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Abstract: The aim of this study is to provide a comprehensive characterization of stemness in
pancreatic ductal adenocarcinoma (PDAC) cell lines. Seventeen cell lines were evaluated for the
expression of cancer stem cell (CSC) markers. The two putative pancreatic CSC phenotypes were
expressed heterogeneously ranging from 0 to 99.35% (median 3.46) for ESA+CD24+CD44+ and 0 to
1.94% (median 0.13) for CXCR4+CD133+. Cell lines were classified according to ESA+CD24+CD44+

expression as: Low-Stemness (LS; <5%, n = 9, median 0.31%); Medium-Stemness (MS; 6–20%,
n = 4, median 12.4%); and High-Stemness (HS; >20%, n = 4, median 95.8%) cell lines. Higher
degree of stemness was associated with in vivo tumorigenicity but not with in vitro growth kinetics,
clonogenicity, and chemo-resistance. A wide characterization (chemokine receptors, factors involved
in pancreatic organogenesis, markers of epithelial–mesenchymal transition, and secretome) revealed
that the degree of stemness was associated with KRT19 and NKX2.2 mRNA expression, with CD49a
and CA19.9/Tie2 protein expression, and with the secretion of VEGF, IL-7, IL-12p70, IL-6, CCL3, IL-10,
and CXCL9. The expression of stem cell markers was also evaluated on primary tumor cells from 55
PDAC patients who underwent pancreatectomy with radical intent, revealing that CXCR4+/CD133+

and CD24+ cells, but not ESA+CD24+CD44+, are independent predictors of mortality.

Keywords: PDAC; stemness; pancreatic cancer stem cells

1. Introduction

PDAC is a lethal disease with a 5-year survival rate of approximately 10% and with
a dramatic clinical course [1]. The adverse clinical outcome of PDAC is primarily due
to the difficulty of an early diagnosis and the aggressiveness of cancer that is able to in-
vade, disseminate, and resist to conventional therapies [2]. The latter was suggested to
be driven by the existence of a population of highly plastic “stem”-like cells within the
tumor, known as CSCs [3]. CSCs describe a subpopulation of cancer cells that behave
like stem cells in their ability to self-renew and differentiate into different tumor compo-
nents through stemness pathways [4,5]. The hypothesis that tumors may possess a stem
cell–like subpopulation involved in driving tumor propagation and pathogenesis was
suggested for many different solid tumors [5]. Since pancreatic CSCs were discovered
in 2007 [3], different studies have demonstrated and confirmed their metabolic, invasive,
and chemoresistance properties [6]. Pancreatic CSCs are involved in the mechanisms of
tumor recurrence [7], drug resistance [8], tumor invasion, and metastatic dissemination [6].
Different strategies have been suggested to identify and isolate CSCs from pancreatic cancer
including the expression of surface markers, the exclusion of the dye Hoechst 33342 (side
population), and the ability to expand into spheres in suspension [9]. Even though a global
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signature of molecular markers does not exist yet [10], CSCs are known to express specific
cell membrane markers. The tumor cells which simultaneously expressed CD44, CD24,
and ESA/EpCAM (epithelial specific antigen) were firstly defined as pancreatic CSCs
by Li et al. [3]. In fact, the CD44+CD24+EpCAM+ phenotype was reported to exhibit a
100-fold increase in the tumor-initiating capacity versus the other cancer cells, both in vitro
and in vivo. Other suggested pancreatic CSC markers included CD133 [11], c-Met [12],
ALDH1 [13], Lgr5 [14], DCLK1 [15], CXCR4 [16], and ABCG2 [17]. Among these, the
double positivity for CD133 and CXCR4 was suggested to be able to identify a population
of pancreatic CSCs that sustains pancreatic tumor growth and is essential for metastasis [18].
Even if the CSC concept is well accepted and believed to be the best model to understand
PDAC heterogeneity and plasticity, some questions remain open [6], such as if CSC is a
hardwire defined entity or a plastic state [19], and it is essential to develop methodologies
for distinguishing CSCs from other tumor cells in order to identify new therapies that can
specifically target and eliminate this cellular subpopulation, preventing tumor recurrence
and metastatic disease. Established cell lines represent a commonly used source of material
for PDAC studies, as the tumor’s conspicuous desmoplastic stroma makes the isolation
of primary cells difficult. While data regarding genetic alterations, growth features, differ-
entiation status, and biological behaviour in PDAC cell lines have been reported [20–22],
a comprehensive analysis of stemness in commonly used PDAC cell lines has not been
performed. In this report, we present the results of the analysis of the expression of stem
cell markers in 17 pancreatic cancer cell lines and their association with growth kinetics,
clonogenicity, chemo-resistance, tumorigenicity, expression of genes involved in pancreatic
organogenesis and tissue commitment, expression of chemokine receptors, markers of
epithelial–mesenchymal transition, and secretome. Moreover, the expression of stem cell
markers in primary tumor from PDAC patients and their correlation with clinical outcome
is provided.

2. Results
2.1. Evaluation of Putative Stem Phenotypes in PDAC Cell Lines

We evaluated the two putative stem phenotypes CD44+/CD24+/ESA+ and CD133+/
CXCR4+ by flow cytometry analysis in 17 different PDAC cell lines (Figure 1 and Table S1).
The percentage of CD44+/CD24+/ESA+ cells was fairly heterogeneous between different
cell lines ranging from 0 to 99.35% with a median of 3.46% (Figure 1A). The percentage of
CD133+/CXCR4+ cell was generally low ranging from 0 to 1.94 % with a median of 0.13%.
PDAC cell lines were classified according to CD44+/CD24+/ESA+ percentage as Low-
Stemness (LS; <5%, n = 9, median 0.31%), Medium-Stemness (MS; 6–20%, n = 4, median
12.4%), and High-Stemness (HS; >20%, n = 4, median 95.8%) cell lines (Figure 1A,B). As
expected, although with low percentages, the CD133+/CXCR4+ cells segregate according
to the defined degree of stemness (Figure 1B). The analysis of all combinations of staining
(Figure 1C and Table S1) indicated that CD24+, CD133+, and CD24+/CD133+ cells (but not
ESA+, CD44+, and CXCR4+) are correlated with the different degrees of stemness. Even
if not statistically different, higher degrees of stemness are more represented in cell lines
derived from distant metastases than in cell lines derived from loco regional tumoral tissue
(Figure 1D), while patient’s age and sex were not different.

