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ABSTRACT
Despite the continued global spread of the current COVID-19 pandemic, the nonavailability of a vac-
cine or targeted drug against this disease is still prevailing. The most established mechanism of viral
entry into the body is considered to be via angiotensin-converting enzyme 2 (ACE2) acting as a recep-
tor for viral spike protein thereby facilitating its entry in the cell. However, ACE2 is also involved in
providing the protection from severe pathological changes. This article provides a computational and
bioinformatics-based analysis of ACE2 with an objective of providing further insight into the earnest
efforts to determine its true position in COVID-19 pathology. The results of this study show that ACE2
has strikingly low expression in healthy human lung tissue and was absent from the list of differen-
tially expressed genes. However, when transcription factors were analyzed, we found a significant
upregulation of FOS and downregulation of FOXO4 and FOXP2. Moreover, the miRNA prediction ana-
lysis revealed that miR-1246, whose upregulation has been experimentally established to be a cause
of acute respiratory distress syndrome (ARDS), was found to be targeting the coding DNA sequence
(CDS) of ACE2. This study presents a wide range of potentially important transcription factors as well
as miRNA targets associated with ACE2 which can be potentially used for drug designing amid this
challenging pandemic situation.
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1. Introduction

Emerging and re-emerging of viral outbreaks has had been a
significant threat to human health since ancient times (Gao
2018). In the Wuhan city of China, a cluster of pneumonia
cases was reported in humans during the end of 2019
(Wang, Horby, et al. 2020), and the disease was referred to
as CVOID-19 (coronavirus disease 2019). This disease pre-
sented several symptoms such as cough, fever, occasional
diarrhea and pneumonia (Guan, Ni et al. 2020; Holshue,
DeBolt et al. 2020; Huang, Wang et al. 2020). Consequently,
the whole-genome sequencing depicted the causative agent
to be a member of the coronavirus family and named as
2019-nCoV by World Health Organization (WHO) initially (Wu,
Zhao et al. 2020; Zhou, Yang et al. 2020; Zhu, Zhang et al.
2020). However, the virus was officially designated as SARS-
CoV-2 by International Committee on Taxonomy of Viruses
later on (Gorbalenya, Baker et al. 2020).

Coronaviruses (CoVs) are enveloped viruses containing
positive-sense single-stranded RNA as their genetic material
(Lai 2007; Lu and Liu 2012). The phylogenetic analyses of its
genome indicated SARS-CoV-2 as a member of the genus

Betacoronavirus, which also includes SARS-CoV, SARSr-CoV,
MERS-CoV and many other viruses as well reported to have
been isolated from humans and other animal species (Li, Li
et al. 2005; Lu, Zhao et al. 2020; Wu, Zhao et al. 2020, Zhou,
Yang et al. 2020; Zhu, Zhang et al. 2020). Although SARS-
CoV-2 shares more than 93.1% sequence similarity of spike
(S) gene with of BatCoV RaTG13, the similarity percentage
with SARS-CoV and other SARSr-CoVs has been exhibited to
be lower than 80% (Zhou, Yang et al. 2020).

The initiation of a vital infection takes place after binding
of virus proteins with cellular receptors present on host cell
surface and subsequent entry of the virus inside the host
cell. This receptor recognition is a significant checkpoint in
determining the host range and cross-species viral infection.
In this regard, angiotensin converting enzyme 2 (ACE2) has
been recognized as a cellular receptor for SARS-CoV-2 spike
protein (Zhou, Yang et al. 2020). Initially, ACE2 was identified
as an exopeptidase being expressed in vascular endothelial
cells of heart and kidney where it catalyzes the conversion of
angiotensins into its various forms (Donoghue, Hsieh et al.
2000; Ferrario, Trask et al. 2005). Later on, this enzyme
became well known as a receptor for SARS-CoV binding
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(Kuba, Imai et al. 2005). Therefore, the use of ACE2 by both
SARS-CoV-2 and SARS-CoV is an important classifier of both
viruses in the same subgenus. On the other hand, although
ACE2 is expressed in most of the vertebrates but all ACE2
forms cannot be utilized as receptors by SARS-CoV-2. For
example, recent investigations have indicated that SARS-CoV-
2 can infect Chinese horseshoe bats, swine and civet but
cannot use mouse ACE2 receptor for its entry thereby pre-
senting specificity to some species and not others (Zhou,
Yang et al. 2020).

In coronaviruses, the process of virus entry is mediated by
envelope-embedded surface-located spike (S) glycoprotein
(Lu, Wang et al. 2015). Generally, this trimeric S protein is
cleaved by host proteases into S1 and S2 subunits where S1
subunits are released in the transition to the post fusion con-
formation (Simmons, Reeves et al. 2004; Belouzard, Chu et al.
2009; Simmons, Zmora et al. 2013; Song, Gui et al. 2018).
The S1 bears the receptor binding domain (RBD), which
binds directly to peptidase domain (PD) of ACE2 receptor (Li,
Li et al. 2005) while S2 is involved in the membrane fusion.
When S1 binds to ACE2, another cleavage site is exposed on
S2 which gets cleaved from host protease, a critical process
for viral infection (Simmons, Gosalia et al. 2005; Belouzard,
Chu et al. 2009; Millet and Whittaker 2015). The computa-
tional modeling (Lu, Zhao et al. 2020; Xu, Chen et al. 2020)
and other experiments of viral infection using HeLa cells
(Zhou, Yang et al. 2020) have provided the evidences of
ACE2 as receptor for SARS-CoV-2. Cryo-EM experiments have
indicated that SARS-CoV-2 exhibited 10 time more affinity for
ACE2 compared to SARS-CoV, which is also consistent with
higher SARS-CoV-2 infection efficiency (Wrapp, Wang
et al. 2020).

