future prospective

external studies.

Conclusion

This study revealed the association of SAA level with PSCI,

which was an independent risk factor to predict cognitive

impairment in lacunar infarction patients. In addition, this study

constructed the nomogram to predict PSCI based on the five

independent risk factors, which has proven clinical utility and

is useful for PSCI risk decision-making in patients with lacunar

infarction undergoing clinical assessment.
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