2.2. Growth Kinetics, Clonogenicity, Chemosensitivity, and Tumorigenicity according to the Degree
of Stemness

All the 17 cell lines grew as a monolayer of substrate-adherent cells. Population dou-
bling times ranged from 21 to 62 h and no correlation with the different degrees of stemness
was evident (Figure 2A). We also performed a cell-cycle kinetics analysis and, consistently
with the doubling time data, stemness was not associated with a different distribution of
cell lines in the different phases of the cell cycle, nor with a different G2/G1 ratio, nor
with a different percentage of apoptosis (SubG1) or hyperploidy (Figure 2B). In vitro clono-
genicity of all the 17 cell lines was evaluated by means of IC50 (average number of cells
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to be seeded in a well of a 96-well plate to obtain the growth of a cell clone in half of the
seeded wells). Clonogenicity ranged from IC50 0.02 (MiaPaCa-2) to IC50 724.5 (Panc-2) and
no correlation with the different degrees of stemness was evident (Figure 2C). To assess
the chemoresistance, the different cell lines were cultured for 6 days with gemcitabine
(GEM) (1–1000 µM) and the dose-response curves were used to calculate the IC50, the
drug concentration required to achieve 50% cell death. No significant association was
evident between the stemness degree and the GEM resistance (Figure 2D). The ability of
each PDAC cell line to generate tumors in vivo was investigated by performing limiting
dilution subcutaneous implantation in CD1 nude mice. As previously reported [23], tumors
formed with all cell lines (17 out of 17, 100%) after subcutaneous xenotransplantation of
1 × 106 cells and in a proportionately smaller number of cell lines as the number of cells
decreases: 14 out of 17 (82.4%) after the injection of 1 × 105 cells, 2 out of 17 lines (11.8%)
after the injection of 1 × 104 cells, and 1 out of 17 (5.9%) after the injection of 1 × 103 or
1 × 102 cells. A Cox regression analysis identified both the number of cells injected and
their stemness as independent factors for tumor engraftment with hazard ratios of 5.2 for
any log in cell number increase (95%CI: 3.3–8.3, p < 0.001) and 1.6 (95%CI: 1–2.42, p = 0.048)
for any degree increase in stemness. Considering the injection of 1 × 105 cells (Figure 3A),
the mean time of tumor appearance was 78 (95%CI: 54–106), 49.5 (95%CI: 31–67), and 12
(95%CI: 10–14) days for LS, MS, and HS, respectively (p < 0.001). The increase in the number
of cells injected (1 × 106 cells) generally reduced the mean time of tumor appearance but
the difference between the different degrees of stemness remained significant [LS: 15 days
(95%CI: 8–22); MS 5 days (95%CI: 4–6); HS 4 days (95%CI: 4–5); p = 0.002].
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Figure 1. PDAC cell lines phenotype by FACS analysis. (A) Expression of the stem phenotypes 
ESA+/CD24+/CD44+ in pancreatic cancer cell lines. According to ESA+/CD24+/CD44+ percentage, the 
lines were classified as Low-Stemness (LS; <5%, n = 9), Medium-Stemness (MS; 6 -20%, n = 4), and 
High-Stemness (HS; >20%, n = 4) cell lines. (B) Percentage of ESA+/CD24+/CD44+ and 
CD133+/CXCR4+ cells according to the different stemness degrees. (C) Expression of CD24, CD133, 
CD24/CD133, ESA, CD44, and CXCR4 according to the different stemness degrees. (D) Tissue origin 
of PDAC cell lines according to the different stemness degrees. The Kruskal–Wallis test with post 
hoc Dunn’s multiple comparison test was applied. ** p < 0.05. The medians are represented as hori-
zontal lines. 
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Figure 1. PDAC cell lines phenotype by FACS analysis. (A) Expression of the stem phenotypes
ESA+/CD24+/CD44+ in pancreatic cancer cell lines. According to ESA+/CD24+/CD44+ percent-
age, the lines were classified as Low-Stemness (LS; <5%, n = 9), Medium-Stemness (MS; 6–20%,
n = 4), and High-Stemness (HS; >20%, n = 4) cell lines. (B) Percentage of ESA+/CD24+/CD44+ and
CD133+/CXCR4+ cells according to the different stemness degrees. (C) Expression of CD24, CD133,
CD24/CD133, ESA, CD44, and CXCR4 according to the different stemness degrees. (D) Tissue origin
of PDAC cell lines according to the different stemness degrees. The Kruskal–Wallis test with post
hoc Dunn’s multiple comparison test was applied. ** p < 0.05. The medians are represented as
horizontal lines.
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Figure 2. Growth, clonogenicity, and chemosensitivity of the PDAC cell lines according to the
different stemness degrees. (A) Scatter dot plot representing the doubling time (hours) of the
different cell lines. (B) Cell cycle distribution of the cell lines and ratio G2/G1 according to the
different stemness degrees. (C) Clonogenicity IC50 in the different cell lines. (D) Gemcitabine
IC50 (µM) to show the chemoresistance after 6 days treatment with gemcitabine (1–1000 µM) of
the different cell lines. The Kruskal–Wallis test with post hoc Dunn’s multiple comparison test was
applied. The medians are represented as horizontal lines.

2.3. Gene Expression of Factors Involved in Pancreatic Organogenesis and Differentiated Tissues
Commitment according to the Degrees of Stemness

Pancreatic CSCs could derive from adult cells de-reprogrammed to a ground state. For
this reason, we evaluated the expression of genes involved in pancreatic organogenesis and
tissue commitment. The mRNA expression profile of markers of pancreatic terminal cell
fate (KRT19, CHGA, CHGB, SYP, INS, GCG, GAD2, HNF1b, SOX17, NES, SNAI1, and VIM)
or transcription factors involved in embryonic pancreatic development (PDX1, NKX6.1,
ISL1, NEUROD1, NGN3, NKX2.2, ONECUT1, PAX4, PAX6, and PTF1a) was evaluated
by qRT-PCR (Figure 3B). The degree of stemness resulted associated with an increased
expression of KRT19 and decreased expression of NKX2.2. A trend was also evident for an
increased expression of PDX1, ISL1, HNF1b, PAX6, and NES.

