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Introduction
Ranking feature sets for phenotype classification based on gene 
expression can be viewed as gene selection and is a key issue for 
cancer informatics. Because ranking feature sets is often based 
on error estimates of the designed classifiers and error estima-
tors based on training data from small samples tend to perform 
poorly, exhibiting optimistic bias or high variance, a feature set 
with a low error estimate cannot be automatically declared to be 
credible. Also, it is important to choose an error estimator which 
yields a reliable ranking for the feature sets.1 Furthermore, when 
confronted with a small sample, feature selection algorithms 
often fail to find good feature sets. The problem is exacerbated 
for high-dimensional data, ie, data sets with feature sets of high 
cardinality. It is difficult to find a good feature set in the small 
sample setting even when one uses a mathematically favorable 
gene concentration/expression model.2 These observations sug-
gest that it is prudent to report a list of potential feature sets 
rather than attempting to find the best feature set. In addition 
to the unreliability of feature selection and error estimation, the 
accuracy of classification depends on the manner in which the 
phenomena are transformed into data by the measurement 
technology. High-throughput sequencing technologies such as 

next-generation sequencing (NGS) have recently emerged as 
popular tools to quantify gene transcripts. However, NGS tech-
nologies pose new computational and statistical challenges 
because their applications result in nonlinear transformations of 
the underlying gene concentration distributions. A recent study 
showed that an NGS pipeline could lead to transformation deg-
radation in classification performance.3 In this article, we 
address the effects of the nonlinear transformation induced by 
the sequencing machine and the choice of error estimators on 
feature-set ranking.

The development of NGS technologies enables simultane-
ous measurements of the abundance of messenger RNA 
(mRNA) transcripts, and such information can be used to 
detect differential gene expression and design gene expression–
based classifiers for phenotypic discrimination and medical 
diagnosis or prognosis. RNA-Seq provides discrete counting 
measurements for the gene expression levels.4 All RNA-Seq 
data generation follows a similar protocol, starting with shear-
ing samples to generate millions of small RNA fragments. 
These fragments are then converted to complementary DNA 
(cDNA), and the adapter sequences are ligated to their ends. 
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This collection, referred to as a library, is then sequenced, which 
produces millions of short sequence reads that correspond to 
individual cDNA fragments. Finally, those reads are mapped to 
a reference genome. The number of reads mapped to a gene on 
the reference genome defines the count data, which is a discrete 
measure of the respective gene expression levels.

Much of the literature concerning the statistical representa-
tion of RNA-Seq data models it via a negative binomial5,6 or 
Poisson7 distribution. The Poisson model is parameterized by 
its mean and it is already known that RNA-Seq data may 
exhibit more variability than the single Poisson distribution 
parameter. The negative binomial distribution can mitigate 
this overdispersion problem, allowing the variance to exceed 
the mean; however, when dealing with a relatively small num-
ber of samples, it is difficult to accurately estimate the disper-
sion parameter of the negative binomial model. Therefore, in 
this article, we focus on a hierarchical multivariate Poisson 
model.3 Specifically, gene concentration levels are extracted 
from a log-normal distribution, and their subsequent process-
ing by the sequencing instrument is modeled via a Poisson pro-
cess. The hierarchical model is not as restrictive as the simple 
Poisson model and can be considered as a compromise between 
the Poisson and negative binomial models in the small-sample 
setting.8 The simulated NGS data follow a conditionally 
Poisson distribution, and the marginal distribution of the data 
is a mixture of Poisson and Gaussian distributions.

Although multivariate data offer the potential for finding 
features for phenotypic discrimination, large-scale and high 
dimensionality classification problems with small sample sizes 
can result in overfitting of the data. A variety of feature selec-
tion algorithms for classification have been proposed over the 
past decades.9,10 Feature selection has inherent problems due to 
its combinatorial nature and sampling procedures. To select a 
subset of k  features out of n  potential features and be assured 
that it provides an optimal classifier with minimum error 

among all optimal classifiers for subsets of size k, all 
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sible sets must be checked to guarantee that the best one is 
selected.11 In other words, nothing but an exhaustive search can 
assure finding the best feature set. In practice, feature selection 
must proceed from sample data, which leads to the well-known 
peaking phenomenon, ie, the tendency of achieving improved 
classification performance with an increasing number of fea-
tures only to a point, beyond which more features lead to deg-
radation of the classification accuracy.12-16 Therefore, employing 
too many features in a small-sample setting yields poorer clas-
sification accuracy, thereby leading to the need for feature 
selection. This raises a critical question: can one expect a fea-
ture selection algorithm to yield a feature set whose error is 
close to that of an optimal feature set?

