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Abstract: This editorial paper provides a synopsis of the contributions to the Bioengineering special
issue “Advances in Polyhydroxyalkanoate (PHA) Production”. It illustrates the embedding of the
issue’s individual research articles in the current global research and development landscape related
to polyhydroxyalkanoates (PHA). The article shows how these articles are interrelated to each
other, reflecting the entire PHA process chain including strain selection, metabolic and genetic
considerations, feedstock evaluation, fermentation regimes, process engineering, and polymer
processing towards high-value marketable products.
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1. Introduction

Nowadays, it is generally undisputed that we need alternatives for various fossil-resource based
products such as plastics, which make our daily life comfortable. Plastics, a group of polymeric
materials not produced by Mother Nature, are currently produced at increasing quantities, now in
a magnitude of about 300 Mt per year [1]. Such well-established plastics are used in innumerable
fields of application, such as packaging materials, parts in the automotive industry, biomedical devices,
electronic parts, and many more. Despite their high impact in facilitating our everyday life, current
plastic production faces essential shortcomings, such as the ongoing depletion of fossil resources,
growing piles of waste consisting of non-degradable full-carbon backbone plastics, and elevated CO2

and toxin levels in the atmosphere caused by plastic incineration [2,3].
To overcome the abovementioned evils, the last decades were devoted to find a way out of the

fatal “Plastic Age” we live in today. Switching from petrol-based plastics to bio-alternatives with
plastic-like properties, which are based on renewable resources, and which can be subjected towards
biodegradation and composting, is regarded as one of these exit strategies [3]. Polyhydroxyalkanoates
(PHA), microbial storage materials produced by numerous prokaryotes, are generally considered
auspicious candidates to replace traditional plastics in several market sectors, such as the packaging
field, or in biomedical applications [4–7]. To make PHA competitive, they must compete with
petrol-based plastics both in terms of quality and economic aspects. Quality improvement of
PHA-based materials is currently achieved by the microbial feeding strategy during the bioprocess [8,9],
by the generation of (nano)composites with diverse compatible materials [10,11], or by blending with
suitable other polymers [11–13]. Importantly, the entire PHA production chain, encompassing the
isolation of new robust productions strains, feedstock selection, fermentation technology, process
engineering, bioreactor design, and, last but not least, downstream processing, needs to meet the
criteria of sustainability [14]. The previously often-cited myth of biopolymers being per se more

Bioengineering 2017, 4, 88; doi:10.3390/bioengineering4040088 www.mdpi.com/journal/bioengineering

http://www.mdpi.com/journal/bioengineering
http://www.mdpi.com
https://orcid.org/0000-0002-9251-1822
http://dx.doi.org/10.3390/bioengineering4040088
http://www.mdpi.com/journal/bioengineering


Bioengineering 2017, 4, 88 2 of 7

sustainable than established petrochemical plastics nowadays has finally been abandoned, as recently
comprehensively reviewed; without conceiving the entire life cycle of biopolymers, it is impossible
to conclude if they inherently outperform their petrochemical counterparts in terms environmental
benefit [15].

Such economic, sustainability, and quality aspects are addressed in the 14 contributions to this
special issue, “Advances in Polyhydroxyalkanoate (PHA) Production”. This issue evolved during a
period of almost one year, and it was an outstanding pleasure for me to see so differently focused
research groups participating in this mutual publication project. Authorships from 15 different
countries from four continents were selected, having synergistic competences in diverse areas related
to PHA research, some of them well-known in this scientific field already for years or even decades,
and some of them currently attracting increasing attention in the scientific community for their recent
research and development (R&D) achievements.

In principle, these contributions are dedicated to four major impact directions of PHA research:
First, six articles deal with the assessment of inexpensive [16–20] or exotic [21] feedstocks to be

used as carbon sources for PHA production. Importantly, these feedstocks constitute carbonaceous
(agro)industrial waste streams, such as waste glycerol from biofuel production [16,17], lignocellulose
waste from the food industry [18,20] and forestry [19], and even petrochemical plastic waste [21].
These works aim to find alternatives to commonly used feedstocks of value for human nutrition, in
order to avoid the current “plate vs. plastic” dispute. Further, the articles show how such alternative
feedstocks have to be pre-treated in order to minimize potential inhibitory effects on production strains.

