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ABSTRACT: Dendrimers are employed as functional elements in contrast agents and are proposed as nontoxic vehicles for drug
delivery. Toxicity is a property that is to be evaluated for this novel class of bionanomaterials for in vivo applications. The current
research is hampered due to the lack of structured data sets for toxicity studies for dendrimers. In this work, we have built a data set
by curating literature for toxicity data and augmented it with structural and physicochemical features. We present a comprehensive,
feature-rich database of dendrimer toxicity measured across various cell lines for prediction, design, and optimization studies. We
have also explored novel computational approaches for predicting dendrimer cytotoxicity. We demonstrate superior outcomes for
toxicity prediction using essential regression in the space of small data sets.

■ INTRODUCTION
Dendrimers are a class of hyperbranched polymeric molecules
with definite three-dimensional structures and tunable
architectures.1 They are characterized by the composition of
core, repeating unit, and surface/terminal groups.2−4 A wide
variety of topologies emanating from the different monomers
and having an impact on the properties of the dendrimers, for
example, size, shape, volume, flexibility, and other physico-
chemical properties, are reported in the literature.5−7

Dendrimers provide a robust platform for a range of
applications in energy storage,8 environmental remediation,9

and biomedicine, particularly as targeted drug delivery vehicles
in critical disease treatments.10−16 Dendrimers are often
classified based on the type of branch cell as symmetric
(Tomalia-type)5,6,12 or asymmetric (Denkewalter-type).17

PAMAM dendrimers are examples of symmetric branched
cell dendrimers, and polypeptide/protein-type dendrimers
belong to asymmetric branched cell dendrimers. Asymmetric
branched cell dendrimers have been exclusively used in a wide
range of life sciences applications including antivirals, micro-
bicides, and targeted cancer therapies.18,19

Dendrimers, being nanoparticles, are well positioned to be
synthesized in a reproducible way with precise control of
properties and tunable structural parameters, such as size and

surface chemistry, for both therapeutic and diagnostic
applications. They have been mostly applied as nanocarriers
for biologically active agents. Notably, only dendrimeric
nanomedicine is suitable for a wide variety of routes of drug
administration, from intravenous to intranasal and transdermal
to ocular, and can be used for active or passive drug targeting.
Properties such as pharmacokinetics, pharmacodynamics,
controlled biodistribution, and toxicity play an important role
in the success of dendrimer design. A large number of
pharmaceutical companies are investigating the role of lipid
nanoparticles, adeno-associated viral vectors, and dendrimers
as promising targeted drug delivery routes.

All of these facets of dendrimers render them ideal
candidates for nanomedical applications. As compounds that
have been intensively studied for their potential role in
biomedicine, dendrimers should meet several criteria. Specif-
ically, they should be nontoxic, nonimmunogenic, and
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biopermeable (to possess the ability to cross bio-barriers), be
able to stay in blood circulation until the desired effects occur,
and be able to target specific biological molecules. Recently,
Banerjee et al. demonstrated the q-RASAR approach for small
data set toxicity prediction; this study explores an alternative
method using similarity- and error-based descriptors specifi-
cally tailored for predicting toxicity in data sets with small,
structurally similar molecules.20−22 Many groups of dendrimers
fulfill most of these requirements; however, their utilization in
biomedicine is often limited due to their high cytotoxic-
ity.3,23−29 Predicting the toxicities of compounds is a crucial
step in the creation of new drugs.

In this work, we develop data-driven computational
approaches to predict the cytotoxicity of dendrimers used in
drug delivery. A single database (dendPoint) catering to the
study of pharmacokinetic properties of dendrimers has been
reported to be of use in the in silico studies.30 Recently, the
advent of predictive modeling using neural networks (artificial
intelligence) and recently generative AI (Gen AI) has
prompted us to explore the application of these technologies
in the space of dendrimer research. In this paper, we present a
new data set for studying the cytotoxicity of dendrimers used
in drug delivery vehicles in different cell lines.25 We have
manually curated the data set and built initial and optimized
3D structures of the family of the dendrimers reported in the
database. We employed in silico techniques to compute and
generate features (2D and 3D) characterizing the dendrimers.
A battery of recent algorithmic advancements in small data set
scenarios for predictive modeling has been employed on the
curated data set for dendrimer cytotoxicity prediction, which is
prone to the overfitting problem (curse of dimensionality).

