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Introduction

The past decade has been a bruising one for experimental 
psychology. The publication of a paper by Simmons, 
Nelson, and Simonsohn (2011) entitled “False-positive 
psychology” drew attention to problems with the way in 
which research was often conducted in our field, which 
meant that many results could not be trusted. Simmons 
et al. focused on “undisclosed flexibility in data collection 
and analysis,” which is now variously referred to as 

p-hacking, data dredging, noise mining, or asterisk hunt-
ing: exploring datasets with different selections of 
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variables and different analyses to attain a p-value lower 
than .05 and, subsequently, reporting only the significant 
findings. Hard on the heels of their demonstration came a 
wealth of empirical evidence from the Open Science 
Collaboration (2015). This showed that less than half the 
results reported in reputable psychological journals could 
be replicated in a new experiment.

The points made by Simmons et  al. (2011) were not 
new: indeed, they were anticipated in 1830 by Charles 
Babbage, who described “cooking” of data:

This is an art of various forms, the object of which is to give 
ordinary observations the appearance and character of those 
of the highest degree of accuracy. One of its numerous 
processes is to make multitudes of observations, and out of 
these to select only those which agree, or very nearly agree. If 
a hundred observations are made, the cook must be very 
unhappy if he cannot pick out fifteen or twenty which will do 
for serving up. (p. 178–179)

P-hacking refers to biased selection of data or analyses 
from within an experiment. Bias also affects which studies 
get published in the form of publication bias—the ten-
dency for positive results to be overrepresented in the pub-
lished literature. This is problematic because it gives an 
impression that findings are more consistent than is the 
case, which means that false theories can attain a state of 
“canonisation,” where they are widely accepted as true 
(Nissen, Magidson, Gross, & Bergstrom, 2016). Figure 1 
illustrates this with a toy simulation of a set of studies test-
ing a difference between means from two conditions. If we 
have results from a series of experiments, three of which 
found a statistically significant difference and three of 
which did not, this provides fairly strong evidence that the 
difference is real (panel a). However, if we add a further 
four experiments that were not reported because results 
were null, the evidence cumulates in the opposite 

direction. Thus, omission of null studies can drastically 
alter our impression of the overall support for a 
hypothesis.

Since the paper by Simmons et al. (2011), there has been a 
dramatic increase in replication studies. As a result, a number 
of well-established phenomena in psychology have come into 
question. Often it is difficult to be certain whether the original 
reports were false positives, whether the replication was 
flawed, or whether the effect of interest is only evident under 
specific conditions—see, for example, Hobson and Bishop 
(2016) on mu suppression in response to observed actions; 
Sripada, Kesller, and Jonides (2016) on ego depletion; 
Lehtonen et al. (2018) on an advantage in cognitive control for 
bilinguals; O’Donnell et al. (2018) on the professor-priming 
effect; and Oostenbroek et al. (2016) on neonatal imitation. 
What is clear is that the size, robustness, and generalisability 
of many classic effects are lower than previously thought.

Selective reporting, through p-hacking and publication 
bias, is not the only blight on our science. A related prob-
lem is many editors place emphasis on reporting results in 
a way that “tells a good story,” even if that means retrofit-
ting our hypothesis to the data, i.e., HARKing or “hypoth-
esising after the results are known” (Kerr, 1998). Oberauer 
and Lewandowsky (2019) drew parallels between 
HARKing and p-hacking: in HARKing, there is post hoc 
selection of hypotheses, rather than selection of results or 
an analytic method. They proposed that HARKing is most 
widely used in fields where theories are so underspecified 
that they can accommodate many hypotheses and where 
there is a lack of “disconfirmatory diagnosticity,” i.e., fail-
ure to support a prediction is uninformative.