Second, new insights into metabolic processes during intracellular PHA mobilization [22],
metabolic flux analysis of PHA production by mixed microbial cultures (MMCs) [23], and novel
molecular diagnostic techniques to trace new PHA production strains from diverse environments in a
convenient manner [24] are presented.

Third, PHA production is introduced as an integral part of future (bio)refinery systems, as shown
in the case of autotrophic PHA production by the effluent gases of a power plant [25], and the coupling
of PHA biosynthesis with a wastewater treatment plant (WWTP) [26].

The fourth group of contributions addresses the fine-tuning of PHA composition on the
monomeric level to facilitate its processing [27], and describes the processing of new PHA blends with
other biocompatible materials to generate scaffolds for tissue engineering [28].

As the roof above all these articles, a comprehensive review makes us familiar with the current
state of enhancing the sustainability, economics, and product quality of PHA [29]. The subsequent
paragraphs intend to provide a short overview of the individual chapters of this special issue.

2. Individual Contributions

Kourmentza and colleagues provide a comprehensive review on current challenges and
opportunities in PHA production. This article covers all hot spots during the multi-facetted PHA
production lines. From the microbiological point of view, the application of both pure (monoseptic)
cultures and MMCs is addressed. In the case of MMCs, the coupling of PHA to WWTPs is strongly
encouraged by the authors. Special emphasis is also dedicated to raw material selection, process design,
and the downstream processing for PHA recovery from microbial biomass. Regarding raw materials,
the authors suggest abundant lignocelluloses as the future materials of choice to run a sustainable PHA
production facility, and discuss recent advances in using toxic substrates like aromatic compounds,
which would provide for bioremediation coupled to PHA biosynthesis. Moreover, halophile microbes
are presented as stable production strains; their application should contribute to running PHA
production processes at reduced sterility requirements. Finally, the outlook of this review refers
to synthetic biology as a tool to achieve competitive PHA production by facilitating downstream
processing, and to boost PHA productivity [29].

Takahashi and colleagues screened marine bacteria in order to assess their potential to thrive and
accumulate PHA on the inexpensive substrate combination crude glycerol from the biodiesel industry
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and seawater. Out of 150 isolates, the authors report the identification of two auspicious new marine
strains with high potential of PHA production on this substrate combination, which, in the future,
should be subjected to detailed investigation and optimization in order to assess their applicability for
industrial-scale PHA production [16].

In addition, Bhattacharya and associates used crude glycerol, in this case stemming from
Jatropha curcas-based biodiesel production, as a carbon substrate for PHA production. Here,
a Gram-positive production strain of marine origin, Bacillus licheniformis PL26, was used [17].
Such Gram-positive strains display the advantage of generating endotoxin-free PHA especially suitable
for in vivo application in the biomedical field [30]. In addition to the intracellular storage product PHA,
the authors also investigated the excretion of the extracellular product poly(ε-lysine), a material of
significance inter alia for food preservation, by this organism. Regarding PHA production, the authors
revealed that this organism accumulates the copolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(PHBHV) from waste glycerol as the sole carbon source without the need to add 3-hydroxyvalerate
(3HV)-related precursor substrates [17].

Salgaonkar and Bragança investigated Halogeometricum borinquense, a new haloarchael PHA
producer, as a PHA production strain on hydrolyzed sugarcane bagasse. Using this abundant
lignocellulose substrate, Hgm. borinquense exhibited a superior performance in terms of PHA
productivity and intracellular PHA fraction when compared to other scientifically rather undescribed
haloarchaea, which were studied in parallel to this work. Furthermore, this strain was shown
to produce a PHBHV copolyester from hydrolyzed bagasse without the need for precursor
compounds [18], as also detected in the previous contribution [17]. Generally, this work contributes to
the current quest for extremophile PHA producers, which are frequently described as the “rising stars”
in the consortium of industrially production strains [31].