Paradoxically, although ACE2 provides the entry point for
some coronaviruses into the body, this enzyme has been
found to play a protective role in several pathophysiological
processes too. These include alleviating pathological changes
in acute lung injury and acute respiratory distress syndrome
(Imai, Kuba et al. 2005; Kuba, Imai et al. 2006; Hamming,
Cooper et al. 2007), protection against diabetes, hyperten-
sion, cardiovascular disease and organ damage as well,
(Cheng, Wang et al. 2020) by regulation of the renin-angio-
tensin system (RAS). The RAS maintains the blood pressure
homeostasis in addition to fluids and salts balance which is
crucial for the pathological and physiological regulation of
several organs including kidney, heart and lungs (Patel, Rauf
et al. 2017). In this scenario, ACE2 primarily functions by
negatively regulating the RAS (Hamming, Cooper et al. 2007;
Kuba, Imai et al. 2010) and via degrading and converting the
Angiotensin II (potent in vasoconstriction, pro-fibrosis and
pro-inflammation) to Angiotensin 1-7 (vasodialatic, apoptotic
and proliferative) (Hamming, Cooper et al. 2007). Moreover,
ACE2 also exerts local regulatory effects for pathological
changes in different organs such as kidneys, heart and lungs
e.g. it regulates the absorption of amino acids in kidney and
gut by modulating the expression of amino acid transporters
(Kuba, Imai et al. 2010).

Consequently, ACE2 serves as a double-edged sword play-
ing dual roles of a demon as well as an angel. It not only

opens the doors for SARS-CoV-2 as a receptor but also helps
protects the body from severe pathological changes (Cheng,
Wang et al. 2020; Xiao, Sakagami et al. 2020; Yan, Xiao et al.
2020). In the current COVID-19 outbreak, ACE2 is a topic of
pronounced interest and several studies are being carried
out to assess the interaction of SARS-CoV-2 with ACE2,
the receptor.

In this perspective, this study was designed to investigate
human ACE2 via its computational and bioinformatics char-
acterization so as to demonstrate its functionality and bio-
logical roles ultimately leading not only opening insights to
the use of its associated molecules for potential therapeutic
interventions but also to get clarified whether it is rightfully
getting the attention of the scientific community or other
targets/pathways must also be explored in order to hasten
the most important cause of the present time – finding cure
to COVID-19.

2. Methodology

2.1. Homology and phylogenetic analysis

The sequence of human ACE2 gene was obtained from NCBI
database (https://www.ncbi.nlm.nih.gov/) and its genome
localization was assessed. The phylogenetic analysis describes
the useful information related the gene variations among dif-
ferent species. Human ACE2 peptide sequence was retrieved
from Uniprot database (https://www.uniprot.org/) along with
other species which include Mus musculus (MOUSE), Rattus
norvegicus (RAT), Paguma larvata (PAGLA), Felis catus (FELCA),
Bos Taurus (BOVIN), Pongo abelii (PONAB), Equus caballus
(HORSE), Pan troglodytes (PANTR), Mustela putorius (MUSPF),
Canis lupus familiaris (CANLF), Gallus gallus (CHICK),
Ornithorhynchus anatinus (ORNAN), Anolis carolinensis
(ANOCA), Nomascus leucogenys (NOMLE), Danio rerio
(DANRE), Ictidomys tridecemlineatus (ICTTR), Chlorocebus
sabaeus (CHLSB), Macaca fascicularis (MACFA), Myotis lucifu-
gus (MYOLU), Cavia porcellus (CAVPO), Pan paniscus (PANPA),
Papio Anubis (PAPAN), Ovis aries (SHEEP), Loxodonta Africana
(LOXAF), Rhinopithecus roxellana (RHIRO), Cercocebus atys
(CERAT), Macaca nemestrina (MACNE), Mandrillus leucophaeus
(MANLE), Heterocephalus glaber (HETGA), Capra hircus
(CAPHI), Tarsius syrichta (TARSY), Pelodiscus sinensis (PELSI),
Xenopus tropicalis (XENTR), Propithecus coquereli (PROCO),
Ursus maritimus (URSMA), Macaca mulatta (MACMU), Ficedula
albicollis (FICAL), Otolemur garnettii (OTOGA), Saimiri bolivien-
sis boliviensis (SAIBB), Meleagris gallopavo (MELGA),
Mesocricetus auratus (MESAU), Cebus capucinus imitator
(CEBCA), Ailuropoda melanoleuca (AILME), Dipodomys ordii
(DIPOR), Bos indicus x Bos Taurus (BOBOX), Vombatus ursinus
(VOMUR), Aotus nancymaae (AOTNA), Vulpes Vulpes (VULVU),
Physeter macrocephalus (PHYMC), Ursus americanus (URSAM),
Anas platyrhynchos platyrhynchos (ANAPP), Rhinopithecus bieti
(RHIBE), Rousettus leschenaultia (ROULE), Rhinolophus sinicus
(CHIR), R. macrotis (RHIMR), Procyon lotor (PROLO), Sus scrofa
domesticus (PIG), Nothobranchius furzeri (NOTFU). Multiple
sequence alignment was performed by Clustal Omega tool
to generate homology/phylogenetic (Neighbour-joining) tree
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with default settings for the determination of evolutionary
trend for ACE2 (McWilliam, Li et al. 2013).

2.2. Physiochemical characterization

ProtParam tool of ExPASy (https://web.expasy.org/protparam/)
was applied to assess the physicochemical characterization and
functional/structural motifs for human ACE2 peptide sequence
(Garg, Avashthi et al. 2016). Signal peptide prediction of ACE2
was performed with the application of SignalP-4.1 tool (http://
www.cbs.dtu.dk/services/SignalP-4.1/) (Emanuelsson, Brunak
et al. 2007). Protscale server (https://web.expasy.org/protscale/)
calculated further physicochemical properties such as buried
residues (%), polarity, average flexibility, hydrophilicity, relative
mutability and bulkiness for human ACE2 (Wilkins, Gasteiger
et al. 1999).