2.4. Expression of Factors Relevant to the Biological Behavior of Cancer Cells according to the
Degrees of Stemness

The expression of chemokine receptors in tumors is correlated with different types
of relapses or more or less favorable clinical outcomes [24–26]. We analyzed by flow
cytometry the expression of CCR and CXCR chemokine receptors in all the 17 PDAC cell
lines (Table S2). The expression of the receptors was heterogeneous among the different
lines. Five chemokine receptors were consistently (median >10%) expressed in the majority
of the cell lines: CCR4, CCR5, CXCR1, CXCR3, and CXCR6. None of the investigated
receptors resulted statistically associated with the degree of stemness, even if a trend was
evident for CXCR3 and CX3CR1 (Figure 4A). The expression of other factors potentially
relevant for the biological behavior of the cancer cell was investigated (Table S3) including
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cell adhesion molecules (CD15, CD49a, CD49e, CD318, E-cadherin, CA19.9), receptors for
growth factors (insulin, CD220; IGF-1, CD221; angiopoietin, Tie2; stem cell factor, CD117),
modulators of microenvironment (CD142, CD200), markers of mesenchyme (CD73, CD166,
CD105, CD31), and mesenchymal stemness (Stro-1, CD34). As for the chemokine receptors,
the expression was heterogeneous among the different cell lines. A consistent expression
of CD220, CD49a, CD49e, CD318, CD19-9, CD142, CD73, CD166, E-cadherin, and CD105
was present in the majority of the cell lines. CD49a and CA19.9/Tie2 were significantly
associated with the degree of stemness, and a trend was evident for CA19.9/CD220,
CA19.9/CD221, and E-Cadherin.
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Figure 3. Tumorigenicity of PDAC cell lines and gene expression profile according to the differ-
ent stemness degrees. (A) Kaplan–Meier curve estimating the cumulative probability to develop
xenograft of the 17 PDAC cell lines injected in CD1 nude mice according to the different stemness
degrees. Shown is the p-value estimated by the log-rank test. (B) Gene expression analysis of tran-
scription factors involved in embryonic pancreatic development and markers of terminal cell fate by
qRT-PCR. Each dot represents a line. Black dot: Low-Stemness lines; Grey dot: Medium-Stemness
lines; red dot: High-Stemness lines; blue star: normal human pancreatic duct cell line HPDE6-E6E7.
The Kruskal–Wallis test with post hoc Dunn’s multiple comparison test was applied.

2.5. Evaluation of Secretome according to the Degrees of Stemness

Secretome was examined after 24 h of culture of all 17 PDAC cell lines (Table 1). Only
proteins detectable in at least half of the cell lines were included in the analysis. The high-
abundance secreted proteins (>1 ng/mL/106 cell/24 h) included VEGF, CXCL1/GROalpha,
CXCL8/IL-8, PDGF-BB, and MIF. VEGF was significantly associated with the degree of
stemness (Figure 4B). A trend was also evident for CXCL1/GROalpha and CXCL8/IL-8,
driven more by MS than by HS. Among the intermediate-abundance secreted proteins
(1000–50 pg/mL) IL-7, IL-12p70, and IL-6 were significantly associated with the degree
of stemness, and a trend was evident for IFNg and IL-1RA. Among the low-abundance
secreted proteins (<50 pg/mL) CCL3/MIP-1α, IL-10, and CXCL9/MIG were significantly
associated with the degree of stemness, and a trend was evident for IL1a, TNFa, and IL-9.
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Table 1. Evaluation of secretome according to the different stemness degrees.

All 17 lines
N

LS
N

MS
N

HS
N p

pg/mL/24 h pg/mL/24 h pg/mL/24 h pg/mL/24 h

High-abundance secreted proteins >1000 pg/mL

VEGF 13,749
(8978–36,740) 0 10,112

(7488–14,906) 0 36,741
(23,193–36,741) 0 25,245

(8570–36,741) 0 0.025

CXCL-1 7264
(8978–36,740) 0 2072

(1217–13,779) 0 17,593
(9661–28,839) 0 5736

(4435–20,622) 0 0.098

CXCL8 6917
(2272–9328) 0 5420

(2272–7628) 0 9365
(8738–10,404) 0 4539

(766–9999) 0 0.077

PDGF 1700
(466–3457) 0 1536

(463–2324) 0 4832 (1885–6697) 0 1225
(63–2474) 0 0.12

MIF 1637
(773–3332) 0 1173

(454–3460) 0 3151 (1573–3360) 0 1554
(976–2382) 0 0.59

Intermediate-abundance secreted proteins 1000—50 pg/mL

CXCL12 964
(739–1266) 0 965

(601–1759) 0 993 (776–1056) 0 821 (202–998) 0 0.52

SCGF-b 821
(540–1745) 0 660

(499–1857) 0 866 (609–1054) 0 1261
(551–18,671) 0 0.81

CXCL10 619 (9.5–3537) 6 158 (9–1550) 4 3538
(2829–11,420) 0 492 (9–29,443) 2 0.08

IL-6 372
(16.2–1209) 3 149 (14–441) 2 1605 (1142–3008) 0 55 (9–6508) 1 0.044

IFN-g 329 (6.4–647) 5 86.9 (6–414) 4 603 (511–1089) 0 410 (27–913) 1 0.065

CCL5 326
(143–1624) 0 270

(147–1310) 0 826 (370–14,137) 0 143 (60–2292) 0 0.18

IL-12p70 325 (254–540) 0 267 (251–379) 0 621 (51–677) 0 426 (224–548) 0 0.013
LIF 108 (75–434) 0 163 (75–373) 0 289 (73–929) 0 107 (42–426) 0 0.88

M-CSF 90 (25–665) 3 88 (18.4–692) 2 370 (144–1779) 0 691 (49–896) 1 0.25
SCF 85 (39–199) 0 91 (51–199) 0 59.5 (24–84) 0 244 (76–1007) 0 0.14
IL-7 78 (48–229) 0 52 (42–105) 0 230 (211–310) 0 263 (53–522) 0 0.028

IL-1RA 59 (20–166) 6 41 (20–64) 4 318 (111–4053) 0 44 (20–4648) 2 0.056
IL-13 59 (48–70) 0 55 (43–64) 0 71(68–78) 0 56 (43–69) 0 0.12

Low-abundance secreted proteins <50 pg/mL

G-CSF 45 (6–124) 3 20.5 (5.6–84.4) 2 82.9 (41–5061) 0 362 (7.7–1741) 1 0.29
IL-4 13.2 (3.6–19.5) 4 11 (4.6–15.4) 2 18 (8.5–35) 0 12 (1.3–29) 2 0.48

CCL3 38 (5.7–48) 5 31.4 (5.7–38.5) 3 49.7 (42.4–85.8) 0 26.5 (5.7–57.3) 2 0.044
IL-10 30 (7.1–39.7) 5 22.7 (7.1–32) 4 40 (37.7–44) 0 208 (13–736) 1 0.025