A similar substrate was used by Kucera and colleagues, who cultivated two Burkholderia strains
(B. cepacia and B. sacchari) on the hydrolysate of spruce sawdust, a lignocellulosic wood waste.
Sawdust hydrolysis was carried out both by applying strong acids to hydrolyze the hemicellulose
fraction, and enzymatically to hydrolyze the cellulose fraction. This approach generates considerable
amounts of fermentable sugars, which are converted by the two applied organisms towards biomass
and PHA. Because this hydrolysate also contains growth-limiting components like polyphenols,
furfural, acetic acid, or levulinic acid, the authors present a new, convenient upstream processing
strategy to remove growth-inhibiting compounds from the hydrolysate by using inexpensive lignite
(brown coal) instead of overliming or the commonly used, more expensive charcoal. As a further
benefit, the authors suggest the value-added use of lignite after detoxification as an energy carrier [19].

Hokamura et al. used soybean wastewater from a Japanese miso production process for the
accumulation of an intracellular PHA blend by a recombinant Pseudomonas sp. 61-3 harboring
two different PHA synthase enzymes. For substrate preparation, soybean wastewater was
spray-dried and used as a feedstock with and without subsequent hydrolysis. The intracellular blend
consisted of poly(3-hydroxybutyrate) (PHB) homopolyester, and a randomly distributed copolyester
consisting of 3-hydroxybutyrate (3HB) and longer 3-hydroxyalkanoates with four to 12 carbon atoms.
Using hydrolyzed spray-dried soybean wastewater as the sole carbon source, the highest achieved
concentration of this PHA blend amounted to 1 g/L, which corresponds to a PHA fraction of 35% of
the cell dry mass. In this case, the blend contained about 80% 3HB and 20% longer building blocks, and
displayed a flexible material with considerable toughness comparable to the characteristics displayed
by poly(ethylene) (PE) [20].

Johnston and colleagues directly connected the utilization of petrol-based plastic waste with the
production of PHA biopolymers. These authors used non-oxidized PE wax as an unconventional, exotic
substrate for PHA production by the well-known eubacterial production strain Cupriavidus necator
H16. In order to make this hydrophobic substrate accessible for the bacteria, the authors presented
a viable sonication technique to produce an emulsion, which could be used as cultivation medium
to thrive the bacteria. Non-oxidized PE wax displays the advantage of being conveniently produced
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from waste PE by simple thermal cracking and subsequent purification of the resulting gaseous stream;
moreover, it has no other industrial use. Most of all, the authors underlined the independence of this
substrate from food and feed applications, making the process ethically clear. In addition, it turned
out that a PHBHV copolyester with abbot 11% 3HV in PHA is produced by C. necator when supplied
with this substrate [15], which is similar to the findings for other new production strains in this special
issue [17,18,20].

In contrast to the application of pure, monoseptic microbial cultures described in the above
contributions, Montana-Herrera and co-workers used MMCs to study the monomeric composition
of MMC-PHA during microbial growth and concomitant PHA accumulation. Different substrate
feeding strategies using volatile fatty acids (VFAs) were investigated, showing a dynamic trend in
biomass formation and monomeric PHA composition dependent on the substrate feed. Metabolic flux
analysis was used to gain deeper insights into the goings-on in the MMC during the cultivation;
revealing the correlation of reducing equivalents’ generation to the intracellular carbon flux, thus to
the PHA composition on the monomeric level, which can be considered as a significant outcome of
this study [24].

Karmann and colleagues focused their contribution on the investigation of population dynamics
during medium chain length (mcl)-PHA production by Pseudomonas putida KT2440 at the level of
individual cells under different environmental conditions. This work provides a completely new
understanding of the mobilization of PHA during cell separation [22]. In contrast to the previously
assumed paradigm, which suggested a balanced distribution of PHA granules to new daughter cells
generated by binary division, the presented work teaches us that the distribution of PHA granules,
often referred to as “carbonosomes” [32], under carbon-limited conditions occurs in an asymmetric
manner; the culture segregates into a PHA-rich and a PHA-poor subculture, thus displaying a “bistable
behavior” [22].

Morgana de Silva Montenegro and colleagues studied the microbial diversity of PHA-producing
species by new molecular diagnosis techniques. These authors applied PHA synthase (phaC) by using
suitable primers based on multiple alignments of PHA synthases from a total of 218 species with
deciphered genomes for detecting new potential PHA producers; PHA synthases of type I and IV
were used as positive controls to trace new organisms with PHA accumulation capacities. The authors
describe the successful application of this new diagnostic technique to identify nine new marine PHA
producers out of 16 marine isolates; when screening 37 additional isolates from different environments,
about 30% among them were identified as potential PHA producers [23].