2.3. Single nucleotide polymorphism (SNP) analysis

Association of diseases with genetic polymorphism was eval-
uated by BioMuta v4.0 database (https://hive.biochemistry.
gwu.edu/biomuta). This database provides the information of
single-nucleotide variation (SNV) and association with disease
specially if related to oncogenesis (Dingerdissen, Torcivia-
Rodriguez et al. 2018). The non-synonymous single nucleo-
tide polymorphisms (nsSNPs) were retrieved from NCBI SNPs
database (dbSNP) (http://www.ncbi.nlm.nih.gov/snp), selected
and analyzed with the application of prediction tools such as
SIFT, PolyPhen-2, PROVEAN and PANTHER to predict human
ACE2 gene mutations.

SIFT (https://sift.bii.a-star.edu.sg/) predicts the impact of
substitutions of amino acid on protein functionality and
phenotype. This program has attained the standard to assess
and characterize the missense variations. The principle of this
tool is to align the homologous sequences in large numbers
and assign the scores to each residue varying from in value
0 to 1. The threshold score of nsSNPs was set as � 0.05 (Sim,
Kumar et al. 2012). The mutations selected by SIFT were fur-
ther analyzed by other programs. PolyPhen-2 (http://genet-
ics.bwh.harvard.edu/pph2/) also predicts the substitution
impact of amino acid on protein structure and function on
the basis of structural and phylogenetic information (Kumar,
Henikoff et al. 2009). PROVEAN (http://provean.jcvi.org/index.
php) is another tool to predict the effect of amino acid
change on protein biological function. This is helpful to filter
the sequence variants for the identification of indels or non-
synonymous variants which are predicted as functionally
important (Choi and Chan 2015). PANTHER (http://www.pan-
therdb.org/tools/) estimates the chances of nonsynonymous
coding SNP for its impact on protein function. It estimates
the time length (millions of years) for an amino acid in which
it has been preserved in lineage resulting in the specific pro-
tein. Longer the preservation time, more the chances of a
functional impact (Tang and Thomas 2016).

2.4. Sub cellular localization

Subcellular Localization or the prediction of protein’s resi-
dence in a cell plays a crucial role in determining the com-
parative protein expression levels in various cell types, which
can ultimately help us in exploring the functionality of pro-
tein. For ACE2, this prediction was performed using online
protein subcellular localization prediction servers namely
CELLO (Yu, Cheng et al. 2014), TMHMM (Krogh, Larsson et al.
2001), HMMTOP (Tusn�ady and Simon 2001) and UniProt
(Bairoch and Apweiler 2000).

2.5. Methylation sites assessment

Regulation of a gene expression is the central key to main-
tain homeostasis and this regulation is primarily controlled
by DNA methylation. DNA methylation patterns can provide
a deep insight into tissue–specific gene transcription. The
methylation sites for ACE2 were determined using an online
methylation site prediction tool known as MethyCancer
(http://methycancer.psych.ac.cn/), a part of Cancer
Epigenomics project in China (He, Chang et al. 2008). ACE2
was scanned for possible CpG islands using the
default settings.

2.6. Post translational modifications’ assessment

Protein biosynthesis is followed by enzymatic or covalent
post-translational modifications. Prediction of glycosylation,
phosphorylation and mannosylation sites of ACE2 was done
via online tools NetCGlyc1.0 (Julenius 2007), NetCorona 1.0
(Kiemer, Lund et al. 2004), NetOGlyc 1.0 (Steentoft,
Vakhrushev et al. 2013), NetGlycate1.0 (Johansen, Kiemer
et al. 2006), NetPhos 3.1 (Blom, Sicheritz-Pont�en et al. 2004),
NetNGlyc 1.0 (Gupta, Jung et al. 2004) and ProP 1.0 (Duckert,
Brunak et al. 2004) provided by Center for Biological
Sequence Analysis CBS (http://www.cbs.dtu.dk/services/).

2.7. Functional networks of protein associations

The coherence between various seemingly unconnected bio-
logical activities of an individual are governed by protein-
protein interactions. This network of protein interactions
plays a central role in explaining how one dysfunctional pro-
tein can contribute to heterogeneous symptomatology of a
single disease. The protein-protein interactions and ortho-
logue associations for ACE2 were predicted using Search
Tool for Retrieval of Interacting Genes and Proteins code-
named STRING (Szklarczyk, Morris et al. 2017) (https://string-
db.org/).

2.8. Protein structure building

Three dimensional structure of ACE2 was predicted using
Swiss Model online (https://swissmodel.expasy.org/) (Guex
and Peitsch 1997). First, a template search was performed on
Swiss model to select the appropriate template for ACE2
structure prediction. Template with high sequence identity
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and in range GMQE and QSQE score was finalized for ACE2
protein modeling. The Protein-protein Interaction (PPI) finger-
print was also evaluated for this template. The predicted
ACE2 model was further evaluated via Ramachandran plot
using Swiss Model Structure Assessment feature. The Local
Quality Estimate and QMEAN score for ACE2 predicted model
was also checked.

2.9. Tfs of ACE2

Among the regulatory elements for ACE2, the predicted tran-
scription factors for the promoter/enhancer of ACE2 were
extracted from the GeneCards database selecting from the
queries showing the highest scores (GeneCards 2020). After
the identification of putative transcription factors, these were
arranged in a tabular form with respect to the organ in
which they are being most abundantly expressed and this
information was extracted using NCBI gene database
(Fagerberg, Hallstr€om et al. 2014). Meanwhile, the graph of
the expression profiles of ACE2 in different tissues of human
body was also fetched from NCBI database (Fagerberg,
Hallstr€om et al. 2014) to have them as the base reference of
its expression under normal conditions.