A lack of statistical power is a further problem for psy-
chology—one that has been recognised since 1969, when 
Jacob Cohen exhorted psychologists not to waste time and 
effort doing experiments that had too few observations to 
show an effect of interest. In other fields, notably clinical 

Figure 1.  The impact of publication bias demonstrated with plots of cumulative log odds in favour of true versus null effect over 
a series of experiments. The log odds for each experiment can be computed with knowledge of alpha (.05) and power (.8); 1 
denotes an experiment with significant difference between means, and 0, a null result. The starting point is zero, indicating that we 
assume a 50:50 chance of a true effect. For each significant result, the log odds of it coming from a true effect versus a null effect is 
log(.8/.05) = 2.77. For a null result, the log odds is log (.2/.95) = −1.55. The selected set of studies in panel (a) concludes with a log 
odds greater than 3, indicating that the likelihood of a true effect is 20 times greater than a null effect. However, panel (b), which 
includes additional null results (labelled in grey), leads to the opposite conclusion.
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trials and genetics, after a period where non-replicable 
results proliferated, underpowered studies died out quite 
rapidly when journals adopted stringent criteria for publi-
cation (e.g., Johnston, Lahey, & Matthys, 2013), and 
funders began to require power analysis in grant proposals. 
Psychology, however, has been slow to catch up.

It is not just experimental psychology that has these 
problems—studies attempting to link psychological traits 
and disorders to genetic and/or neurobiological variables 
are, if anything, subject to greater challenges. A striking 
example comes from a meta-analysis of links between the 
serotonin transporter gene, 5-HTTPLR, and depression. 
This postulated association has attracted huge research 
interest over the past 20 years, and the meta-analysis 
included 450 studies. Contrary to expectation, it concluded 
that there was no evidence of association. In a blog post 
summarising findings, Alexander (2019) wrote,

. . . what bothers me isn’t just that people said 5-HTTLPR 
mattered and it didn’t. It’s that we built whole imaginary 
edifices, whole castles in the air on top of this idea of 
5-HTTLPR mattering. We “figured out” how 5-HTTLPR 
exerted its effects, what parts of the brain it was active in, 
what sorts of things it interacted with, how its effects were 
enhanced or suppressed by the effects of other imaginary 
depression genes. This isn’t just an explorer coming back 
from the Orient and claiming there are unicorns there. It’s the 
explorer describing the life cycle of unicorns, what unicorns 
eat, all the different subspecies of unicorn, which cuts of 
unicorn meat are tastiest, and a blow-by-blow account of a 
wrestling match between unicorns and Bigfoot.

It is no exaggeration to say that our field is at a cross-
roads (Pashler & Wagenmakers, 2012), and the 5-HTTLPR 
story is just a warning sign that practices that lead to bad 
science are widespread. If we continue to take the well-
trodden path, using traditional methods for cooking data 
and asterisk hunting, we are in danger of losing attention, 
respect, and funding.

Much has been written about how we might tackle the 
so-called “replication crisis.” There have been four lines of 
attack. First, there have been calls for greater openness and 
transparency (Nosek et al., 2015). Second, a case has been 
made for better training in methods (e.g., Rousselet, 
Pernet, & Wilcox, 2017). Third, it has been argued we 
need to change the way research has been conducted to 
incorporate pre-registration of research protocols, prefer-
ably in the format of Registered Reports, which are peer-
reviewed prior to data collection (Chambers, 2019). 
Fourth, it is recognised that for too long, the incentive 
structure of research has prioritised innovative, ground-
breaking results over methodological quality. Indeed, 
Smaldino and McElreath (2016) suggested that one can 
model the success of scientists in a field as an evolutionary 
process, where prestigious publications lead to survival, 
leaving those whose work is less exciting to wither away 
and leave science. The common thread to these efforts is 
that they locate the mechanisms of bad science at the sys-
temic level, in ways in which cultures and institutions 

reinforce norms and distribute resources. The solutions 
are, therefore, aimed at correcting these shortcomings by 
creating systems that make good behaviour easier and 
more rewarding and make poor behaviour more costly.

My view, however, is that institutional shortcomings 
are only part of the story: to improve scientific research, 
we also need to understand the mechanisms that maintain 
bad practices in individual humans. Bad science is usually 
done because somebody mistook it for good science. 
Understanding why individual scientists mistake bad sci-
ence for good, and helping them to resist these errors, is a 
necessary component of the movement to improve psy-
chology. I will argue that we need to understand how cog-
nitive constraints lead to faulty reasoning if we are to get 
science back on course and persuade those who set the 
incentives to reform. Fortunately, as psychologists, we are 
uniquely well positioned to tackle this issue.