Pittmann and Steinmetz studied the production potential for PHA as a by-product of municipal
WWTPs. Here, differently composed WWTP sludge lots were investigated as substrates under different
operational conditions regarding pH-value, retention time, and withdrawal/refilling for optimized
VFA production; short retention time and low withdrawal/refilling rate turned out to be the most
beneficial for high VFA formation. In a second stage, generated VFA were used for high and stable
production of PHA of constant monomeric composition in a feast/famine regime under fluctuating
conditions. The authors suggest that this process, when using the entire quantity of sludge for all
municipal WWTP in the European Union, could theoretically provide the feedstock for the production
of about 20% of the current global PHA production [26].

Another concept for a PHA-based biorefinery was presented by Troschl and colleagues, who
studied the solar-driven autotrophic pilot-scale cultivation of cyanobacteria for PHA production over
extended periods in a 200-L horizontal tubular photobioreactor. As carbon source, CO2 from the
gaseous effluents of an Austrian coal power plant was used. The authors describe the challenges
they were confronted with during process development, and highlighted several issues considered
as especially crucial for developing a stable cyanobacterial PHA production process, namely strain
selection, CO2-availability, and process design and automation. Regarding strain selection, the authors
suggest the use of rather small, unicellular cyanobacterial species like Synechocystis sp., which should
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be more resistant against shear stress when compared to the well-known filamentous cyanobacterial
PHA-producer Arthrospira sp. [25].

Coming to defined applications of PHA, the authorship of Puppi et al. presented novel strategies
to design new tissue engineering scaffolds by blending the copolyester poly(3-hydroxybutyrate-co-
3-hydroxyhexanoate) (PHBHHx) with poly(ε-caprolactone) (PCL) as another biocompatible polymer.
These blends were processed by the new method of “computer-aided wet-spinning”, a novel
hybrid-additive manufacturing technique suitable for processing PHA in organic solution.
The processing of PHA in solution instead of the thermal treatment normally used for PHA processing
avoids adverse effects on PHA molecular mass. This technique successfully provided customer-made
scaffolds with pre-defined architecture regarding macro- and micro-porosity. The high biocompatibility
of these scaffolds was demonstrated by showing the successful adhesion and proliferation of
pre-osteoblast cells on them, underlining their suitability for biomedical applications [28].

Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolyesters with tailored 4-hydroxybutyrate
(4HB) fraction, suitable for convenient processing, were produced in our laboratories in Graz, Austria,
by Miranda de Sousa Dias et al. This was achieved by co-feeding the direct sucrose converter B. sacchari
with sucrose from the Brazilian sugarcane industry and fine-tuned amounts of the 4HB-precursor
γ-butyrolactone. The copolyesters were generated in fed-batch bioreactor setups at high productivity,
and were subjected to detailed material characterization to evaluate their physicochemical properties
and molecular mass distribution. As major outcome, it was proposed that the strain could act as one of
the major industrial-scale PHA copolyester producers based on sucrose. As the conditio sine qua non
for economic feasibility, the integration of the PHA production facilities into existing sugar production
lines is necessary [27].

3. Conclusions

Global research efforts are currently devoted to the individual aspects needed to be addressed in
order to facilitate the quick success of PHA-based materials on the polymer market. I hope that reading
the Bioengineering special issue at hand will motivate and inspire researchers all over the world (and
undergraduates interested in getting their feet on the ground of biopolymers!) to dedicate intensified
efforts to further improve PHA production in terms of economics, product quality, and sustainability.