2.10. Identification of miRNAs targeting ACE2

miRNAs are small non-coding RNA molecules which play an
important function of orchestrating gene regulation post
transcriptionally. To determine the putative miRNAs targeting
ACE2 transcript, two databases were used: miRWalk (Sticht,
De La Torre et al. 2018) (to predict all miRNAs targeting the
30 UTR, CDS, and 50 UTR (Supplementary Figure S1) and
miRDB (Chen and Wang 2020) to further sort these miRNAs
on the basis of scoring, similar prediction and cross referenc-
ing. miRWalk is an open source online tool which utilizes
random-forest-based approach for miRNA prediction. It is
also integrated with other miRNA databases in its platform
to increase validity of the prediction. The miRDB function
integrated in the miRWalk was used to further sort the
miRNAs of ACE2.

2.11. Analysis of RNA sequencing data of lung
biopsy samples

2.11.1. Rna-seq data retrieval
The RNA sequencing data from lungs of two SARS-CoV-2
patients and two healthy controls was taken from GEO data-
base (Blanco-Melo, Nilsson-Payant et al. 2020). The raw read
counts of the human data were already available in the .tsv
format which was downloaded and used for further analysis
of the required samples in R Studio (3.6.3) (R Development
Core Team 2010).

2.11.2. Differential expression analysis
The raw read counts were processed for further analysis of
the differentially expressed genes between the healthy lung
biopsies and SARS-CoV-2 patients’ lung biopsies using

different packages of R Bioconductor. The required packages
included limma, edgeR, gplots, org.Hs.eg.db, RcolorBrewer
and Glimma (Warnes, Bolker et al. 2005; McCarthy, Chen
et al. 2012; Ritchie, Phipson et al. 2015; Su, Law et al. 2017).

The analysis of the in vivo samples started from the filtra-
tion of the raw counts to remove genes with low expression
values. Each group of this study contains 2 biological repli-
cates, therefore counts per million (CPM) threshold was set
to filter those genes above 0.5 in both samples. By convert-
ing values to CPM, the normalization of sequencing depths
of samples was also done. This filtered data was then stored
in DGEList object which was then processed further for qual-
ity control checks and modifications before getting the plots
of differentially expressed genes.

2.12. Analysis of cellular pathways regulated by
transcription factors

The transcription factors selected form the list of differen-
tially expressed genes were then further investigated to see
which cellular pathways they are involved in and whether
any of them matches with the predicted transcription factors
of ACE2 or not. This was done using the ‘Pathway from
PubChem’ function from NCBI gene database for all the sig-
nificantly differentially expressed TFs (NCBI Gene, NCBI Gene,
NCBI Gene).

3. Results

3.1. Sequence retrieval and phylogenetic analysis

The human ACE2 gene was found to be located on p arm of
X chromosome (Xp22.2) assuredly between 15561033 and
15602158 position. The gene spans on 41,126 bp, contains
19 exons and encodes 805 amino acids. The chromosome
localization and exons have been displayed in Figure 1.

The human ACE2 (Q9BYF1) peptide sequence along with
other species were subjected to Clustal Omega for multiple
alignment to create the homology/phylogenetic (Neighbor-
joining) tree (Figure 2). Human ACE2 protein was clustered
along with Pan troglodytes (PANTR), P. paniscus (PANPA),
Pongo abelii (PONAB) and Nomascus leucogenys (NOMLE),
where first three members were from same family,
Hominidae while Nomascus leucogenys belonged to
Hylobatidae family which showed the distinct relatedness
based on peptide in this cluster. The multiple peptide
sequence alignment has been provided in
Supplementary Data.

3.2. Physicochemical characterization

Physicochemical characterization was evaluated using
Expasy-ProtParam and Protscale server. Human ACE2 has
molecular weight of 92463.04 with formula
C4170H6358N1092O1222S35 having total 12877 atoms. The
theoretical pI was found to be 5.36 while total number of
negatively charged (AspþGlu):and positively charged
(Argþ Lys) residues were 99 and 78, respectively. The
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estimated half-life in mammalian reticulocytes (in vitro) was
30 h while in yeast (in vivo) it was >20 h and in Escherichia
coli (in vivo) was >10 h. The protein was stable with instabil-
ity index (II) of 40.09. Aliphatic index was found as 80.55
while GRAVY as �0.375. The Protscale properties has been
displayed in Table 1. The least buried residue was 479 aa
with the value of 1.322 while maximum value (11.222) was
shown by 755 aa. Lowest polarity was shown by 775 aa with
0.101 value and the highest polarity was 769 with value of
39.468. The average flexibility values varied between 0.381
(372aa) and 0.497 (217aa). The values of hydrophobicity were
estimated using Hopp and Woods method with minimum
and maximum values of �1.756 (745aa) and 2.3 (770aa)
respectively. The values of relative mutability indicated the
residue of 60aa with highest mutability (111.222) while the
least mutable position was 51.111 (264). The bulkiness
ranged from 11.472 (399aa) to 19.523 (742aa) while accessi-
bility was estimated as 3.622 (746aa) and 8.344 (773aa).

3.3. Prediction of ACE2 signal peptide and
structural domains

SignalP-4.1 predicted a cleavage site between the positions
of 17 and 18 as depicted in Figure 3. For ACE2, C-, S-, and Y-
scores were computed. Amino acid 18 showed the maximum
C- and Y-scores. The maximum S-score was obtained for pos-
ition 13 all greater than standard value of 0.5.

3.4. Ace2 single nucleotide polymorphism (SNP)

The BioMuta displayed the detailed overview of ACE2 single
nucleotide polymorphism with frequency and the type of
cancer. The SNP observed for gene were: Uterine cancer:
253, Lung cancer: 108, Liver cancer: 102, Melanoma 100,
Colorectal cancer, 76 and Breast cancer 76 (Figure 4(a)).
Three frequent SNPs observed were at the positions of 219
aa in 40 patients, 325 aa in 14 patients and 683aa in 14
patients (Figure 4(b)).