A good feature selector is expected to report a list of feature 
sets without missing the true target. Thus, ranking of feature 
sets becomes a key issue for classification. Unfortunately, for 

small samples, error estimators deployed to perform the rank-
ing of the feature sets suffer from different degrees of impreci-
sion. Moreover, there is little correlation between the errors of 
the selected feature set and a close-to-optimal feature set.17 
When the number of samples is small, using resampling-based 
classifier error estimators such as cross-validation and boot-
strap is risky owing to the substantial variance18 and lack of 
regression with the true error,18-21 which is exacerbated in the 
presence of feature selection.22,23 Hence, it is important to 
choose a computationally feasible error estimator that yields 
rankings that better correspond to rankings produced by the 
true errors.

Often, when ordering a list of feature sets based on the esti-
mated errors, the smaller estimates tend to be biased optimisti-
cally and the larger estimates tend to be biased pessimistically.2 
Thus, reporting a list of feature sets is preferred compared with 
providing a single good feature set, the idea being that some in 
the list of top-performing feature sets will be close to optimal.2 
This approach assures that there is at least one feature set on 
the list whose true classification error is within some given tol-
erance of the best feature set with high probability. Given the 
list, one can either focus on the feature sets in the list for fur-
ther sampling or take a classical wet-lab approach to determine 
which ones are predictive of the phenotype of interest.2

In this study, we investigate the effects of the nonlinear 
transformation induced by NGS technology and the choice of 
error estimators on feature-set ranking. Quantification of 
changes in feature-set lists due to a measurement technology 
requires a baseline to compare, ie, underlying gene concentra-
tion as the biological ground truth. This can be accomplished 
via simulated data experiments. For this purpose, we used a 
model-based approach and provided a distribution from 
which the synthetic data arise. We also consider an application 
of the proposed methodology to real RNA-Seq data as an 
example of one possible way to derive power curves that esti-
mate the goodness of the feature-set ranking under user-
defined settings.

We focus on the linear discriminant analysis (LDA) clas-
sification rule, and our work is neither a comparison study of 
different pattern classifiers nor a model selection study. The 
rationale for focusing on LDA classifiers is based on our pre-
vious studies.1,24 The performance of 7 different classification 
rules on real patient data was compared in terms of the 
expected classification error, for different sample sizes and 
dimensionality.24 Classification rules considered were LDA, 
quadratic discriminant analysis, nearest mean classification, 
1-nearest neighbor, 3-nearest neighbor, Classification And 
Regression Trees (CART) with a stopping rule that ends 
splitting when there are 6 or fewer sample points in a node, 
and a neural network with 4 nodes in the hidden layer. As a 
result, LDA has proved to be a very robust classification rule, 
which is effective for a wide range of sample sizes, and there-
fore, we focus on the LDA classification rule.
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Methods
Ranking power

The ranking power is a measure of the goodness of a ranked list 
of classification feature sets and is defined as follows2:

∆D d
n r m P r,
, ( )( ) = − <ε ε1 0

where ε1  is the lowest test error for the feature sets in a ranked 
list of length m  sorted by their estimated errors, and ε0  is the 
test error of the classifier computed for the Bayes features. 
Specifically, to compute the ranking power, consider all the 
possible feature sets of size d  among the number D  of total 
features. Then, rank them according to their estimated errors 
and obtain the top m feature sets,   1 2, , , m . Define ε1  as 
the lowest test error of the classifier among the m  feature sets 
considered. The ith lowest estimated error ε ( )i  corresponds to 
the feature set ( )i , but the ith lowest test error ε( )i  will likely 
not correspond to the feature set ( )i .