Experimental psychology has a rich tradition of study-
ing human reasoning and decision-making, documenting 
the flaws and foibles that lead us to selectively process 
some types of information, make judgements on the basis 
of incomplete evidence, and sometimes behave in ways 
that seem frankly irrational. This line of work has had 
significant application to economics, politics, business 
studies, and law, but, with some notable exceptions (e.g., 
Hossenfelder, 2018; Mahoney, 1976), it has seldom been 
considered when studying the behaviour of research sci-
entists. In what follows, I consider how our knowledge of 
human cognition can make sense of problematic scien-
tific practices, and I propose ways we might use this 
information to find solutions.

Cognitive constraints that affect how 
psychological science is done

Table 1 lists four characteristics of human cognition that I 
focus on: I refer to these as “constraints” because they limit 
how we process, understand, or remember information, but 
it is important to note that they include some biases that can 
be beneficial in many contexts. The first constraint is con-
firmation bias. As Hahn and Harris (2014) noted, a range of 
definitions of “confirmation bias” exist—here, I will define 
it as the tendency to seek out evidence that supports our 
position. A further set of constraints has to do with under-
standing of probability. A lack of an intuitive grasp of prob-
ability contributes to both neglect of statistical power in 
study design and p-hacking in data analysis. Third, there is 
an asymmetry in moral reasoning that can lead us to treat 
errors of omission as less culpable than errors of commis-
sion, even when their consequences are equally serious 
(Haidt & Baron, 1996). The final constraint featured in 
Bartlett’s (1932) work: reliance on cognitive schemata to 
fill in unstated information, leading to “reconstructive 
remembering,” which imbues memories with meaning 
while filtering out details that do not fit preconceptions.

In what follows, I illustrate how these constraints 
assume particular importance at different stages of the 
research process, as shown in Table 2.
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Bias in experimental design

Confirmation bias and the failure to consider 
alternative explanations

Scientific discovery involves several phases: the researcher 
needs to (a) assemble evidence, (b) look for meaningful pat-
terns and regularities in the data, (c) formulate a hypothesis, 
and (d) test it empirically by gathering informative new data. 
Steps (a)–(c) may be designated as exploratory and step (d) as 
hypothesis testing or confirmatory (Wagenmakers, Wetzels, 
Borsboom, van der Mass, & Kievit, 2012). Importantly, the 
same experiment cannot be used to both formulate and con-
firm a hypothesis. In practice, however, the distinction 
between the two types of experiment is often blurred.

Our ability to see patterns in data is vital at the explora-
tory stage of research: indeed, seeing something that nobody 
else has observed is a pinnacle of scientific achievement. 
Nevertheless, new ideas are often slow to be accepted, pre-
cisely because they do not fit the views of the time. One 
such example is described by Zilles and Amunts (2010): 
Brodmann’s cytoarchitectonic map of the brain, described 

in 1909. This has stood the test of time and is still used over 
100 years later, but for several decades, it was questioned by 
those who could not see the fine distinctions made by 
Brodmann. Indeed, criticisms of poor reproducibility and 
lack of objectivity were levelled against him.

Brodmann’s case illustrates that we need to be cautious 
about dismissing findings that depend on special expertise 
or unique insight of the observer. However, there are plenty 
of other instances in the history of science where invalid 
ideas persisted, especially if proposed by an influential or 
charismatic figure. Entire edifices of pseudoscience have 
endured because we are very bad at discarding theories 
that do not work; as Bartlett (1932) would predict, new 
information that is consistent with the theory will 
strengthen its representation in our minds, but inconsistent 
information will be ignored. Examples from the history of 
science include the rete mirabile, a mass of intertwined 
arteries that is found in sheep but wrongly included in ana-
tomical drawings of humans for over 1,000 years because 
of the significance attributed to this structure by Galen 
(Bataille et  al., 2007); the planet Vulcan, predicted by 
Newton’s laws and seen by many astronomers until its 
existence was disproved by Einstein’s discoveries 
(Levenson, 2015); and N-rays, non-existent rays seen by at 
least 40 people and analysed in 3,090 papers by 100 scien-
tists between 1903 and 1906 (Nye, 1980).