The nsSNPs after retrieval from dbSNP tool of NCBI, the
SIFT tool selected and analyzed fifty (50) nsSNPs which were
predicted as deleterious as described in Supplementary
Table S1. These deleterious nsSNPs were further evaluated
by PolyPhen-2, PROVEAN and PANTHER software for the

prediction of damaging SNPs (Supplementary Tables S1 and
S2). PolyPhen-2 predicted 33, PROVEAN 23 and 28 nsSNPs as
damaging as the result of their analysis. In Panther analysis,
the preservation time (millions of years) depicts the duration
for a position in a given protein for which it has been pre-
served from back to reconstructed direct ancestors. Greater
the time of preservation for a position, higher the chances of
deleterious effect (Thomas, Kejariwal et al. 2003).

3.5. Sub cellular localization

Results of CELLO and UniProt showed that ACE2 has high
concentrations in plasma membrane and secreted in extra-
cellular spaces. Apart from these subcellular locations, cyto-
plasm and cell membrane of neurons also have a detectable
amount of ACE2. HMMTOP and TMHMM revealed the pres-
ence of a single transmembrane helix for ACE2, the expected
number of amino acids in this transmembrane helix was pre-
dicted to be 23.23853, with N-terminus towards outside
(Figure 5).

3.6. Methylation sites assessment

The ACE2 gene sequence analysis using MethyCancer
revealed absence of any methylation site, moreover the
MethyCancer CpG island prediction server failed to predict
any methylation site for ACE2.

3.7. Post translational modifications’ assessment

Numerous post-translational modifications were predicted by
CBS server for ACE2. The threshold value was set at 0.5
(default value) and residues with value greater than this
threshold would indicate high probability. NetCGlyc revealed
the absence of c-mannosylation sites for ACE2. No 3CL cleav-
age sites were predicted for ACE2 by NetCorona (Figure 6a).
ProP 1.0 server predicted a signal peptide cleavage site
between 17 and 18 amino acids, but no propeptide cleavage
site was predicted. NetGlycate 1.0 server predicted 19 glyco-
sylation sites for ACE2 (Figure 6b). NetNGlyc 1.0 showed
presence of 6N-linked glycosylation sites (Figure 6c), whereas
no O-glycosylation site was predicted for ACE2 by NetOGlyc

Figure 1. Human ACE2 gene location, structure and domains. (a) ACE2 Chromosomal localization on p arm of X chromosome (Xp22.2) highlighted in blue; (b)
ACE2 gene (red) flanked by LOC117134593 and GS1-594A7.3 genes (grey); and (c) ACE2 gene contains 19 exons (green bars) and 16 introns (grey arrows).
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Figure 2. Phylogenetic (Neighbor-joining) tree showing relationship among different animals based on multiple sequence alignment of ACE2 peptide.
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4.0. NetPhos3.1 predicted a total of 111 phosphorylation sites
for ACE2. Highest number of phosphorylation sites were
identified for Serine (58), followed by threonine which had
30 phosphorylation sites and lastly tyrosine having only 23
sites (Figure 6d). Different type of kinases with their total
number of phosphorylation sites are shown in Table 2.

3.8. Predicted ACE2 protein structure and assessment of
model stability

Template search on Swiss Model yielded a total of eight tem-
plates with variable sequence identity to our target protein
ACE 2. Based on sequence identity, GMQE and QSQE scores,
Template 6m18.1B (Title: Angiotensin converting enzyme 2)

was finalized as template for model construction. This tem-
plate showed 100% sequence identity with ACE2, with a per-
fect GMQE score at 0.99 and QSQE score at 0.85. PPI
fingerprint for this template was also within the predicted
range for homology modeling. The predicted model of ACE2
showed in range quality estimate and QMEAN value. ACE2
protein consists of 805 aa however our model coverage range
was up to 768 aa. Due to unavailability of any suitable tem-
plate for the last 32 aa segments of ACE2, no structure could
be predicted for this protein segment (Figure 7a). The pre-
dicted ACE2 model was further evaluated via Ramachandran
plot using Swiss Model Structure Assessment feature (Figure
7b). The MolProbity score and Clash score was 0.88 and 0.25,

Table 1. Different physicochemical parameters for ACE2 analyzed by ProtParam and Protscale tools.

Lowest Highest Lowest Highest Lowest Highest

Buried residues % Polarity/Zimmerman Average flexibility

Position Score Position Score Position Score Position Score Position Score Position Score
479 1.322 755 11.222 755 0.101 769 39.468 372 0.381 217 0.497
478 1.333 756 11.211 756 0.116 770 39.453 460 0.388 790 0.491
477 1.522 751 10.956 757 0.116 771 39.453 387 0.387 768 0.493
474 1.611 752 10.956 758 0.14 772 34.117 458 0.387 736 0.492
476 1.644 11 10.744 7 1.033 479 33.992 240 0.386 767 0.492
Hphob./Hopp and Woods Relative mutability Bulkiness
Position Score Position Score Position Score Position Score Position Score Position Score
745 �1.756 770 2.300 264 51.111 60 111.222 399 11.472 742 19.523
746 �1.700 771 2.300 462 52.333 61 111.000 217 11.602 756 19.476
758 �1.578 769 2.156 591 52.889 55 107.778 398 11.619 757 19.457
742 �1.556 772 2.000 271 53.333 57 107.333 397 11.698 745 19.309
743 �1.556 768 1.822 592 54.556 443 107.333 549 11.796 758 19.279
Accessible residues (%)
Position Score Position Score
746 3.622 773 8.344
377 3.778 772 8.1
745 3.822 110 7.944
459 3.844 770 7.911
558 3.911 771 7.911

Figure 3. Signal peptide detection for ACE2 protein from peptide sequence. SignalP 4.1 analysis predicted signal peptide cleavage site between 17 and 18 aa.
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Figure 4. SNP analysis of ACE2 in cancer patients. (a) SNPs observed for ACE2 gene in response different cancer types; and (b) Position-wise frequency of SNP.