Acknowledgments: Special credits go to all contributors to this special issue for their outstanding articles,
and to all referees active in critically analyzing and improving them. At this point, special thanks go to
Professor Gerhart Braunegg, one of the global pioneers in PHA research, for his scientific achievements and his
year-long guidance of my PHA-related research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Možejko-Ciesielska, J.; Kiewisz, R. Bacterial polyhydroxyalkanoates: Still fabulous? Microbiol. Res. 2016, 192,
271–282. [CrossRef] [PubMed]

2. Braunegg, G.; Bona, R.; Koller, M. Sustainable polymer production. Polym. Plast. Technol. Eng. 2004, 43,
1779–1793. [CrossRef]

3. Iwata, T. Biodegradable and bio-based polymers: Future prospects of eco-friendly plastics. Angew. Chem.
Int. Ed. 2015, 54, 3210–3215. [CrossRef] [PubMed]

4. Keshavarz, T.; Roy, I. Polyhydroxyalkanoates: Bioplastics with a green agenda. Curr. Opin. Microbiol. 2010,
13, 321–326. [CrossRef] [PubMed]

5. Tan, G.Y.A.; Chen, C.L.; Li, L.; Ge, L.; Wang, L.; Razaad, I.M.N.; Li, Y.; Zhao, L.; Mo, Y.; Wang, J.Y. Start a
research on biopolymer polyhydroxyalkanoate (PHA): A review. Polymers 2014, 6, 706–754. [CrossRef]

6. Zinn, M.; Witholt, B.; Egli, T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate.
Adv. Drug Deliv. Rev. 2001, 53, 5–21. [CrossRef]

7. Chen, G.Q. A microbial polyhydroxyalkanoates (PHA) based bio-and materials industry. Chem. Soc. Rev.
2009, 38, 2434–2446. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.micres.2016.07.010
http://www.ncbi.nlm.nih.gov/pubmed/27664746
http://dx.doi.org/10.1081/PPT-200040130
http://dx.doi.org/10.1002/anie.201410770
http://www.ncbi.nlm.nih.gov/pubmed/25583677
http://dx.doi.org/10.1016/j.mib.2010.02.006
http://www.ncbi.nlm.nih.gov/pubmed/20227907
http://dx.doi.org/10.3390/polym6030706
http://dx.doi.org/10.1016/S0169-409X(01)00218-6
http://dx.doi.org/10.1039/b812677c
http://www.ncbi.nlm.nih.gov/pubmed/19623359


Bioengineering 2017, 4, 88 6 of 7

8. Aziz, N.A.; Huong, K.H.; Sipaut, C.S.; Amirul, A.A. A fed-batch strategy to produce high poly
(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolymer yield with enhanced mechanical
properties in bioreactor. Bioproc. Biosyst. Eng. 2017. [CrossRef] [PubMed]

9. Koller, M.; de Sousa Dias, M.; Rodríguez-Contreras, A.; Kunaver, M.; Žagar, E.; Kržan, A.; Braunegg, G.
Liquefied wood as inexpensive precursor-feedstock for bio-mediated incorporation of (R)-3-hydroxyvalerate
into polyhydroxyalkanoates. Materials 2015, 8, 6543–6557. [CrossRef] [PubMed]

10. Khosravi-Darani, K.; Bucci, D.Z. Application of poly(hydroxyalkanoate) in food packaging: Improvements
by nanotechnology. Chem. Biochem. Eng. Q. 2015, 29, 275–285. [CrossRef]

11. Martínez-Sanz, M.; Villano, M.; Oliveira, C.; Albuquerque, M.G.; Majone, M.; Reis, M.; Lopez-Rubio, A.;
Lagaron, J.M. Characterization of polyhydroxyalkanoates synthesized from microbial mixed cultures and of
their nanobiocomposites with bacterial cellulose nanowhiskers. New Biotechnol. 2014, 31, 364–376. [CrossRef]
[PubMed]

12. Pérez Amaro, L.; Chen, H.; Barghini, A.; Corti, A.; Chiellini, E. High performance compostable biocomposites
based on bacterial polyesters suitable for injection molding and blow extrusion. Chem. Biochem. Eng. Q. 2015,
29, 261–274. [CrossRef]

13. Jost, V.; Kopitzky, R. Blending of polyhydroxybutyrate-co-valerate with polylactic acid for packaging
applications-reflections on miscibility and effects on the mechanical and barrier properties. Chem. Biochem.
Eng. Q. 2015, 29, 221–246. [CrossRef]

14. Koller, M.; Maršálek, L.; Miranda de Sousa Dias, M.; Braunegg, G. Producing microbial polyhydroxyalkanoate
(PHA) biopolyesters in a sustainable manner. New Biotechnol. 2017, 37, 24–38. [CrossRef] [PubMed]