CXCL9 6.1 (1.9–30) 5 1.9 (1.9–4.6) 5 19.5 (8.5–34) 0 38 (15–141) 0 0.01
IL-18 6.1 (3.4–8.4) 5 6.1 (3.4–8.4) 3 6.2 (3.9–7.04) 1 16.9 (3.6–273) 1 0.78
IL1a 8.7 (6.4–236) 6 6.4 (6.4–97.5) 5 163 (22–854) 0 9.7 (6.9–530) 1 0.087

CCL2 26.5 (7.2–973) 8 7.2 (7.2–689) 6 325 (44–6346) 0 28 (7.2–1083) 2 0.18
TNF-a 9.7 (9.7–23) 9 9.7 (9.7–10) 7 22.6 (16.3–40.1) 0 15 (9.7–29) 2 0.073
HGF 8.3 (8.3–13.8) 9 8.3 (8.3–13.8) 5 5.4 (8.3–10.5) 2 26.7 (8.3–90.4) 2 0.66

CCL27 6.9 (6.9–24) 9 6.9 (6.9–20) 5 6.9 (6.9–18.8) 3 57.1 (8.1–152) 1 0.28
IL-9 5.7 (5.7–104) 9 5.7 (5.7–49) 7 84 (48–128) 0 38 (5.7–105) 2 0.091

CCL4 5.6 (5.6–24.3) 9 5.6 (5.6–13.8) 6 22.6 (9.3–55.7) 1 14.6 (5.6–86.6) 2 0.25
CCL7 4.8 (4.8–94) 9 4.8 (4.8–86.6) 4 4.8 (4.8–4.8) 3 74.7 (4.8–239) 2 0.53
bNGF 4.1 (4.1–16) 9 4.1 (4.1–19.5) 7 9 (4.9–17.8) 0 6.1 (4.1–27.6) 2 0.28

IL-2Ra 2.3 (2.36–60) 9 48.4
(2.36–72.3) 3 2.3 (2.3–2.3) 4 29 (2.3–108) 2 0.14

Under the limit of detection

CCL11 <8 10 - 8 - 0 - 2 nt
IL-15 <7.3 11 - 8 - 1 - 2 nt

GM-CSF <3 11 - 8 - 1 - 2 nt
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Table 1. Cont.

All 17 lines
N

LS
N

MS
N

HS
N p

pg/mL/24 h pg/mL/24 h pg/mL/24 h pg/mL/24 h

Under the limit of detection

IL-12p40 <8.2 13 - 7 - 4 - 2 nt
IL1b <10.7 14 - 8 - 3 - 3 nt
IL-5 <10 14 - 8 - 4 - 2 nt

FGFb <4.8 14 - 9 - 1 - 4 nt
IL-16 <3.8 14 - 8 - 4 - 2 nt
IL-3 <7.9 14 - 8 - 4 - 2 nt
IL-2 <5.7 15 - 9 - 3 - 3 nt

IFNa2 <0.86 15 - 9 - 4 - 2 nt
TNF-b <6.8 16 - 9 - 4 - 3 nt
TRAIL <6.3 16 - 9 - 4 - 3 nt
IL-17 <7.4 17 - 9 - 4 - 4 nt

LS = low stemness; MS = medium stemness; HS = high stemness; p = p value; N = number of cell lines in which
the protein was under the limit of detection.
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different stemness degrees at p < 0.1 (see Table 1). The Kruskal–Wallis test with post hoc Dunn’s
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2.6. Evaluation of Putative Stem Phenotypes in PDAC Patients

PDAC tissue [0.41 (0.23–0.66) grams] was obtained from 55 patients who underwent
pancreatectomy with radical intent. The tumor tissues were enzymatically and mechanically
processed in order to isolate single cells for FACS analysis. The procedure was successful in
47 out of 55 patients [3.1 × 106 (1–26) cells/gram of tissue]. The CXCR4+CD133+ phenotype
was evaluated in 46 patients and the percentage of expression ranged from 0.02 to 3.97%
with a median of 0.77% (0.3–1.33). The ESA+CD24+CD44+ phenotype was evaluated in
41 patients and the percentage of expression ranged from 0 to 9.81% with a median of
1.87% (0.77–2.63). Since the two phenotypes were not related (see Figure 5A), each was
analyzed separately for its clinical impact. Tumors were divided in two groups according
to median of ESA+CD24+CD44+ or CXCR4+CD133+ cell percentage [high stemness tumor
(HST) > median, low stemness tumor (LST) ≤ median]. Patients and tumor characteristics
according to tumor stemness are reported in Table 2. We estimated the overall survival
according to tumor CXCR4/CD133 stemness: medians were 355 (212–497) days and 1004
(210–1797) days for patient with HST (n = 22) or LST (n = 24), respectively (Log Rank,
p = 0.008; Breslow p = 0.019; see Figure 5B). The disease-free survival was not statistically
different between the two groups. In the univariate Cox analysis, after adjusting for age and
sex, we found a significant association between death and tumor grading [2.94 (1.3–6.7);
p = 0.01], adjuvant CT/RT [0.2 (0.06–0.67); p = 0.009], HST [2.81 (1.23–6.24); p = 0.011],
% of CXCR4+CD133+ cells [1.73 (1.13–2.6); p = 0.007], % of CXCR4+CD133− cells [1.09
(1.008–1.18); p = 0.03], and % of CXCR4+ cells [1.09 (1.008–1.18); p = 0.03]. The multivariate
analysis (Figure 6) confirmed tumor grade, adjuvant CT/RT, and HST (or CXCR4+CD133+

cells but not CXCR4+CD133− and CXCR4+ cells) as independent predictors of PDAC
mortality. We also estimated the overall survival according to tumor ESA/CD24/CD44
stemness: medians were 412 (104–720) days and 778 (335–1221) days for patient with HST
(n = 20) or LST (n = 21), respectively (Log Rank, p = 0.58; Breslow p = 0.066; see Figure 5B).
The disease-free survival was not statistically different between the two groups. In the
univariate Cox analysis after adjusting for age and sex, we found a significant association
between death and pN1 [2.7 (1.14–6.2); p = 0.022], percentage of lymph nodes positive for
tumor localization [1.15 (1.003–1.33); p = 0.045], adjuvant CT/RT [0.15 (0.037–0.67); p = 0.56],
% of ESA+CD24+CD44− cells [1.043 (1.001–1.087); p = 0.046], % of ESA−CD24+CD44− cells
[1.036 (1.006–1.068); p = 0.02], and % of CD24+ cells [1.034 (1.011–1.057); p = 0.004]. The
multivariate analysis (Figure 6) confirmed pN1, adjuvant CT/RT, and % of CD24+ cells
(or ESA−CD24+CD44− but not ESA+CD24+CD44− cells) as independent predictors of
PDAC mortality.