Figure 5. TMHMM predicted posterior probabilities for Human ACE2.
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respectively. Ramachandran favored regions were 95.84% with
outliers at 0.27%.

3.9. Ace2 protein-protein association pathways and
orthologue clustering

A multiple node interaction map was constructed using STRING
database. The results showed interaction of ACE2 with ten other
proteins. The analysis of this protein-protein interaction network
revealed 11 nodes, 37 edges and average node degree of 6.73.
The PPI enrichment value and average local clustering co-efficient
for this interactive mesh of proteins was 0.844 and 1.29e-09
respectively (Figure 8a). Ortholog analysis of ACE2 revealed that it
belonged to KOG3690 orthologous group of M2-family pepti-
dases (Figure 8b). The primary molecular functions of ACE2 were
exopeptidase/endopeptidase activity (GO:0008238, GO:0004175),
amino peptidase activity (GO:0004177), metallopeptidase activity

(GO:0008237) and peptidase activity on peptides of L-amino acids
(GO:0070011). ACE2 plays a primary role in a number of biological
processes: modulation of systematic arterial blood pressure via
renin-angiotensin system (GO:0003073), adjustment of blood vol-
ume (GO:0002016), production of aldosterone (GO:0002018),
metabolism of reactive oxygen species (GO:2000377), maintaining
balance of hormone level (GO:0010817), controlling diameter of
blood vessel via renin-angiotensin system (GO:0002034), matur-
ation of angiotensin (GO:0002003), involved in renin-angiotensin
system of brain (GO:0002035) and much more. Cellular pathways
in which ACE2 play a central role include Secretion of renin
(hsa04924), Protein digestion and assimilation (hsa04974),
Adrenergic signaling in cardiac tissues (hsa04261), Receptor-lig-
and interaction in neuronal pathways (hsa04080) and Renin-
angiotensin system (hsa04614).

3.10. Mirnas targeting ACE2

The predicted miRNAs for ACE2 are shown in the Figure 9.
When the literature survey was done to validate these pre-
dicted miRNAs against the experimental data, only miR-1246
was found to have experimental validation as its upregula-
tion is associated with acute respiratory distress syndrome
(ARDS) (Fang, Gao et al. 2017).

3.11. Tfs of ACE2

Since the binding of viral spike protein with ACE2 has been
proposed to be a mechanism for viral entry into lungs, the first
sensible step was to check the expression of this gene in lungs
along with other tissues to get a clearer picture. The graph for
mRNA expression of ACE2 for different tissues of adult human

Figure 6. Human ACE2 Post-Translational Modifications predicted by CBS servers. (a) Predicted 3CL Proteinase cleavage sites by NetCorona 1.0. (b) 19 glycosylation
sites predicted by NetGlycate 1.0. (c) 6-N glycosylation sites predicted by NetNGlyc 1.0. (d) Predicted phosphorylation sites by NetPhos 3.1.

Table 2. Kinases with their total number of phosphorylation sites.

Kinases Phosphorylation sites

PKC 19
PKA 11
CKII 11
cdc2 10
INSR 6
CKI 5
DNAPK 4
P38MAPK 3
EGFR 1
cdk5 1
PKG 1
SRC 1
Unspecific 38
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being is shown in the Figure 10 (Fagerberg, Hallstr€om et al.
2014). Furthermore, the RPKM values ACE2 for healthy tissues
(of all the organs reported to have been affected by COVID-19
infection) are also presented in Table 3. Quite surprisingly, the
normal expression of ACE2 in lung tissue is very low as com-
pared to other tissues.

The potential transcription factors for ACE2 were identi-
fied using GeneCards database (GeneCards 2020) resulting in
38 TFs selected on the basis of highest scoring. The
GeneHancer score for these 38 transcription factors was 1.2
while gene association score was 500.7 with the transcription
start site (TSS) location was þ2.4 kb. These TFs were then fur-
ther sorted on the basis of their ubiquitous expression in

specific tissues of the body (Table 4) (Fagerberg, Hallstr€om
et al. 2014). This resulted in the identification of FOXP1 (fork-
head box protein P1) and RARA (Retinoic acid receptor
alpha) as the TFs having abundant expression in the lungs.

3.12. Analysis of RNA-seq data of lung biopsy samples

The identification of lung specific ACE2 transcription factors
further urged us to analyze the in vivo RNA seq data of
COVID-19 infected lungs to find if any of these TFs might be
differentially expressing. The results of the RNA-seq analysis
are described below.

Figure 8. Protein-protein Interaction and Ortholog clustering of Human ACE2 (a) Protein-Protein Interaction network analysis via STRING revealed 11 nodes, 37
edges and average node degree of 6.73. The PPI enrichment value was 1.29e-09 whereas average local clustering co-efficient was 0.844. (b) Protein family analysis
placed ACE2 in KOG3690 orthologous group of M2-family peptidases.

Figure 7. Predicted Protein Structure for Human ACE2. (a) 3-D structure and model coverage; and (b) Ramachandran plot for stability assessment.
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3.12.1. Quality control, composition bias normalization
and hierarchical clustering

The distribution of the samples’ data and library sizes was
checked with the help of different plots. The library sizes of
each sample were barplotted to find the major discrepancies
between the samples. The barplot of library sizes

demonstrated that the data is not normally distributed
(Supplementary Figure S2 (a)). Further examination of the
raw counts was done via plotting the log2 counts per million
to correct for different library sizes. This resulted in similar
distributions of log intensities except for the COVID-19 lung
1 sample which appeared far below the median line

Figure 9. Node graphs of ACE2 specific miRNAs predicted by miRWalk and also cross matched and filtered with miRDB (Sticht, De La Torre et al. 2018). (a) miRNAs
targeting 3’ UTR; (b) miRNAs targeting 5’ UTR; and (c) miRNAs targeting CDS (coding DNA sequence).