The ranking power provides the probability that given a 
ranked list of m  feature sets, there is at least one feature set in 
that list with an error that is close to that of the best feature set. 
The ranking power depends on the list length m, the total 
number D  of features, the number d  of selected features, and 
sample size n. The original ranking power definition takes into 
account the difference between the smallest test error of the 
classifier in a given list of feature sets and the respective test 
error of the Bayes feature set. However, it is often desirable to 
consider the magnitude of the Bayes error. Thus, we propose 
the following modification to the ranking power definition:

∆D d
n c m P c,
, ( )( ) = − < ⋅ε ε ε1 0 0

This modification allows for an explicit comparison of the 
difference between ε1  and ε0  with the magnitude of the test 
error of the Bayes feature set as represented by the parameter c. 
For example, c = 0 01.  indicates that we are only interested in 
ranked lists of features sets where the feature set with the 
smallest test error differs from the test error of the Bayes fea-
ture set by less than 1% of the test error of the Bayes feature set. 
For any given ε0 , there is a clear relationship between the value 
of r  in the original definition of the ranking power and the 
parameter c  in the modified version above. Thus, for the pur-
pose of comparing our simulation results with those from the 
previous study by Zhao et  al,2 we report the values of the 
parameter r .

Ranking power of the gene expression concentration gener-
ated from the multivariate normal (MVN) distribution25,26 is 
computed by the probability of the following inequality:

ε ε ε1 0 0, , ,MVN MVN MVNc− < ⋅

where ε1,MVN  is the lowest test error for the feature sets in the 
MVN ranked list and ε0,MVN  is the test error of the Bayes 

feature set in the MVN model. In the same way, ranking power 
of the NGS data is calculated by the probability of the 
following:

ε ε ε1 0 0, , ,NGS NGS NGSc− < ⋅

The same Bayes feature set in the MVN model is used as 
the Bayes feature set of the NGS model and ε0,NGS  is the 
respective test error of the Bayes feature set in the NGS data. 
The smallest test error for the feature sets in the NGS ranked 
list is ε1,NGS .

Length of extensions

Gene expression concentration is the biological ground truth 
and has often been modeled by the MVN distribution.25,26 We 
use the MVN model to assess the effects of the NGS transfor-
mation on the ranking power and the composition of the 
ranked lists of feature sets. In general, when one desires to 
compare 2 ranked lists of feature sets, one is interested how a 
particular feature set is ranked in each one of the 2 lists. 
Although there are several possible ways to measure this differ-
ence in the ranking, we focus on the ranking of a top-perform-
ing feature set from 1 of the 2 lists in the other list. To achieve 
the desired comparison, we introduce the following notation: 
MVN  denotes the feature set ranked at the top in the list of 
feature sets obtained using the MVN model of gene concentra-
tions and the rank of MVN  in the respective NGS list is 
denoted as τNGS. Similarly, τMVN  is the rank of the top feature 
set NGS  from the NGS list in the respective MVN ranked list 
of feature sets.

Bayes features

The Mahalanobis distance provides a way to calculate the 
Bayes error. If class densities are Gaussian, the Bayes error can 
be simply calculated using only sample mean vectors µi and 
sample covariance matrices Σi  of class i. The Mahalanobis 
distance ∆ is given as follows:

∆ Σ= −( ) −( )−µ µ µ µ1 2
1

1 2
T

where Σ  denotes the average covariance matrix given by 
Σ Σ Σ= ⋅ + ⋅P c P c( ) ( )1 1 2 2  and P ci( )  is a priori class probability 
of class i = 1 2, . Equal prior probabilities for the classes and 
equal covariance matrices are assumed in our model. Therefore, 
the Bayes error for any feature set   of size d  is Φ ∆( / )− 2 , 
where Φ  is the standard normal cumulative distribution func-
tion. bayes  denotes the feature set having the largest Mahalanobis 
distance and, accordingly, the minimum Bayes error.

Bayes features of a hierarchical model cannot be easily 
found as in the Gaussian case. Simulated NGS data are the 
mixed form of Poisson and Gaussian distributions, so there is 
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no analytical formula for the Bayes error. The Bayes error of the 
hierarchical model can be estimated using Monte Carlo sam-
pling. In this study, Bayes features of the MVN are used as the 
Bayes features of the NGS data in the biological context. 
Although Bayes features of the MVN are not equal to those of 
the transformed data, MVN Bayes features reflect the biologi-
cal ground-truth markers.

The Models for Gene Concentrations and NGS Data
Two different types of synthetic data are generated for simula-
tion experiments: (1) actual gene expression concentration, 
called MVN and (2) Poisson-transformed MVN data, denoted 
as NGS, which emulate NGS reads.