Table 2. Patients and tumor characteristics according to tumor stemness.

CXCR4/CD133 ESA/CD24/CD44

HST (n = 22) LST (n = 24) p HST (n = 20) LST (n = 21) p

Patients characteristics

Age (years; mean ± sd) 57.7 ± 10.5 59.5 ± 9.4 0.87 67.5 ± 9.1 65 ± 10.5 0.45
Sex (M/F) 12/10 14/10 0.8 13/7 8/13 0.12
Neo-adjuvant CT [n, (%)] 3 (13.6) 0 (0) 0.1 2 (10) 1 (4.8) 0.61
Adjuvant CT/RT [n, (%)] 13/19 (68.4) 16/20 (80) 0.48 11/17 (64.7) 17/17 (100) 0.018

Overall survival (median) 355d 1004d 0.008 *
0.019 § 412d 778d 0.58 *

0.07 §

Disease free survival (median) 307d 465d 0.26 255d 435d 0.62
Local Relapse [n, (%)] 6 (27.3) 5 (20.8) 0.73 1 (5) 7 (33.3) 0.045
Distant relapse [n, (%)] 10 (45.5) 11 (45.8) 1 12 (60) 7 (33.3) 0.12
-Liver 4 (40) 9 (81.8) 0.08 6 (50) 6 (86) 0.17
-Lung 2 (20) 1 (9.1) 0.59 2 (17) 0 (0) 0.51
-Lymph nodes 4 (40) 4 (36.4) 1 3 (25) 4 (57) 0.33
-Peritoneal Carcinomatosis 2 (20) 2 (18.2) 1 1 (8.39 1 (14.3) 1
-Other sites 1 (10) 2 (18.2) 1 0 (0) 2 (28.6) 0.12
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Table 2. Cont.

CXCR4/CD133 ESA/CD24/CD44

HST (n = 22) LST (n = 24) p HST (n = 20) LST (n = 21) p

Tumor characteristics

Tumor size (cm) 2.5 (2–3) 2.9 (2–3.9) 0.34 2.6 (2–3) 2.8 (2–3.5) 0.51
pT1 [n, (%)] 0 (0) 1 (4)

0.38
1 (5) 0 (0)

0.33pT2 [n, (%)] 0 (0) 1 (4) 1 (5) 0 (0)
pT3 [n, (%)] 22 (100) 22 (92) 18(90) 21 (100)
pN1 [n, (%)] 18 (81.8) 15 (62.5) 0.197 14 (70) 15 (71.4) 1
Lymph nodes pos (%) 31 (11–50) 33 (19–41) 0.95 30 (12.5–71) 32 (17–45) 0.79
pM1 [n, (%)] 2 (9.1) 3 (12.5) 1 1 (5) 3 (14.3) 0.61
R1 [n, (%)] 12 (54.2) 13 (54.2) 1 10 (50) 13 (61.9) 0.54
Grading [n, (%)]:

0.39 1
G1 0 (0) 0 (0) 0 (0) 0 (0)
G2 14 (64) 12 (50) 11 (55) 12 (57)
G3 8 (36) 12 (50) 9 (45) 9 (43)
CXCR4+CD133+ 1.4 (1–1.9) 0.32 (0.1–0.5) <0.001 1 (0.17–1.6) 0.7 (0.26–1.1) 0.4
CXCR4+CD133− 2.03 (1.2–8) 0.9 (0.26–3.1) 0.041 2.5 (1.3–6.5) 1.9 (0.21–4.2) 0.11
CXCR4−CD133+ 4 (0.71–8.8) 2.36 (1–4.8) 0.38 2.8 (0.5–7.5) 1.8 (0.8–4.4) 0.75
CXCR4−CD133− 90 (82–95) 95 (93–98) 0.01 93 (82–95) 94 (86–98) 0.18
CXCR4+ 3.5 (2.4–9.6) 1.5 (0.36–3.7) 0.0023 3.5 (2–9.5) 2.8 (0.77–4.8) 0.2
CD133+ 4.8 (2.2–11.4) 2.7 (0.1–5.4) 0.06 3.8 (0.2–11.3) 2.97 (1.3–5.3) 0.52
ESA+CD24+CD44− 3.8 (0.62–7.9) 1.7 (0.34–3.7) 0.25 4.2 (1.4–8.3) 1.3 (0.21–3.7) 0.035
ESA+CD24+CD44+ 1.9 (0.94–2.5) 1.7 (0.3–2.6) 0.52 2.6 (2.1–4) 0.8 (0.1–1.36) <0.001
ESA+CD24−CD44+ 0.9 (0.25–2.7) 2.04 (0.6–3.6) 0.15 1.96 (0.5–3.4) 0.8 (0.21–2.3) 0.12
ESA+CD24−CD44− 12.3 (7.4–36) 0.9 (0.25–2.7) <0.001 14.9 (5.9–22) 8.7 (3–36) 0.82
ESA−CD24+CD44− 1.41 (0.3–6.2) 1.14 (0.2–2.1) 0.12 1.2 (0.3–3.1) 1.4 (0.05–3) 0.84
ESA−CD24+CD44+ 1.36 (0.4–3) 0.14 (0.02–0.7) 0.005 1.1 (0.2–2) 0.1 (0.01–1) 0.027
ESA−CD24−CD44− 48 (38–63) 57 (36–70) 0.31 50 (28–65) 53 (36–68) 0.61
ESA−CD24−CD44+ 13 (6.9–18.4) 12.3 (4.7–18) 0.55 14.6 (8.7–18) 6.6 (3–18.5) 0.09
ESA+ 18 (5–36) 22 (11–44) 0.35 25 (16–38) 14 (5–44) 0.26
CD24+ 11.5 (5.9–31) 6.3 (3.4–13.8) 0.08 10 (6.5–17.2) 5.2 (2–14.2) 0.030
CD44+ 19.2 (9–24.6) 13.6 (5–22.5) 0.27 21 (19–26) 11.2 (5.6–21) 0.013