15. Narodoslawsky, M.; Shazad, K.; Kollmann, R.; Schnitzer, H. LCA of PHA production—Identifying the
ecological potential of bio-plastic. Chem. Biochem. Eng. Q. 2015, 29, 299–305. [CrossRef]

16. Takahashi, R.Y.U.; Castilho, N.A.S.; Silva, M.A.C.D.; Miotto, M.C.; Lima, A.O.D.S. Prospecting for marine
bacteria for polyhydroxyalkanoate production on low-cost substrates. Bioengineering 2017, 4, 60. [CrossRef]
[PubMed]

17. Bhattacharya, S.; Dubey, S.; Singh, P.; Shrivastava, A.; Mishra, S. Biodegradable polymeric substances
produced by a marine bacterium from a surplus stream of the biodiesel industry. Bioengineering 2016, 3, 34.
[CrossRef] [PubMed]

18. Salgaonkar, B.B.; Bragança, J.M. Utilization of sugarcane bagasse by Halogeometricum borinquense strain E3
for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Bioengineering 2017, 4, 50. [CrossRef]
[PubMed]

19. Kucera, D.; Benesova, P.; Ladicky, P.; Pekar, M.; Sedlacek, P.; Obruca, S. Production of polyhydroxyalkanoates
using hydrolyzates of spruce sawdust: Comparison of hydrolyzates detoxification by application of
overliming, active carbon, and lignite. Bioengineering 2017, 4, 53. [CrossRef] [PubMed]

20. Hokamura, A.; Yunoue, Y.; Goto, S.; Matsusaki, H. Biosynthesis of polyhydroxyalkanoate from steamed
soybean wastewater by a recombinant strain of Pseudomonas sp. 61-3. Bioengineering 2017, 4, 68. [CrossRef]
[PubMed]

21. Johnston, B.; Jiang, G.; Hill, D.; Adamus, G.; Kwiecień, I.; Zięba, M.; Sikorska, W.; Green, M.; Kowalczuk, M.;
Radecka, I. The molecular level characterization of biodegradable polymers originated from polyethylene
using non-oxygenated polyethylene wax as a carbon source for polyhydroxyalkanoate production.
Bioengineering 2017, 4, 73. [CrossRef] [PubMed]

22. Karmann, S.; Panke, S.; Zinn, M. The bistable behaviour of Pseudomonas putida KT2440 during PHA
Depolymerization under Carbon Limitation. Bioengineering 2017, 4, 58. [CrossRef] [PubMed]

23. Montano-Herrera, L.; Laycock, B.; Werker, A.; Pratt, S. The evolution of polymer composition during PHA
accumulation: The significance of reducing equivalents. Bioengineering 2017, 4, 20. [CrossRef] [PubMed]

24. Montenegro, E.M.D.S.; Delabary, G.S.; Silva, M.A.C.D.; Andreote, F.D.; Lima, A.O.D.S. Molecular diagnostic
for prospecting polyhydroxyalkanoate-producing bacteria. Bioengineering 2017, 4, 52. [CrossRef] [PubMed]

25. Troschl, C.; Meixner, K.; Drosg, B. Cyanobacterial PHA production—Review of recent advances and a
summary of three years’ working experience running a pilot plant. Bioengineering 2017, 4, 26. [CrossRef]
[PubMed]