Multivariate Gaussian model

Gene concentration levels can be modeled using a log-normal 
distribution,27-29 and the hybrid multivariate Gaussian model 
proposed in Zhao et al2 is adopted in this article. Genes/fea-
tures are categorized into 2 groups: markers and nonmarkers. 
There is a total of D = +υ η  features and υ  and η  represent 
the number of markers and nonmarkers in the model, respec-
tively. Markers resemble genes associated with diseases and 
they have 2 class-conditional Gaussian distributions with 
equally likely classes and common covariance matrix Σ. The 
mean vectors for the markers are µ0 0 0 0 0= ×m T( , , , )

 and 
µ υ1 1 1 2= ×m a a a T( , , , )  for class 0 and class 1, respectively, 
where m0  and m1  are scalars and υ  denotes the total number 
of marker features generated. To mimic real experimental situ-
ations, where every marker performs well but not exactly the 
same, all elements of vector µ1 are not equal to one another. µ1 
is an equally spaced vector with a1 1=  and aυ = 0 8. . The 
covariance matrix Σ  is blocked and each block Σρ  has vari-
ance σµ

2
 along the diagonal and correlation coefficient ρ  off 

the diagonal:
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Different blocks correspond to different gene regulatory 
pathways25,26 and model the assumption that groups of genes 
in the same pathway are biologically or functionally correlated 
and interacting with each other, whereas genes in different 
pathways are uncorrelated. Nonmarkers are uncorrelated and 

modeled as 1-dimensional zero-mean random Gaussian noise, 
with a total of η  features.

The hierarchical multivariate Poisson model

The gene expression levels in NGS data are measured by the 
number of reads that are mapped to the corresponding gene in 
the reference genome. Thus, NGS-type data values are discrete 
with nonnegative integers. Several statistical models for NGS 
data based on the negative binomial model or Poisson distribu-
tion have been proposed.5-7 In this article, the hierarchical mul-
tivariate Poisson model3 is adopted. It assumes that the 
sequencing facility samples mRNA concentration through a 
Poisson process, and the expected number of reads is the mean 
of the Poisson distribution. Read count for a sample point i and 
the jth gene is Xi j, . It is obtained by the generalized linear 
model30 for a given si :

p X s Poisson si j i i i j i j, , ,| ~ exp( ) +( )( )λ θ

where si  denotes the sequencing depth for the ith sample 
point in the model and is randomly generated from a uniform 
distribution, U(α, β), where α > 0 and β> α. To generate count 
data for RNA-Seq reads, the hybrid Gaussian model is fed to 
the pipeline as λi j, , the jth gene expression level in a sample 
point i. The value is perturbed by θi j, , which reflects technical 
effects associated with the experiment and is drawn from a 
Gaussian distribution:

θi j N m m COV, ~ ,0 1 0−( )
where COV is the coefficient of variation. Once the NGS data 
are generated, the features are normalized in a way that each 
feature is zero mean and unit standard deviation across all the 
sample points.

Implementation
Figure 1 presents a general overview of the simulation employed 
herein. General implementation follows a similar simulation 
procedure proposed in Zhao et al2:

1. Set up a hybrid Gaussian model with υ  marker features 
and η nonmarkers to yield D = +υ η  features. Find the 
Bayes feature set bayes  of size d.

2. Generate a large test set of independent data using the 
MVN model.

3. For every feature set of size d , design an LDA classifier 
and compute its estimated and test errors. Compute the 
test error ε0,MVN  for bayes.

4. Rank all feature sets by their estimated errors based on 
the training data and select the top m  of them to form 
the MVN ranked list.

5. Let ε1,MVN  be the lowest test error in the top m  list. If 
ε ε ε1 0 0, , ,MVN MVN MVNc− < ⋅ , set count countMVN MVN= +1.
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6. The MVN data generated from steps (1) and (2) are fed 
to the Poisson transformation pipeline to obtain the 
NGS data.

7. Repeat steps (3) through (5) for the NGS data. Use the same 
Bayes feature set bayes  to compute the test error ε0,NGS .  
If ε ε ε1 0 0, , ,NGS NGS NGSc− < ⋅ , set count countNGS NGS= +1.

8. Repeat steps (1) through (7) N  times to get 
∆ =D d
n c

MVN MVNm count N,
, ( ) /  and ∆D d

n c
NGS,

,  (m) = 
count NNGS / .