HST = high stemness tumor; LST = low stemness tumor; p = p value; * Log rank analysis, § Breslow analysis.
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Figure 5. PDAC tissue stemness phenotype and overall/disease-free survival. Tumor tissues from 
47 patients were enzymatically and mechanically processed in order to isolate single cells for FACS 
analysis. (A) Correlation between ESA+CD24+CD44+ and CXCR4+CD133+ cell percentage. Spear-
man’s rho statistic was applied. Dotted lines represent the median values. (B) Kaplan–Meier curves 
representing the overall survival and disease-free survival. Tumors were divided in two groups 
according to median of ESA+CD24+CD44+ or CXCR4+CD133+ cell percentage [high stemness tumor 
(HST) > median, low stemness tumor (LST) ≤ median]. Statistical analysis was performed by log-
rank test and Breslow test. 
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analysis. (A) Correlation between ESA+CD24+CD44+ and CXCR4+CD133+ cell percentage. Spear-
man’s rho statistic was applied. Dotted lines represent the median values. (B) Kaplan–Meier curves
representing the overall survival and disease-free survival. Tumors were divided in two groups
according to median of ESA+CD24+CD44+ or CXCR4+CD133+ cell percentage [high stemness tumor
(HST) > median, low stemness tumor (LST) ≤ median]. Statistical analysis was performed by log-rank
test and Breslow test.
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Figure 6. Univariate and multivariate hazard ratios for PDAC mortality. The associations be-
tween baseline variables, tumor stemness according to CXCR4+CD133+ (left panels, n = 46) or
ESA+CD24+CD44+ cell percentage (right panels, n = 41), and PDAC mortality were assessed by Cox
regression analysis. All analyzed variables are presented. Dots represent the hazard ratio after lines
of the 95% confidence intervals. Red dot/lines p < 0.05. CT/RT: chemo/radiotherapy; HST: high
stemness tumor (see the text).

3. Discussion

In this study, we analysed the characteristics of 17 established pancreatic ductal carci-
noma cell lines and we tried to correlate them with their grade of stemness. In particular,
we analysed the hallmarks of the aggressiveness of this malignancy such as growth kinetic,
clonogenicity, chemoresistance, tumorigenicity, expression of genes involved in pancreatic
organogenesis and tissue commitment, expression of chemokine receptors, markers of
epithelial–mesenchymal transition, and secretome. Even if a general correlation between
the two major putative stemness phenotypes and all functional parameters for stemness
could not be detected, the study has increased our understanding of the fundamental
nature of this tumor. First of all, we systematically evaluated the two putative pancreatic
cancer stem cells phenotypes ESA+CD24+CD44+ and CXCR4+CD133+ in all cell lines. Two
relevant results emerged: (I) the expression among cell lines is heterogeneous; (II) the ex-
pression within lines is heterogeneous. Both of these two aspects were not taken for granted.
By definition, established cell lines show self-renewal ability and tumor-initiating capacity,
two constitutive characteristics of CSCs. One would therefore expect a homogeneously
high expression of CSC markers in all cell lines. The fact that this is not the case suggests
that the different stem cells markers identify specific and phenotypically defined sub popu-
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lation within multiple cell populations with the ability to form tumors and self-renew. This
supports the hypothesis that different populations of CSC exist and the next challenge will
be to understand how specific CSC populations are related to one another and whether
each possesses specific functional properties [27]. Moreover, established cancer cell lines
should consist of homogeneous/monoclonal cell populations. The fact that not all cells
within a line express the same levels of stemness markers supports the hypothesis that CSC
is not a fixed entity but rather represent a plastic state, as recently suggested [19]. A second
relevant finding obtained by this systematic study on the stem cells phenotypes in PDAC
cell lines is that few, but potentially relevant, features of tumor cells may be related to the
degree of stemness. The different stem cells phenotypes consistently exhibited in vitro
comparable growth kinetic, clonogenicity, and chemosensitivity to GEM, which constitute
three important parameters for CSC [28,29]. This is in part unexpected as previous data
suggested that pancreatic CSCs may be resistant to chemotherapy. Shah and colleagues [30]
from M.D. Anderson showed that pancreatic cancer cell lines that selectively grew in culture
media containing therapeutic doses of gemcitabine increased in expression of the stem cell
markers CD24, CD44, and ESA. In a separate study, Hermann and colleagues [18] found
that CD133 populations in the pancreatic cancer cell line were enriched after exposure to
gemcitabine. Moreover, Lee et al. has observed that treatment with ionizing radiation and
the chemotherapeutic agent gemcitabine results in enrichment of the CD44+CD24+ESA+

population in human primary pancreatic cancer xenografts [31]. Our results on the 17 cell
lines show that, even though several cell lines displayed a resistance towards GEM, the
more resistant lines did not segregate on the basis of the different grade of stemness. It
is important to underline that our study did not evaluate the chemoresistance between
different populations in the same line, but between different lines according to their stem-
ness and this could partly explain the difference in results. However, when we assessed
the ability of the lines to generate in vivo tumors, we observed that the stemness degree
was independently associated with the tumor engraftment and growth, supporting the
hypothesis that the relationship with the microenvironment may play a key role in bringing
out the properties of CSCs. We studied systematically the expression of genes involved
in pancreatic organogenesis and, interestingly, the degree of stemness was significantly
related to an increased expression of KRT19 and a decreased expression of NKX2.2. Notably,
KRT19 overexpression demonstrated to be associated with carcinogenesis, progression,
and poor prognosis in PDAC patients becoming a valuable biomarker for PDAC progno-
sis [23,32]. In agreement with our findings on PDAC, KRT19 was previously described
as a marker of hepatocellular carcinoma CSCs with stem cell characteristics and tumor-
initiating ability [33]. On the other hand, NKX2.2 overexpression has reported to suppress
the self-renewal capability of glioblastoma-initiating cells and its downregulation in vivo
accelerates the tumor formation [34]. The relevance of some chemokine receptors, such
as CX3CR1, CXCR4, and CXCR3, has been described in pancreatic cancer. The CX3CR1
receptor, expressed by PDAC cells, is involved in the mechanisms of neurotropism, one of
the major causes of local relapse [24]. The CXCR4/CXCL12 axis seems to play an important
role in the desmoplastic reaction characterizing PDAC [16], while CXCR3/CXCL10 resulted
expressed in pancreatic tumor tissue [35], and their presence has been correlated with poor
prognosis [36]. We thus investigated the expression of chemokine receptors in the 17 PDAC
cell lines. The expression of the receptors was heterogeneous among the different lines
and CCR4, CCR5, CXCR1, CXCR3, and CXCR6 resulted consistently expressed in the
majority of the lines. None of the investigated receptors segregated with the degree of
stemness, even if a trend was reported for CXCR3 and CX3CR1. Among the other proteins
evaluated, CD49a and CA19.9/Tie2 resulted associated with the stemness of the cell. In
agreement with our findings, CD49a previously demonstrated to be a biomarker that
promotes therapy resistance and metastatic potential in pancreatic cancer [37]. Moreover,
Tie2 was reported to be expressed in brain tumor and prostate cancer stem cells and was
associated with the malignant progression of these tumors [38–40]. Pancreatic cancer cell
lines have a characteristic ability to secrete soluble factors [21]. VEGF, CXCL1/GROalpha,
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CXCL8/IL8, PDGF-BB, and MIF resulted the most secreted proteins. Interestingly, all the
above-mentioned molecules are pro-angiogenic factors. VEGF (the vascular endothelium
growth factor) promotes the growth of new vessels as well as PDGF-BB (growth factor
derived from BB isoform platelets). GRO and IL-8 belong to the family of chemokines
with the ELR+ motif (the amino acids Glu-Leu-Arg) and which promote angiogenesis
by binding to the CXCR2 receptor on the endothelium [41]. Moreover, MIF (migration
inhibition factor) is a powerful chemoattractant of endothelial cells [42]. VEGF expression
was significantly associated with the degree of stemness, and a trend was evident for
CXCL1/GROalpha and CXCL8/IL-8, even if driven more by the medium-stemness lines
than by the high-stemness ones. All these three factors were described to be related with
pancreatic cancer aggressiveness [43–45]. Among the less secreted proteins, IL-7, IL-12p70,
IL-6, CCL3, IL-10, and CXCL9 resulted significantly associated with the degree of stem-
ness. Al these factors were described to be relevant for pancreatic cancer aggressiveness
by a direct or indirect protumorigenic action which includes upregulation of neovasculo-
genesis, chemo/radio resistance, and local and/or systemic immune regulation [46–49].
Finally, the expression of stem cell markers was also evaluated on primary tumor cells
from PDAC patients. As for the cell lines, the expression within primary tumor cells was
heterogeneous. The clinical outcome revealed that that the CXCR4+/CD133+ and CD24+