Popper’s (1934/1959) goal was to find ways to distin-
guish science from pseudoscience, and his contribution to 
philosophy of science was to emphasise that we should be 
bold in developing ideas but ruthless in attempts to falsify 
them. In an early attempt to test scientists’ grasp of 
Popperian logic, Mahoney (1976) administered a classic 
task developed by Wason (1960) to 84 scientists (physi-
cists, biologists, psychologists, and sociologists). In this 
deceptively simple task, people are shown four cards and 
told that each card has a number on one side and a patch of 
colour on the other side. The cards are placed to show 
number 3, number 8, red, and blue, respectively (see 
Figure 2). The task is to identify which cards need to be 
turned over to test the hypothesis that if an even number 
appears on one side, then the opposite side is red. The sub-
ject can pick any number of cards. The correct response is 

Table 1.  Different types of cognitive constraints.

Cognitive constraint Description

Confirmation bias Tendency to seek out and 
remember evidence that supports a 
preferred viewpoint

Misunderstanding of 
probability

(a) Failure to understand how 
estimation scales with sample size
(b) Failure to understand that 
probability depends on context

Asymmetric moral 
reasoning

Errors of omission judged less 
seriously than errors of commission

Reliance on 
schemata

Perceiving and/or remembering in 
line with pre-existing knowledge, 
leading to omission or distortion of 
irrelevant information

Table 2.  Cognitive constraints that operate at different stages 
of the research process.

Stage of research Cognitive constraint

Experimental 
design

Confirmation bias: looking for evidence 
consistent with theory
Statistical misunderstanding: power

Data analysis Statistical misunderstanding: p-hacking
Moral asymmetry: omission and 
“paltering” deemed acceptable

Scientific 
reporting

Confirmation bias in reviewing literature
Moral asymmetry: omission and 
“paltering” deemed acceptable
Cognitive schemata: need for narrative, 
HARKing

HARKing: hypothesising after the results are known.

Figure 2.  Wason’s (1960) task: The subject is told, “Each card 
has a number on one side and a patch of colour on the other. 
You are asked to test the hypothesis that—for these 4 cards—
if an even number appears on one side, then the opposite 
side is red. Which card(s) would you turn over to test the 
hypothesis?”
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to name the two cards that could disconfirm the hypothe-
sis—the number 8 and the blue card. Fewer than 10% of 
the scientists tested by Mahoney identified both critical 
cards, more often selecting the number 8 and the red card.

Although this study was taken as evidence of unscien-
tific reasoning by scientists, that conclusion has since been 
challenged by those who have criticised both Popperian 
logic, in general, and the Wason selection task, in particu-
lar, as providing an unrealistic test of human rationality. 
For a start, the Wason task uses a deterministic hypothesis 
that can be disproved by a single piece of evidence. This is 
not a realistic model of biological or behavioural sciences, 
where we seldom deal with deterministic phenomena. 
Consider the claim that smoking causes lung cancer. Most 
of us accept that this is so, even though we know there are 
people who smoke and who do not get lung cancer and 
people who get lung cancer but never smoked. When deal-
ing with probabilistic phenomena, a Bayesian approach 
makes more sense, whereby we consider the accumulated 
evidence to determine the relative likelihood of one 
hypothesis over another (as illustrated in Figure 1). 
Theories are judged as more or less probable, rather than 
true or false. Oaksford and Chater (1994) showed that, 
from a Bayesian perspective, typical selections made on 
the Wason task would be rational in contexts where the 
antecedent and consequent of the hypothesis (an even 
number and red colour) were both rare. Subsequently, 
Perfors and Navarro (2009) concluded that in situations 
where rules are relevant only for a minority of entities, 
then confirmation bias is an efficient strategy.