■ METHODS
A data-driven machine learning approach to predict cytotox-
icity of polymer from structural data is depicted (Figure 1).
The workflow involves building three-dimensional (3D)
structures of the dendrimers, extracting features from the
structures using Mordred to generate additional physicochem-
ical features, and finally utilizing a machine learning model to
estimate the cytotoxicity of a given dendrimer.
Curation of the Toxicity Data Set. We have employed a

list of dendrimers identified and published by Janaszewska et
al.25 for curating the data set. The curated toxicity levels of the
dendrimers investigated in this study are compiled in Table 1.
A total of 58 dendrimers were collected, and details on the type
of dendrimer, the cell line in which the toxicity was measured,
and the level of toxicity observed were extracted from the
articles. We realized that toxicity values were not standardized,
and the data set required augmentation for predictive tasks.
Standardization of the IC50 Values. The IC50 values

reported for the dendrimers were observed in different
measuring units (mg/mL or μg/mL). We standardized the
reported values to a common measuring unit (μM).
Generation of 3D Models of Dendrimers. As structural

features are considered critical in the design of dendrimers
with tunable properties, we have built 3D atomistic structures
of all the dendrimers in the data set. The structures were built
using our in-house dendrimer builder toolkit (DBT) software
(Figure 2).37 A variety of surface functionals [NH2, −COOH,
−OH, lauroyl (CH3(CH2)10CO−), maltose (C12H22O11), and
maltotriose (C18H32O16)] and core groups such as ethyl
diamine (C2H8N2) and DAB (C4H12N2) were built by hand.
For structures with two distinct surface groups, we generated

the larger surface group (lauroyl) and subsequently attached
the second surface group using tleap38 and Avogadro.39

To remove initial unfavorable contacts, each structure was
energy minimized for 1000 steps using the steepest descent
energy minimization, followed by 1000 steps of conjugate
gradient energy minimization using the SANDER tool from
AMBER.38 We used GAFF40 to describe the intramolecular
interactions.
Feature Engineering. The data comprising 58 samples had

to be augmented with physicochemical and structural features
for studying the patterns for predictive tasks using machine
learning. We used Mordred in DeepChem41 to generate
physicochemical features and biological effects42,43 from the
structures. Initial explanatory data analysis involved the
following steps:

1. Two sample points, which are above 3× inter quartile
range of IC50 values, were removed.

2. Structural and physicochemical features were generated
using Mordred.

3. The data were augmented via synthetic minority
oversampling for regression (SMOTER) by oversam-
pling rare values of a continuous target and selecting k
nearest neighbors.44 This resulted in 137 samples of
dendrimers. Gaussian noise was added to these samples
to further increase the data set to 276 dendrimers.

Figure 1. Workflow of data-driven toxicity prediction of dendrimers.
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■ RESULTS AND DISCUSSION
Predictive Modeling for Dendrimer Toxicity. The data

set was subjected to feature reduction using Recursive Feature
Elimination in scikit-learn45 and genetic algorithm in DEAP46

to reduce the number of features from 1826 to 962 features
(see Supporting Information for more details). The data set
was split into two buckets of train (ntrain = 220) and test (ntest =
56) samples. With toxicity as a predictive variable, we
employed comparative approaches for building machine
learning models. Different train/test loading percentage
experiments were conducted for selecting the best ratio
(80:20) (see Table S1). We addressed the small data problem
(nfeatures ≫ nsamples) with data augmentation and an innovative

algorithm that allows the building of optimal predictive
models. Essential regression (ER) was proposed recently to
address the high-dimensionality data sets without any
distributional assumptions regarding data. The approach was
positioned to identify latent factors and their causal relation-
ships with properties of interest. The approach relies not just
on individual observables but on the higher-order relationships
encapsulated in the latent factors.47 We applied ER for
dendrimer toxicity prediction, given the high dimensionality of
the data set with generated features.
Baseline Regression Approaches. We applied Random

Forest as a baseline modeling approach using a few heuristic
features to build a predictive model and observed that the

Table 1. Summary of the Curated Dendrimer Data Set for Toxicity Prediction

cell line type generation IC50 (μM) ref.

HaCaT PAMAM G4 > G5 > G6 16.35 > 1.89 > 1.3 31
B14 PPI PPI-G4 3.18 32
B16F10 PAMAM DAB-G2 > G3 > G4 178 > 14.2 > 7.2

G 1.5 = G 2.5 = G3.5 155 33
G1 = G2 > G3 = G4 614 = 614 > 35 = 35
DAB G 1.5 = G2.5 = G 3.5 570

BRL-3A PPI PPI-G4 5.93 32
Caco-2 PAMAM G2 < G2L6 > G2L9 1000 < 15,000 > 1060

G2.5 = G3.5 = G2 < G3 > G4 1000 = 1000 = 1000 < 1400 > 130 34
G4 < G4L3 < G4L6 > G4L9 > G4L15 130 < 360 < 1000 > 100 > 40