but not ESA+CD24+CD44+ cell frequencies are independent predictors of mortality. This
is in agreement with previous results suggesting a relationship between a lower survival
rate and the expression of CD133 [50,51], CD24 [52], and CXCR4 [53,54]. All these three
molecules, beyond being able to be involved in tumor differentiation and acquisition of
stemness [18,54–58], were described to be involved in the regulation of the epithelial to
mesenchymal transition [58], the invasiveness and metastatization of the tumor [58,59],
and the resistance to hypoxia [55], apoptosis [60], and chemotherapy [61,62]. In conclusion,
our work shows that some characteristics of pancreatic cancer cell lines are related to their
degree of stemness. As the various cell lines revealed a great deal of diversity, we suggest
viewing cautiously generalized interpretations of the results of in vitro studies with few
cell lines. Due to the difficulty to obtain primary culture from the resected pancreatic cancer,
the reported data might be used to create a biological catalogue of pancreatic cancer cell
lines listing their specific stemness.

4. Materials and Methods
4.1. Cell Lines

The PDAC cell lines investigated are reported in Table S4 [20,22]. The human PDAC
cell lines were derived from human primary tumor (n = 10: Panc-1, PT45, MIAPaCa-2,
SKPC-1, BI, PC, Panc-2, PaCa-3, PaCa-44, and BxPc-3), lymph node metastases (n = 2:
Hst-766 and T3M4), liver metastasis (n = 2: Capan-1 and CFPAC-1), or ascites (n = 3:
A8184, HPAF-II and AsPC-1). All the cell lines were cultured in RPMI 1640 (Lonza,
Swiss, Basel) supplemented with 10% fetal bovine serum (Lonza, Swiss, Basel), 1% peni-
cillin/streptomycin, and 2 mM L-glutamine. Cells were maintained under standard culture
conditions (5% CO2, 95% air in humidified chamber at 37 ◦C). All the cell lines were
trypsinized when they reached 80–90% confluence and plated in a new 75 cm2 polystyrene
flask (Corning, Glendale, AZ, USA) at the density of 1 × 106 cells/flask. The immortal-
ized epithelial cell line derived from non-tumor human pancreatic ducts HPDE6-E6E7
(HPD6E) [63] was kindly provided by Dr. Ming-Sound Tsao (University of Toronto, Toronto,
ON, Canada). Human islet (HI) were purified from the pancreas of multi-organ donors as
previously described [64].

4.2. Cytofluorimetric Analysis of Surface Markers

The expression of surface markers was evaluated by flow cytometry. When cells
reached 80–90% confluence, they were trypsinized, suspended (2–4 × 105 cells/sample)
in 10%RPMI, and incubated for 1 h before the staining to allow the cells to re-express the
proteins possibly damaged by trypsin treatment. For chemokine receptors detection, the
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cell culture medium was changed 2 h before detaching the cells to promote the membrane
expression of receptors. Cells were washed and incubated for 30 min at 4 ◦C with the
primary antibody of interest appropriately diluted. The antibodies used for the staining are
reported in Table S5. The antibodies anti CA19-9 and anti Stro-1 were not directly conju-
gated to a fluorochrome. The Zenon® technology (Life Technologies, Carlsbad, CA, USA)
was used to non-covalently bind the Alexa-488 fluorochrome to anti CA19-9 following the
instructions in the protocol attached by the manufacturer. CyTM5-conjugated AffiniPure
F(ab’)2 Fragment Goat anti-mouse IgM, µ chain specific, was used as a secondary antibody
for the anti Stro-1. Labeled cells were analyzed in a BD FACSCanto II (diva software) or BD
facscalibur (cellquest software) cytometer (Becton Dickinson, NJ, USA). The results were
expressed as percentage of positive cells. Unlabeled cells were used as a control. Repre-
sentative plots of the gating strategy of the stem phenotypes CD44+/CD24+/ESA+ and
CD133+/CXCR4+ by flow cytometry are presented in Supplementary Figures S1 and S2.

4.3. Growth Kinetics and Cell-Cycle Analysis

To determine the proliferative capacity of the cell lines, 2 × 104 cells per well were
plated in duplicate in 24-well plates in standard medium at day 1. The number of cells
was counted every about 40 h after plating until day 10 using a Burker counting chamber.
The growth curve was drawn and the cell doubling time during logarithmic growth was
calculated according to the standard formula [65]: Doubling time = Length Log (2)/[ Log
(Final concentration) − Log (Initial concentration)]. For the cell-cycle analysis, cells were
marked with propidium iodide (solution of 1 µL of PI at a concentration of 1 µL/mL, 5 µL
RNAse at a concentration of 0.1 mg/mL, 194 µL PBS) and the percentage of cells in the
subG1, G1, S, and G2/M phases quantified by FACS. The analysis was carried out with the
program FCS express v3 (De Novo Software, Los Angeles, CA, USA).