9. Compare MVN and NGS lists and obtain τMVN  and 
τNGS .

10. Find the ranks of Bayes feature sets in the MVN and 
NGS lists. Denote them as BMVN  and BNGS, 
respectively.

Simulation Parameters
RNA-Seq technology can provide different numbers of reads 
per sample, depending on many factors, such as quality of the 
sample, the desired coverage, and sample multiplexing. To deal 
with this issue, a previous study3 examined a variety of ranges 
of the sequencing depth and NGS-read counts for real RNA-
Seq experiments, and the parameters α  and β  are chosen 

accordingly. Therefore, our selections for the model parameters 
reflect how real data behave because they take into account a 
range of NGS-read counts one can expect from real data. Our 
study is model based and we do not focus on the problems of 
inference or parameter estimation from data. Thus, we adopt 
the parameters’ ranges/values from the work by Ghaffari et al.3

Parameters for the sequencing depth s Ui ~ ( , )α β  are set to 
α = 9, β = 11, and COV = 0 05. ; m0 0= , m1 1=  are used for 
the distribution of technical effects, θi j, . Simulation setups and 
the list of parameters used for the multivariate Gaussian model 
are provided in Table 1. Experiment numbers in Table 1 cor-
respond to the parameter setting of each experiment in Table 2 
and Supplementary Tables 1 and 2. Absolute bound r  is used 
for comparisons between our results and those in Zhao et al.2 
Corresponding values for the relative significance of the differ-
ence c  are provided in Table 2.

Because there is no closed form to calculate the true errors 
of designed classifiers, large independent test sets are gener-
ated. When using independent test data, the root mean square 
between the true and estimated error is bounded above by 
1 2/ ntest .3 Test sample of size ntest = 10000  is generated and 
samples are divided equally between the 2 classes.

Figure 1. An overview of the simulation. Two different types of synthetic data are generated: (1) multivariate normal (MVN) and (2) next-generation 

sequencing (NGS). Data sets are generated from a multivariate Gaussian model and a hierarchical multivariate Poisson model. Subsequently, the data 

sets are fed to the same test modules: classification, error estimation, and feature-set ranking.

Table 1. Model parameters for generating synthetic data.

EXP No. D υ n σµ
2 ρ B d

1 {50,100,150} {5,10,20} 40 1 0.8 5 {2,3}

2 150 10 {40,80,120} 1 0.8 5 2

3 150 10 40 {0.5,1,2} 0.8 5 2

4 150 10 40 1 {0.1,0.5,0.8} 5 2

5 150 10 40 1 0.8 {2,5,10} 2

6

100 5

40 1 0.8 5 2 200 10

300 15

http://journals.sagepub.com/doi/suppl/10.1177/1176935117710530
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Table 2. Mean of ε0  in the multivariate normal and next-generation sequencing list and relative differences between ε0  and ε1  with respect to ε0.

EXP No. PARAMETERS E[ε0,mvn] cmvn

(r = 0.03)
E[ε0,ngs] cngs

(r = 0.03)