CHO PAMAM G3.5 > G4 300 > 46.9
PPI G4 < G4Maltostriose 14.7 < 144.6 35

HaCaT PAMAM PPI-G4 > G5 > G6 3.21 > 1.07 > 1.02 31
H4IIE PAMAM G3 = G4 500 = 500 36
HepG2 PPI G4 < G4−100% maltose 6.91 < 100 32
N2a PPI-G4 G4 3.34 32
SW480 PAMAM G4 > G5 > G6 23.16 > 5.75 > 3.17 31

Figure 2. Chemical structure (top row) and energy-minimized structures of dendrimers: (a) G2 PAMAM dendrimer with an EDA core and amino-
terminated surface groups, (b) half-generation (G 1.5) PAMAM dendrimer with an EDA core and carboxylic acid-terminated surface groups, and
(c) G2 PAMAM dendrimer with two different surface groups: amino and laurel. Green: monomeric unit, blue: surface unit, and red: core.
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RMSE and MAE were high (Table 2). In molecular
embedding-based regression models, molecules are repre-

sented as fixed-length numerical vectors, known as embed-
dings. These embeddings capture essential structural and
chemical information about the molecules and are typically
derived from the molecular graph, which represents the atoms
and their connections within the molecule. The Mol2vec
Featurizer was employed to generate embeddings of structural
dendrimers. Subsequently, tree-based regression techniques
were applied to predict the toxicity.
Regression Models Based on Crude Estimation of

Features and Property. Crude estimation of features (CEF)
has been recently shown to enhance model performance in
similar small data scenarios in materials sciences.48 The
strategy involves generating crude estimates for features/target
properties to address the bias-variance trade-off affecting
model precision. We generated crude estimates for features
and toxicity (predictive properties) in the feature space and
applied regression using random forests (Table 2). Regulariza-
tion was implemented via hyperparameter fine-tuning and
fivefold cross-validation to address and reduce overfitting.
Essential Regression. ER is a regression technique proposed

by Bing et al.,47 which showcases a novel regression technique

that identifies causal latent factors responsible for the
dependent variable, in our case, dendrimer toxicity. After
CEF and crude estimation of property (CEP), we found that
the data set perfectly aligned for predictive exploration using
the ER framework. We observe that the ER model built with
raw features with CEP and CEF performs the best among all
approaches (Table 2).

Let us consider the input data as X ∈ Rn*s, where s is the
sample size and n is the feature size and Y ∈ Rs.

X A Z= + (1)

Y ZT= + (2)

The input matrix X is decomposed into allocation matrix A
and latent matrix Z, where A ∈ Rn*k, Z ∈ Rk*s, and β ∈ Rk are
regression coefficients, and α ∈ Rn*s and ϵ ∈ Rs are irreducible
independent error terms.

The allocation matrix is obtained using the principal
component analysis technique, by calculating the eigenvectors
of the covariance matrix X X

s
T1

( 1)
= , where the

eigenvectors vi are obtained by solving ∑vi = λi∗vi; here, λi
represents the eigenvalues. By selecting the top k eigenvectors,
a reduced-dimensional space is formed, which is the allocation
matrix A ∈ Rn*k. The latent factor matrix Z is then formed by
using eq 1. This matrix, which consists of relevant features, is
then used for regression to generate the output matrix Y.
Explainable ER for Toxicity Prediction. Model perform-

ance metrics for test samples are reported in Table 2. Of all the
data-driven approaches for toxicity prediction, ER with crude
estimates of features and properties produced superior results
with an RMSE of 96.85, MAE of 43.98, and R2 of 0.92. A plot
of predictions against ground truth toxicity IC50 values is
shown in Figure 3. The model predictions are, in general, in
good agreement with ground truth values. We also observe that
in a few cases involving PAMAM-G4-L9, PAMAM-G2.5

Table 2. Performance Comparison of Different Modeling
Techniques

regression based on evaluation metrics

R2 RMSE MAE QF1
2 QF2

2

raw features 0.80 148.68 125.22 0.80 0.80
molecular embedding 0.15 3503.73 1198.67 0.16 0.14
CEF 0.86 127.35 98.56 0.86 0.86
CEP 0.88 114.61 92.74 0.88 0.88
CEF + CEP 0.89 104.58 71.09 0.90 0.89
ER + CEF + CEP 0.92 96.85 43.98 0.93 0.92

Figure 3. Prediction of IC50 values based on ER.
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PAMAM-G3.5, and PAMAM-G3, the predictions are off
beyond the mean absolute error of 43.98 μM.