4.4. Clonogenicity Assay In Vitro

Cells were seeded at different concentrations (0.1, 0.5, 1, 3, 5, 10, 100 cells/well) in a
96-well plate (Corning, Glendale, AZ, USA). Twenty-four replicates were performed for
each concentration point. After 10 days, the percentage of the positive wells, presenting
clones, was calculated on the total of the 24 wells under the optical microscope (10X and 5X
magnification). A clone is defined as a colony made up of at least 4 cells. The clonogenicity
was expressed as IC50: average number of cells to be seeded in a well of a 96 plate to obtain
the growth of a cell clone in half of the seeded wells. The IC50 was calculated using the
nonlinear quadratic minima curve using the CalcuSyn program (Biosoft, Oxford, UK).

4.5. Chemoresistance Assay

PDAC cell lines were seeded at a concentration of 1 × 105 cells/mL per well, in a
12-well polystyrene cell culture plate (Corning, Glendale, AZ, USA). The cells were treated
at different doses of GEM (1, 10, 100, 1000 µm). After 6 days, cells were labelled with PI
and the DNA content measured by flow cytometry. The dose-response curves were then
plotted and the drug concentrations inducing an apoptosis of 50% (IC50) were calculated.
The IC50 was calculated using the nonlinear minimum quadratic curve using the CalcuSyn
program (Biosoft, Oxford, UK).

4.6. Tumorigenic Capacity in Mice

Increasing doses (1 × 102, 1 × 103, 1 × 104, 1 × 105, 1 × 106 cells/mouse) of cells for
each PDAC cell line were transplanted heterotopically in athymic CD1 nude mice (male, 8
weeks old, Charles River). Cells were washed 3 times and injected in D-PBS1X (100 µL total
volume) subcutaneously. Three mice per dose were inoculated for each cell line. Health
conditions and the appearance of xenografts were monitored three times a week, for a
follow-up period extended up to 196 days after injection. The date of first tumor formation
was recorded when a mass of approximately 3 × 3 mm3 was palpable. Mice were housed
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in specific pathogen-free conditions in accordance with the guidelines of the San Raffaele
Scientific Institute Animal Care and Use Committee.

4.7. Gene Expression Analysis by Real Time PCR

Gene expression analysis was performed as previously described [23]. Briefly, total
(1–5 µg) RNA was isolated with TRIZOL (Invitrogen, Waltham, MA, USA) and reverse
transcribed using the SuperScript III RT kit (Invitrogen, Waltham, MA, USA), according
to the manufacturer’s instructions. Quantitative real time PCR (qRT-PCR) was performed
using predesigned gene-specific TaqMan Gene Expression Assays (Applied Biosystems,
Waltham, MA, USA, listed in Table S6) in a 7900 Real-Time PCR System (Applied Biosys-
tems, USA). The relative expression levels of each gene were calculated with the 2 ∆∆Ct
method using the GAPDH gene as endogenous control and expressed as arbitrary units
(AU) corresponding to fold changes relative to a human islet (HI, dashed line) preparation
used as reference tissue (AU = 1). The value AU = 1E-09 was assigned to genes not detected
by qRT-PCR.

4.8. Secretome by Luminex Xmap Technology

PDAC cell lines were cultured at a concentration of 1 × 106 cells per ml in RPMI
10% in a 25 cm2 (Corning, Glendale, AZ, USA) polystyrene flask. After 24 h of cul-
ture, the secreted factors were measured by a multiplex bead-based assay based on Lu-
minex technology (Bio-Plex Pro™ Human Cytokine; Bio-Rad, Milan, Italy). The panel
included: IL-1 beta (IL-1b), Interleukin-1 receptor antagonist (IL-1RA), IL-2, IL-4, IL-5,
IL-6, IL-7, IL-8/CXCL8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, CCL11/eotaxin, ba-
sic Fibroblast Growth Factor (bFGF), Granulocyte-Colony Stimulating Factor (G-CSF),
Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF), IFN-gamma, CXCL10/IP-
10, CCL2/MCP-1, CCL3/MIP1-alpha, CCL4/MIP1-beta, CCL5/RANTES, Tumor Necro-
sis Factor alpha (TNF-a), IL-1 alpha (IL-1a), Interleukin 2 Receptor alpha (IL2RA), IL-3,
IL-12 (p40), IL-16, IL-18, CCL27/CTAK, CXCL1/Gro-alpha, Hepatocyte Growth Factor
(HGF), Interferon alpha 2 (IFN-a2), Leukaemia Inhibitory Factor (LIF), CCL7/MCP-3,
Macrophage Colony-Stimulating Factor (M-CSF), Macrophage Migration Inhibitory Factor
(MIF), CXCL9/MIG, Nerve Growth Factor beta (NGF), Stem Cell Factor (SCF), Stem Cell
Growth Factor beta (SCGF-b), CXCL12/SDF-1, Tumor Necrosis Factor beta (TNF-b), TNF-
related apoptosis-inducing ligand (TRAIL), Platelet-derived Growth Factor (PDGF-BB),
and Vascular Endothelial Growth Factor (VEGF).

4.9. Cohort of PDAC Patients and Tissue Processing

From January 2008 to March 2010, 55 adult patients were randomly selected among
cases of PDAC admitted to the Pancreatic Surgery Unit at San Raffaele Hospital. The
characteristics of patients are described in Supplementary Figure S3. The local IRB approved
the study, and all patients provided a written informed consent. Tumor tissue was obtained
from pancreatic neoplasms after surgical resection. A small piece of the tumor was digested
to single cells (Cancer Cell Isolation Kit, Panomics Inc., Reedwood City, CA, USA) and
cultured in RPMI10% before staining for flow cytometry analysis.

4.10. Statistical Analysis

Variables are shown as mean ± standard deviations (SD) or as median and interquartile
ranges, according to their distribution. Variables with a normal distribution were compared
with one-way unpaired (two groups) or one-way ANOVA test (three or more groups).
Variables with a non-normal distribution were compared with Wilcoxon signed-rank test
(two groups) or Kruskal–Wallis test (three or more groups). Categorical variables were
compared with the chi-square test or Fisher’s exact test, as appropriate. Disease-free and
overall survival were estimated according to Kaplan–Meier. Association between variables
were evaluated by Cox regression analysis. All statistical analyses were performed using
the SPSS statistical software, version 13.0 (SPSS Inc, Chicago, IL, USA).
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