1
( )d = 2  

υ = 5

D = 50 0.2557 0.1173 0.2993 0.1002

D = 100 0.2559 0.1172 0.2990 0.1003

D = 150 0.2558 0.1173 0.2994 0.1002

υ = 10

D = 50 0.2558 0.1173 0.2990 0.1003

D = 100 0.2557 0.1173 0.2988 0.1004

D = 150 0.2558 0.1173 0.2992 0.1003

υ = 20

D = 50 0.2559 0.1172 0.2992 0.1003

D = 100 0.2556 0.1174 0.2988 0.1004

D = 150 0.2559 0.1173 0.2992 0.1003

1
( )d = 3

υ = 5

D = 50 0.2557 0.1173 0.2993 0.1002

D = 100 0.2559 0.1172 0.2990 0.1003

D = 150 0.2558 0.1173 0.2994 0.1002

υ = 10

D = 50 0.2558 0.1173 0.2990 0.1003

D = 100 0.2557 0.1173 0.2988 0.1004

D = 150 0.2558 0.1173 0.2992 0.1003

υ = 20

D = 50 0.2559 0.1172 0.2992 0.1003

D = 100 0.2556 0.1174 0.2988 0.1004

D = 150 0.2559 0.1173 0.2992 0.1003

2

n, bresub

40 0.2558 0.1173 0.2992 0.1003

80 0.2498 0.1201 0.2956 0.1015

120 0.2479 0.1210 0.2947 0.1018

n, loo

40 0.2558 0.1173 0.2994 0.1002

80 0.2497 0.1201 0.2958 0.1014

120 0.2479 0.1210 0.2946 0.1018

3 σµ
2

0.5 0.1734 0.1731 0.2190 0.1370

1 0.2558 0.1173 0.2992 0.1003

2 0.3266 0.0919 0.3737 0.0803

4 ρ

0.1 0.2557 0.1173 0.2995 0.1002

0.5 0.2559 0.1172 0.2991 0.1003

0.8 0.2558 0.1173 0.2992 0.1003

5 B

2 0.2626 0.1142 0.3042 0.0986

5 0.2558 0.1173 0.2992 0.1003

10 0.2535 0.1184 0.2972 0.1009

6

   D = 100, υ = 5 0.2559 0.1172 0.2990 0.1003

   D = 200, υ = 10 0.2557 0.1173 0.2991 0.1003

   D = 300, υ = 15 0.2558 0.1173 0.2996 0.1001

Abbreviations: BRESUB, bolstered resubstitution; Loo, leave-one-out.
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Results
Synthetic data

Effects of D n B d, , , , , ,υ σ ρµ
2  and proportion of υ  to D  are 

studied.

Effects of error estimators. Previous literature shows that cross-
validation methods, especially leave-one-out (LOO) estima-
tors, display large variance.31,32 This variance results in a widely 
dispersed deviation between the true and estimated errors of a 
classifier, thereby making cross-validation unreliable for rank-
ing feature sets in the small-sample setting. It has been shown 
that bolstering and resubstitution-based feature ranking out-
perform LOO cross-validation–based feature ranking for dis-
covering top-performing feature sets for classification when 
using small samples.1 Previous studies1,33 are based on a Gauss-
ian mixture model and microarray-based patient data. In this 
article, we examine the effects of error estimators on the rank-
ing of feature sets of RNA-Seq data. Two different error esti-
mators, bolstered resubstitution (BRESUB) and LOO, are 

used to sort the lists. Figure 2 indicates that the hit rate of 
finding a good feature set in the list sorted by BRESUB error 
estimators is higher than the success rate of the LOO-based 
list. Figure 3A shows that both τMVN LOO,  and τNGS LOO,  are 
larger than τMVN BRESUB,  and τNGS BRESUB, , respectively, which 
implies that LOO mixes up the orders more harshly than 
BRESUB. Moreover, Figure 3B shows that the ranks of Bayes 
feature sets in the LOO-based list are larger than that of the 
bolstered resubstitution-based list. All of these results suggest 
that LOO estimators perform poorly with RNA-Seq data, 
producing less accurate ranking orders compared with the list 
sorted by BRESUB error estimators.

Effects of the sample size, n. A larger sample size generally leads 
to better performance of classification and ranking feature sets. 
The results of NGS shown in Figures 2 and 3 are in accordance 
with this expectation. As sample size increases, ranking power 
curves for NGS are also elevated. For both types of data, mono-
tonic decrease in extension length and Bayes rank in median is 
observed as sample size gets larger.

Figure 2. Power curves for different error estimators and sample size n. Solid: multivariate normal (MVN), dashed: next-generation sequencing (NGS), 

red: leave-one-out (Loo), and blue: bolstered resubstitution (BRESUB).

A B

Figure 3. Effects of different error estimators and sample size n  on (A) length of list extensions and (B) rank of a Bayes feature set. Solid: median; 

dashed: average; cyan: MVN, Loo; blue: MVN, BRESUB; pink: NGS, Loo; red: NGS, BRESUB. BRESUB indicates bolstered resubstitution; Loo, 

leave-one-out, MVN, multivariate normal; NGS, next-generation sequencing.
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Effects of the total number of features D and the number of marker 
features, υ . Figure 4A represents the effects of the total num-
ber D of features and the number υ  of marker features on the 
ranking power curves when the final number d  of selected 
features is 2. The ranking power curves for d = 3  are provided 
in Figure 4B. Zhao et al2 have shown that the power curves are 
lowered in the MVN model as the total number of features 
increases. Figure 4A and B shows analogous results in the 
RNA-Seq model. The plots also indicate that for a fixed value 
of D, the power increases as υ  increases. This is not surprising 
because the prior information provided by the biologist 
becomes richer, containing more markers.