SHAP49,50 summary plot provides insights into features that
have the most impact on the model predictions (Figure 4).
Among the top 10 SHAP features, surface area descriptors
(WNSA3 and WNSA5) and autocorrelation descriptors
(ATSC6m, ATS8v, AATS7dv, and ATS5se) emerge as
significant and play a crucial role in the toxicity of the polymer
(Figure 4). Surface area descriptors, which measure the
negatively charged surface area, can change how dendrimers
interact with biological molecules or cell membrane,51 which
could make them toxic.52 Moreau−Broto autocorrelation
descriptors like ATSC6m, ATS8v, AATS7dv, ATS5se, and
ATS7i capture the distribution of properties like mass, van der
Waals volume, valence electrons, Sanderson electronegativity,
and ionization potential across the dendrimer structure,
influencing its interactions with biological systems and thus
its toxicity.53 The heavy atom gravitational index (GRAV) and
the moment of inertia (MOMI-Z) provide insights into the
molecular weight and shape of the dendrimer, respectively,
both of which can affect how the dendrimer is processed by
biological systems or translocated across the biological
membrane54 and its subsequent toxicity.51,53 Overall, these
features representing the size, surface charge density, and mass
distribution of dendrimers primarily influence their interaction
and the contacts between their surfaces and the constituents of

blood and tissues as well as the surfaces of blood vessels. These
interactions can lead to potential membrane disruption and
cytotoxicity.55,56 We describe below individual predictions for
a few cases pertaining to the dendrimer of generations 1.5, 2,
and 2.5 (G1.5, G2, and G2.5) and the explanations for the
predictions. SHAP force plots for predictions of test samples
from other generations are available in Supporting Information
(Figure S3). For PAMAM-G1.5, total polar surface area
(TPSA) is seen to contribute positively toward prediction,
whereas for both PAMAM-G2 and G2.5, SHAP force plots
point to WNSA3 and ATSC6m as common factors for a
positive attribution to predicted values. WNSA3, being surface-
weighted charged partial negative surface area, has implications
for the electrostatic and hydrogen bonding potential of the
molecule, and ATSC6m (centered Moreau−Broto autocorre-
lation of lag 6 weighted by mass) explains the distribution of
mass within six bonds in a molecule. SHAP force plots for
predictions of test samples from other generations are available
in Supporting Information (Figure S3).

■ CONCLUSIONS
We report a comprehensive feature-rich toxicity data set
capturing a variety of physicochemical features of dendrimers
in experiments performed in different cell lines. The data set is
envisaged to complement the existing data sets for studying the
pharmacogenomic impact of these synthetic polymers in

Figure 4. (a) SHAP (SHapley Additive exPlanations) summary plots for key features influencing model predictions of PAMAM dendrimer
generations. (b) SHAP force plot for PAMAM (G1.5, G2, and G2.5) to determine which features are more important for particular generations.
TPSA dominates for G1.5, while WNSA3/5 (surface-weighted charged area) and ATSC6m (mass distribution within 6 bonds) are most impactful
for G2 and G2.5. These features relate to charge, surface area, size, shape, and mass distribution, influencing potential biological activity.
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humans.30 To the best of our knowledge, this is the first report
on use of predictive modeling approaches for predicting the
cytotoxicity of dendrimers. The exploration of different
computational approaches led to a model based on ER,
which is seen to perform predictive tasks considerably well.
The model performance with ER indicates that minimal and
conservative data augmentation approaches can lead to a
performant model in low-data scenarios. Handling features in
the canonical space for predictive tasks in these scenarios is
usually achieved with dimensionality reduction. On the
contrary, ER takes a different approach by projecting these
features and clustering them in latent space. In addition, the
generation of crude estimates of features and target variables
also leads to a scientifically explainable, minimalistic data
engineering approach. Experiments on a prioritized set of
hypotheses, for example, dendrimers as preferred vehicles of
choice for drug delivery, will benefit with the design and
optimization of nontoxic dendrimers for in vivo experiments
via in silico approaches. Compared with traditional in vivo
testing with model organisms, computational toxicity estima-
tions offer remarkable advantages, primarily because they are
faster than the determination of toxic doses in actual animal or
cell line experiments. These computational approaches will
help reduce the cost and timescale of in vivo experiments on
model organisms. We also describe the application of the
algorithms implemented in this report to the design and
optimization of antibody−drug conjugates, specifically, the
design of linkers. Toxicity prediction approaches can increase
the pace of discovery and acceptance of the safe and efficient
use of dendrimers as drug conjugates.
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