Figure 10. Expression level of ACE2 in different tissues of adult human (Fagerberg, Hallstr€om et al. 2014). Graph courtesy from NCBI database (NCBI Gene 2020).
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(Supplementary Figure S2 (b)). Furthermore, the determin-
ation of the greatest source of variation in this data and visu-
alization of the principle components analysis was done via
multidimensional scaling plot (MDS plot) (Supplementary
Figure S2 (c)). The MDS plot shows a great deal of variation
between the lung biopsy samples from COVID-19 patients.

TMM normalization was performed for each library to
eliminate composition bias and mean difference plots were
generated side by side for each sample to see the difference
(Supplementary Figure S3).

For further examining the relationship between the sam-
ples of this study, hierarchical clustering was done and heat-
map was plotted for the top 500 variable genes (Figure 11)
using heatmap.2 function of the gplots package.

3.12.2. Limma-Voom analysis of differential expression
The voom function of the limma package transformed the
read counts into logCPMs and then a linear model was built
on the voom-transformed data. The design matrix was built
and used to plot the mean variance trend. Moreover, the
boxplots were generated again as a comparison between

before and after TMM normalization which showed that the
variance in the density distributions between libraries is now
reduced much and all the samples are now arranged near
the median line (Supplementary Figure S4).

The differentially expressed genes were tested using
voom transformed data and contrast matrix was made
between COVID19 patients and healthy controls (supplemen-
tary excel file). After testing for differential expression,
MDplots and volcano plots were generated to see the vari-
ance of the genes being significantly expressed differentially
(Figure 12).

3.12.3. Sorting transcription factors
The differentially expressed genes were further sorted to find
any transcription factors being expressed. As a result, FOXO4,
FOXP2 were found to be downregulated whereas FOS was
found to be upregulated as a result of COVID-19 infection
(Table 5). Although these transcription factors are not the
same as identified (Table 4), however the only similarity we
got was that the TFs from Forkhead box protein family were
common among the two.

3.13. Analysis of cellular pathways regulated by
transcription factors

All the three TFs sorted from the expression analysis were
further investigated to see which cellular pathways they
might regulate and to get a picture of how their downregu-
lation might be affecting cell survival thereby determining
their probabilistic contribution in cell death or proliferation
of lung cells as a result of COVID-19 infection. Of the three
transcription factors, no cellular pathways were found to be

Table 4. Tissue specific expression of transcription factors acting on promoter/enhancer region of ACE2 gene.

Tissue type

Putative Transcription Factors regulating expression
of ACE2 arranged with respect to their high

expression in the corresponding tissue (38 TFs)
Transcription factors with no available

transcriptomic data

Adrenal gland – CEBPB, USF1, JUN, JUND, CEBPA
Appendix –
Bone marrow ZNF384, EP300,
Colon NCOR1, NR2F6,
Duodenum HNF4A,
Endometrium SMARCE1,
Esophagus –
Fat BCL6,
Gall bladder MAFF
Heart –
Kidney –
Liver FOXA3,
Lung FOXP1, RARA,
Lymph node TCF7, MIXL1,
Ovary –
Pancreas –
Placenta TEAD3, ARID3A, SOX13,
Prostate FOXA1,
Salivary gland –
Skin GATA3, RXRA, SP1,
Small intestine –
Spleen HMG29A,
Stomach FOXA2,
Testis SAP130, HOMEZ, KDM1A, RFX1, SOX5,

GATAD2A, MNT,
Thyroid SMAD4, ZNF614, CEBPG, RXRB,
Urinary bladder –

Table 3. Expression of ACE2 in different normal human tissues, arranged in a
descending order (Fagerberg, Hallstr€om et al. 2014).

Tissue type RPKM values for ACE2 expression

Small intestine 93.724 ± 16.1
Duodenum 69.059 ± 6.292
Kidneys 30.81 ± 17.148
Heart 12.309 ± 10.958
Stomach 1.177 ± 0.937
Lungs 0.162�
Brain NS
Colon NS
�RPKM value of a single lung sample via Illumina bodyMap2 transcriptome.
NS – non-significant.
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Figure 11. Heatmap for 500 most variable genes between healthy and COVID-19 lung biopsy samples. Purple – COVID-19 lung biopsy samples, orange – healthy
lung samples.

Figure 12. Plotting to view the differentially expressed genes. Left – MDplot; and right – volcano plot.
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existing for FOXP2, whereas 1 and 3 relevant pathways were
found associated with FOXO4 and FOS respectively
(Supplementary Figures S5-S8) (Slenter, Kutmon et al. 2018).

FOXO4 was found to be present in pathways associated
with cellular signaling of glioblastoma. Present as a down-
stream molecular component of the AKT signaling pathway,
it is an upstream effector of JNK pathway via intermediacy of
some other molecules and found to be involved in G1/S
phase of cell cycle progression (Supplementary Figure S5)
(Slenter, Kutmon et al. 2018).

The three cellular pathways of which FOS was found to
be an integral component are: Toll-like receptor (TLR) signal-
ing pathway, FOS Corticotropin-releasing hormone signaling
pathway and estrogen signaling pathway (Slenter, Kutmon
et al. 2018). In the TLR signaling pathway, FOS is a down-
stream mediator which leads to complement and coagula-
tion cascades whereas its role in estrogen signaling pathway
is of the regulation of the expression anti-apoptotic and pro-
liferative genes (Supplementary Figure S6 and S8). However,
looking at the FOS Corticotropin-releasing hormone signaling
pathway, the definite role of FOS is still not clear despite its
presence as a downstream effector of this pathway
(Supplementary Figure S7).