This kind of analysis has shifted the focus to discussions 
about how far, and under what circumstances, people are 
rational decision-makers. However, it misses a key point 
about scientific reasoning, which is that it involves an 
active process of deciding which evidence to gather, rather 
than merely a passive evaluation of existing evidence. It 
seems reasonable to conclude that, when presented with a 
particular set of evidence, people generally make decisions 
that are rational when evaluated against Bayesian stand-
ards. However, history suggests that we are less good at 
identifying which new evidence needs to be gathered to 
evaluate a theory. In particular, people appear to have a ten-
dency to accept a hypothesis on the basis of “good enough” 
evidence, rather than actively seeking evidence for alterna-
tive explanations. Indeed, an early study by Doherty, 
Mynatt, Tweney, and Schiavo (1979) found that, when 
given an opportunity to select evidence to help decide 
which of two hypotheses was true (in a task where a ficti-
tious pot had to be assigned as originating from one of the 
two islands that differed in characteristic features), people 
seemed unable to identify which information would be 
diagnostic and tended, instead, to select information that 
could neither confirm nor disconfirm their hypothesis.

Perhaps the strongest evidence for our poor ability to 
consider alternative explanations comes from the history of 

the development of clinical trials. Although James Lind is 
credited with doing the first trials for treatment of scurvy in 
1747, it was only in 1948 that the randomised controlled 
trial became the gold standard for evaluating medical inter-
ventions (Vallier & Timmerman, 2008). The need for con-
trols is not obvious, and people who are not trained in this 
methodology will often judge whether a treatment is effec-
tive on the basis of a comparison on an outcome measure 
between a pre-treatment baseline and a post-treatment eval-
uation. The logic is that if a group of patients given the treat-
ment does not improve, the treatment did not work. If they 
do show meaningful gains, then it did work. And we can 
even embellish this comparison with a test of statistical sig-
nificance. This reasoning can be seen as entirely rational, 
and this can explain why so many people are willing to 
accept that alternative medicine is effective.

The problem with this approach is that the pre–post 
intervention comparison allows important confounds to 
creep in. For instance, early years practitioners argue that 
we should identify language problems in toddlers so that 
we can intervene early. They find that if 18-month-old late 
talkers are given intervention, only a minority still have 
language problems at 2 years and, therefore, conclude the 
intervention was effective. However, if an untreated con-
trol group is studied over the same period, we find very 
similar rates of improvement (Wake et  al., 2011)—pre-
sumably due to factors such a spontaneous resolution of 
problems or regression to the mean, which will lead to sys-
tematic bias in outcomes. Researchers need training to rec-
ognise causes of bias and to take steps to overcome them: 
thinking about possible alternative explanations of an 
observed phenomenon does not come naturally, especially 
when the preliminary evidence looks strong.

Intervention studies provide the clearest evidence of 
what I term “premature entrenchment” of a theory: some 
other examples are summarised in Table 3. Note that these 
examples do not involve poor replicability, quite the oppo-
site. They are all cases where an effect, typically an asso-
ciation between variables, is reliably observed, and 
researchers then converge on accepting the most obvious 
causal explanation, without considering lines of evidence 
that might point to alternative possibilities.

Premature entrenchment may be regarded as evidence 
that humans adopt Bayesian reasoning: we form a prior 
belief about what is the case and then require considerably 
more evidence to overturn that belief than to support it. 
This would explain why, when presented with virtually 
identical studies that either provided support for or evi-
dence against astrology, psychologists were more critical of 
the latter (Goodstein & Brazis, 1970). The authors of that 
study expressed concern about the “double standard” 
shown by biased psychologists who made unusually harsh 
demands of research in borderline areas, but from a 
Bayesian perspective, it is reasonable to use prior knowl-
edge so that extraordinary claims require extraordinary 
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evidence. Bayesian reasoning is useful in many situations: 
it allows us to act decisively on the basis of our long-term 
experience, rather than being swayed by each new incom-
ing piece of data. However, it can be disastrous if we con-
verge on a solution too readily on the basis of incomplete or 
inaccurate information. This will be exacerbated by publi-
cation bias, which distorts the evidential landscape.

For many years, the only methods available to coun-
teract the tendency for premature entrenchment were 
exhortations to be self-critical (e.g., Feynman, 1974) and 
peer review. The problem with peer review is that it typi-
cally comes too late to be useful, after research is com-
pleted. In the final section of this article, I will consider 
some alternative approaches that bring in external 
appraisal of experimental designs at an earlier stage in 
the research process.