Figure 5 illustrates the effects of increasing D and υ  on 
τMVN  and τNGS . As D gets larger, a monotonic increase in 
median and average extension length is observed in both mod-
els. In Figure 5B and D, no obvious trend can be discerned in 
terms of the mean, nor is there any consistency. However, the 
median extension length exhibits a slight increasing trend.

Histograms of length of extensions and the rank of the 
Bayes feature set are illustrated in Figure 6. It is a skewed 

heavy-tailed distribution with the mean farther out in the long 
tail than the median. Because the mean is highly vulnerable to 
outliers, it should be interpreted with caution when extreme 
values are present. Focusing on the median values, which are 
less affected by outliers, an increasing trend of median exten-
sion length is exhibited as υ  gets larger. This is because it 
becomes more competitive to rank at the top as more markers 
enter into the data and the one which occupies the top becomes 
more variable, thereby resulting in the increase in extension 
length to match 2 lists.

The monotonic increase in median rank of Bayes feature pair 
is presented in Figure 7B and D, as υ  increases. As more marker 
features are included, there are more feature pairs which per-
form as well as a Bayes feature pair. Therefore, the Bayes feature 
set is no longer a unique and distinguishing feature pair, and the 
multitude of marker features obscures the Bayes feature pairs.

Effects of the variance σµ
2  in the marker model. Figure 8A shows 

the effect of the variance in the marker model. Higher variance 
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results in larger overlaps of the 2 distributions, which leads to 
degradation of classification performance and increasing diffi-
culty of finding top-performing feature sets. Therefore, the 
success rates of both models decrease as variance increases. 
When σµ

2 2 0= . , the power curve of the NGS model is higher 
than that of MVN. This does not necessarily mean that it is 
better to use the RNA-Seq model to detect a good feature set 
when the problem is difficult. A better interpretation is that 
mixing is so extensive that even the underlying gene concentra-
tions are useless for finding a good feature set. Figure 8A also 
shows that both extension length and rank of Bayes feature sets 
increase as variance increases.

Effects of the correlation ρ  in the covariance matrix. Zhao 
et al2 have shown that a higher correlation makes it slightly 
harder to find good features in the MVN model. Figure 8B 
indicates that the same applies to the RNA-Seq model. As 
ρ  increases, ranking power of both MVN and RNA-Seq 

models decreases. Curves for median extension length and 
the rank of Bayes feature sets are almost flat with respect to 
the correlation.

Effects of the number of blocks B in the covariance matrix. Dif-
ferent blocks represent different metabolic/biologic path-
ways, and as the number of blocks increases, genes may 
become spread among more pathways and may increase the 
power to find good features. Zhao et  al2 showed that it is 
easier to find good features with more blocks. Figure 8C 
demonstrates that the ranking power becomes higher as B 
increases in the RNA-Seq model. When there are only 2 
blocks, RNA-Seq exhibits a higher success rate compared 
with the MVN model, but it is very unlikely to have only 2 
pathways in real data. Figure 8C shows decreasing extension 
length with larger B, which is consistent with the power 
curve. No specific trend is observed in the rank of the Bayes 
feature set with respect to B.

Figure 4. Power curves for different D and υ  when (A) d = 2  and (B) d = 3. MVN indicates multivariate normal; NGS, next-generation sequencing.
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A

B

C

D

Figure 5. Effects of different D and υ on length of list extensions for d = 2  are presented in (A) and (B). Graphs for d = 3  are presented in (C) and (D). 

Solid: median, dashed: average, blue: MVN, red: NGS. MVN indicates multivariate normal; NGS, next-generation sequencing.
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Effects of increasing D  at the same rate υ  increases. To examine 
the effects of increasing D  at the same rate υ  increases, the 
proportion of marker features in the data were fixed at 0.05 with 
the total number of features ranging from 100 to 300. Figure 
9A shows that when the proportion υ / D  is kept constant, the 
power curves are relatively unchanged as the number of total 
features D increases. However, Figure 9B shows that the exten-
sion length and the rank of the Bayes feature sets increase under 
the same conditions, pointing to the increased difficulty of the 
problem as the number of total features increases.