4. Discussion

Coronaviruses have caused massive pandemics twice in the
last two decades, SARS in 2002, and the Middle East respira-
tory syndrome (MERS) in 2012 (Xu, Zhong et al. 2020). Novel
coronavirus SARS-CoV-2 was identified in Wuhan, China in
December 2019. This viral outbreak has been declared as a
pandemic by WHO and has 8,018,963 active cases with
436,138 deaths till June 15, 2020, worldwide. Among these
cases, 144,478 cases are of Pakistan with 2,729 deaths
(https://www.worldometers.info/coronavirus/).

Infection routes and treatment of COVID-19 have not
been understood so far. However, SARS-CoV-2/COVID-19 is
reported to share the same receptor, Angiotensin-converting
enzyme 2 (ACE2), with SARS-CoV. ACE2 acts as a receptor for
viral spike protein thereby facilitating its entry in the cell.
Thus, the study of COVID-19 host cell receptor ACE2 can be
useful for the prevention and treatment of the COVID-19
(Zhao, Zhao et al. 2020). In this study, we have analyzed
ACE2 protein using in silico approaches for acquiring a better
understanding of its pathology and its potential as a target
therapeutic target.

The Human ACE2 sequence was subjected to structural
analysis. ACE2 protein has one transmembrane helix with
23.23853 amino acids and its N-terminal to be outside the
membrane. While gene sequence analysis of ACE2, it was
observed that there is no methylation site for ACE2, and the
server also failed to predict any CpG site. Eight templates

were found for ACE2 by using homology modeling with high
sequence similarity. One of those templates was selected
based on sequence similarity and structure was predicted.
ACE2 protein consists of 801 amino acids and the predicted
structure was of 768 amino acids. For the last few amino
acids, no appropriate template was found so those specific
regions were not synthesized. Then the model was subjected
to Ramachandran plot analysis for assessment. Due to the
use of a good template, the quality of the predicted struc-
ture was found satisfactory. Functional association and ortho-
log clustering of ACE2 was done, the interaction of ACE2
with other proteins was observed in the functional associ-
ation. In ortholog analysis, it was observed that ACE2
belongs to the orthologous group of M2-family peptidases.
ProtParam computations predicted the protein to be stable
with precise aliphatic (Guruprasad, Reddy et al. 1990) and
stability indexes (Ikai 1980). Prominent kinases with the total
number of their respective phosphorylation sites were pre-
dicted with 38 non-specific kinases. BioMuta analysis for the
ACE2 displayed three frequent SNPs at the positions of 219
aa in 40 patients, 325 aa in 14 patients and 683aa in 14
patients, and types of cancer. Damaging SNPs were pre-
dicted by using PolyPhen-2 and PROVEAN software. In litera-
ture, correlation of radical expression of ACE2 and Ang II
with metastasis and diagnosis of endometrial cancer has
been reported by Watanabe et al., 2003; Shibata et al., 2005;
Delforce et al., 2017 (Jing, Run-Qian et al. 2020)

Different miRNAs were predicted for ACE2 and only miR-
1246 was found to have experimental validation due to the
association with Acute Respiratory Distress Syndrome. MiR-
1246 was found to repress ACE2 expression by binding to its
30-UTR (Liu, Du et al. 2017). It is possible that this miRNA
might also be getting upregulated in the respiratory distress
caused by COVID-19. However, no data is available in this
regard and it would be useful to study the expression of
miR-1246 as a result of COVID-19 infection in the wet lab
along with other predicted miRNAs of this study. Parallel
studies of other predicted miRNAs showed involvement in
different diseases. ACE2 specific MiR-212-5p suppresses the
epithelial-mesenchymal transition and metastasis by downre-
gulating Prrx2 and can act as prognostic marker for breast
cancer (Lv, Yang et al. 2017). MiR-212-5p is also involved in
chronic obstructive pulmonary disease (COPD), where it
exerts a protective effect in COPD by promoting cell prolifer-
ation and down-regulating the expression of the related
genes and proteins (Jia, Chang et al. 2018).

Different transcription factors of ACE2 were selected
based on the highest scoring and their expression in differ-
ent organs was also checked. FOXP1 (forkhead box protein
P1) and RARA (Retinoic acid receptor alpha) were the pre-
dicted TFs with the highest expression in the lungs. Three
transcription factors (TFs) including Signal transducer and
activator of transcription 4 (STAT4), Estrogen related receptor

Table 5. Description of transcription factors from the down regulated genes.

SYMBOL GENENAME Average expression Class Family

FOXO4 Forkhead Box O4 9.134273 Fork head / winged helix factors Forkhead box (FOX) factors
FOXP2 Forkhead Box P2 5.165177 Fork head / winged helix factors Forkhead box (FOX) factors
FOS FOS proto-oncogene, AP-1 transcription factor subunit 7.36853 Basic leucine zipper factors (bZIP) FOS-related factors
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a (ESRRA), and Signal transducer and activator of transcrip-
tion 3 (STAT3) which express in different organs other than
lungs were sorted as potential targets of ACE2 in a study.
These TFs might act as possible therapeutic agents against
the COVID-19 infection by regulation of the transcriptional
activation of ACE2 (Yang, Zhao et al. 2020). In this study, we
have also focused on those TFs which are highly expressed
in the lungs and tried to validate that data with RNA
sequence data. Significant upregulation of FOS and downre-
gulation of FOXO4 and FOXP2 was found and upregulation
FOS was found because of the COVID-19 infection. This is
the first study that elaborates the potential targets related
to ACE2.

5. Conclusion and future perspective

Transcription factors and miRNAs both constitute a huge
class of biological molecules actively playing their roles in
health and disease. Their implication in various human dis-
eases and also their presence in a tissue-specific manner
makes them a useful target for therapeutic interventions
under both acute and chronic conditions. The same applies
to our findings of this study concerning the development of
new treatments for COVID-19. We propose that inhibitors
and activators of the up and downregulated molecules,
respectively, could present valuable new targets for this cur-
rently incurable pandemic disease.
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