26. Pittmann, T.; Steinmetz, H. Polyhydroxyalkanoate production on waste water treatment plants: Process
scheme, operating conditions and potential analysis for German and European municipal waste water
treatment plants. Bioengineering 2017, 4, 54. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s00449-017-1820-0
http://www.ncbi.nlm.nih.gov/pubmed/28762009
http://dx.doi.org/10.3390/ma8095321
http://www.ncbi.nlm.nih.gov/pubmed/28793581
http://dx.doi.org/10.15255/CABEQ.2014.2260
http://dx.doi.org/10.1016/j.nbt.2013.06.003
http://www.ncbi.nlm.nih.gov/pubmed/23827196
http://dx.doi.org/10.15255/CABEQ.2014.2259
http://dx.doi.org/10.15255/CABEQ.2014.2257
http://dx.doi.org/10.1016/j.nbt.2016.05.001
http://www.ncbi.nlm.nih.gov/pubmed/27184617
http://dx.doi.org/10.15255/CABEQ.2014.2262
http://dx.doi.org/10.3390/bioengineering4030060
http://www.ncbi.nlm.nih.gov/pubmed/28952539
http://dx.doi.org/10.3390/bioengineering3040034
http://www.ncbi.nlm.nih.gov/pubmed/28952596
http://dx.doi.org/10.3390/bioengineering4020050
http://www.ncbi.nlm.nih.gov/pubmed/28952529
http://dx.doi.org/10.3390/bioengineering4020053
http://www.ncbi.nlm.nih.gov/pubmed/28952532
http://dx.doi.org/10.3390/bioengineering4030068
http://www.ncbi.nlm.nih.gov/pubmed/28952548
http://dx.doi.org/10.3390/bioengineering4030073
http://www.ncbi.nlm.nih.gov/pubmed/28952552
http://dx.doi.org/10.3390/bioengineering4020058
http://www.ncbi.nlm.nih.gov/pubmed/28952537
http://dx.doi.org/10.3390/bioengineering4010020
http://www.ncbi.nlm.nih.gov/pubmed/28952499
http://dx.doi.org/10.3390/bioengineering4020052
http://www.ncbi.nlm.nih.gov/pubmed/28952531
http://dx.doi.org/10.3390/bioengineering4020026
http://www.ncbi.nlm.nih.gov/pubmed/28952505
http://dx.doi.org/10.3390/bioengineering4020054
http://www.ncbi.nlm.nih.gov/pubmed/28952533


Bioengineering 2017, 4, 88 7 of 7

27. Miranda de Sousa Dias, M.; Koller, M.; Puppi, D.; Morelli, A.; Chiellini, F.; Braunegg, G. Fed-batch
synthesis of Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from sucrose
and 4-hydroxybutyrate precursors by Burkholderia sacchari strain DSM 17165. Bioengineering 2017, 4, 36.
[CrossRef] [PubMed]

28. Puppi, D.; Morelli, A.; Chiellini, F. Additive manufacturing of poly(3-hydroxybutyrate-co-3-
hydroxyhexanoate)/poly(ε-caprolactone) blend scaffolds for tissue engineering. Bioengineering 2017, 4, 49.
[CrossRef] [PubMed]

29. Kourmentza, C.; Plácido, J.; Venetsaneas, N.; Burniol-Figols, A.; Varrone, C.; Gavala, H.N.; Reis, M.A. Recent
advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 2017,
4, 55. [CrossRef] [PubMed]

30. Valappil, S.P.; Boccaccini, A.R.; Bucke, C.; Roy, I. Polyhydroxyalkanoates in Gram-positive bacteria: Insights
from the genera Bacillus and Streptomyces. Antonie Van Leeuwenhoek 2007, 91, 1–17. [CrossRef] [PubMed]

31. Yin, J.; Chen, J.C.; Wu, Q.; Chen, G.Q. Halophiles, coming stars for industrial biotechnology. Biotechnol. Adv.
2015, 33, 1433–1442. [CrossRef] [PubMed]

32. Jendrossek, D.; Pfeiffer, D. New insights in the formation of polyhydroxyalkanoate granules (carbonosomes)
and novel functions of poly(3-hydroxybutyrate). Environ. Microbiol. 2014, 16, 2357–2373. [CrossRef]
[PubMed]

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/bioengineering4020036
http://www.ncbi.nlm.nih.gov/pubmed/28952515
http://dx.doi.org/10.3390/bioengineering4020049
http://www.ncbi.nlm.nih.gov/pubmed/28952527
http://dx.doi.org/10.3390/bioengineering4020055
http://www.ncbi.nlm.nih.gov/pubmed/28952534
http://dx.doi.org/10.1007/s10482-006-9095-5
http://www.ncbi.nlm.nih.gov/pubmed/17016742
http://dx.doi.org/10.1016/j.biotechadv.2014.10.008
http://www.ncbi.nlm.nih.gov/pubmed/25447783
http://dx.doi.org/10.1111/1462-2920.12356
http://www.ncbi.nlm.nih.gov/pubmed/24329995
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Individual Contributions 
	Conclusions 