An example of feature-set ranking for a  
real data set

We consider a real RNA-Seq data set from a randomized, dou-
ble-blind crossover intervention of flaxseed lignan extract and 
placebo.34 Colonic mucosal biopsies from healthy participants 
are used to characterize the site-specific global gene expression 
signatures associated with stromal versus epithelial tissue. The 
data provide insight into the gene expression landscape of the 
normal epithelium and stroma prior to the onset of intestinal 

Figure 6. Histogram of length of list extensions and rank of a Bayes feature set. Solid: median, dashed: average, blue: MVN, red: NGS. MVN indicates 

multivariate normal; NGS, next-generation sequencing.

tumorigenesis. This is noteworthy because the development of 
cancer is intimately linked to cross talk between cancer cells 
and the surrounding stromal cells.34 The data set consists of 29 
epithelium and 30 stroma biopsies from the sigmoid colon. 
Epithelium samples belong to class 0, and stroma samples are 
labeled as class 1. In total, 960 intestinal genes were selected 
using prior biological knowledge.35 Out of 960 genes, 259 stro-
mal genes and 9 epithelial genes were included which were 
shown to be highly expressed in stroma and epithelium, respec-
tively.36,37 Repeated random subsampling holdout38 method 
was employed on the data set. Twenty samples were randomly 
selected and used for training, and the remaining data samples 
were assigned to the test set. This process was repeated 10 000 
times with different subsamples to improve the reliability of 
the holdout estimate.38 The proportion of samples from each 
class was kept the same in both the training and test sets. For 
every feature set of size 2, we designed an LDA classifier and 
computed its estimated and test errors. Bolstered resubstitution 
error estimators were used to sort the feature sets. As there is 
no analytical way to obtain a set of Bayes features for real data, 
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C

D

Figure 7. Effects of different D and υ on rank of a Bayes feature set for d = 2  are shown in (A) and (B). Graphs for d = 3  are presented in (C) and (D). 

Solid: median, dashed: average, blue: MVN, red: NGS. MVN indicates multivariate normal; NGS, next-generation sequencing.
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we determined ε0  empirically. Random subsampling was 
repeated 10 000 times, and the mean of the lowest test errors 
was taken as ε ε0 0 0 189192( . )= .

Figure 10 shows the ranking power for this data set. The 
parameter r = 0 03.  indicates that we are interested in ranked 
lists of feature sets where the feature set with the smallest test 
error differs from ε0  less than 15.9% of the ε0 . Typically, when 
a smaller r  is employed, a short list may miss interesting gene 
sets worthy of consideration. Therefore, the list should be fur-
ther extended to increase the probability of the existence of 
candidate genes that provide a good approximation of the 
Bayes features. It is also important to note that a longer list 
does not always increase the number of candidate genes. As 
shown in Zhao et al,2 some genes repeatedly appear in the list 

A

B

C

Figure 8. Effects of (A) variance, σµ
2

; (B) correlation, ρ ; and (C) the number of blocks, B  on the ranking power, length of list extensions, and rank of a 

Bayes feature set. MVN indicates multivariate normal; NGS, next-generation sequencing.

combined with other genes. Ranking power of the real data for 
large m  is provided in Supplementary Figure 1.

Conclusions
This study examines the ranking performance of feature sets 
derived from a model of RNA-Seq data and compares it with 
that of an MVN model of gene concentrations. The results 
demonstrate that the general trends of the parameter effects on 
the ranking power of underlying gene concentrations are pre-
served in the RNA-Seq data; however, the power of finding a 
good feature set becomes weaker and the data become less dis-
criminative when gene concentrations are transformed by the 
sequencing machine. Moreover, the consistency between the 
ranked lists of feature sets based on the MVN and the NGS 

http://journals.sagepub.com/doi/suppl/10.1177/1176935117710530
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A

B

Figure 9. Effects of proportion of υ to D on (A) the ranking power, (B) length of list extensions, and (C) rank of a Bayes feature set. Ratio of υ to D remains 

the same as 0.05. MVN indicates multivariate normal; NGS, next-generation sequencing.

Figure 10. Power curves for a real data set where n = 59 , D = 960, 

d = 2. Red: r = 0 03. , green: r = 0 05. , black: r = 0 07. .

data is poor, which indicates unreliable classification perfor-
mance in the case of RNA-Seq data.
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