Misunderstanding of probability leading to 
underpowered studies

Some 17 years after Cohen’s seminal work on statistical 
power, Newcombe (1987) wrote,

Small studies continue to be carried out with little more than 
a blind hope of showing the desired effect. Nevertheless, 
papers based on such work are submitted for publication, 
especially if the results turn out to be statistically significant. 
(p. 657)

In clinical medicine, things have changed, and the 
importance of adequate statistical power is widely recog-
nised among those conducting clinical trials. But in psy-
chology, the “blind hope” has persisted, and we have to ask 
ourselves why this is.

My evidence here is anecdotal, but the impression is that 
many psychologists simply do not believe advice about sta-
tistical power, perhaps because there are so many underpow-
ered studies published in the literature. When a statistician is 
consulted about sample size for a study, he or she will ask the 
researcher to estimate the anticipated effect size. This usually 
leads to a sample size estimate that is far higher than the 
researcher anticipated or finds feasible, leading to a series of 
responses not unlike the first four of the five stages of grief: 
denial, anger, bargaining, and depression. The final stage, 
acceptance, may, however, not be reached.

Of course, there are situations where small sample sizes 
are perfectly adequate: the key issue is how large the effect 
of interest is in relation to the variance. In some fields, 
such as psychophysics, you may not even need statistics—
the famous “interocular trauma” test (referring to a result 
so obvious and clear-cut that it hits you between the eyes) 
may suffice. Indeed, in such cases, recruitment of a large 
sample would just be wasteful.

There are, however, numerous instances in psychology 
where people have habitually used sample sizes that are 
too small to reliably detect an effect of interest: see, for 
instance, the analysis by Poldrack et  al. (2017) of well-
known effects in functional magnetic resonance imaging 
(fMRI) or Oakes (2017) on looking-time experiments in 
infants. Quite often, a line of research is started when a 
large effect is seen in a small sample, but over time, it 
becomes clear that this is a case of “winner’s curse,” a 
false positive that is published precisely because it looks 
impressive but then fails to replicate when much larger 
sample sizes are used. There are some recent examples 
from studies looking at neurobiological or genetic corre-
lates of individual differences, where large-scale studies 
have failed to support previously published associations 

Table 3.  Premature entrenchment: examples where the most obvious explanation for an observed association is accepted for 
many years, without considering alternative explanations that could be tested with different evidence.

Observation Favoured explanation Alternative explanation Evidence for alternative 
explanation

Home literacy environment 
predicts reading outcomes in 
children

Access to books at home affects 
children’s learning to read 
(Sénéchal & LeFevre, 2002)

Parents and children 
share genetic risk for 
reading problems

Children who are poor readers 
tend to have parents who are 
poor readers (Van Bergen, van 
Zuijen, Bishop, & de Jong, 2017)

Speech sounds (phonemes) do 
not have consistent auditory 
correlates but can be identified 
by knowledge of articulatory 
configurations used to produce 
them

Motor theory of speech 
perception: we learn to 
recognise speech by mapping 
input to articulatory gestures 
(Liberman, Cooper, Shankweiler, 
& Studdert-Kennedy, 1967)

Correlations between 
perception and 
production reflect co-
occurrence rather than 
causation

Children who are congenitally 
unable to speak can develop 
good speech perception, 
despite having no articulatory 
experience (Bishop & Robson, 
1989)

Dyslexics have atypical brain 
responses to speech when 
assessed using fMRI

Atypical brain organisation 
provides evidence that dyslexia 
is a “real disorder” with a 
neurobiological basis (Shaywitz, 
Mody, & Shaywitz, 2006)

Atypical responses to 
speech in the brain are 
a consequence of being 
a poor reader

Adults who had never been 
taught to read have atypical 
brain organisation for spoken 
language (Dehaene et al., 2010)

fMRI: functional magnetic resonance imaging.
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that had appeared to be solid (e.g., De Kovel & Francks, 
2019, on genetics of handedness; Traut et al., 2018, on cer-
ebellar volume in autism; Uddén et al., 2019, on genetic 
correlates of fMRI language-based activation).

A clue to the persistence of underpowered psychology 
studies comes from early work by Tversky and Kahneman 
(1971, 1974). They studied a phenomenon that they termed 
“belief in the law of small numbers,” an exaggerated con-
fidence in the validity of conclusions based on small sam-
ples, and showed that even those with science training 
tended to have strong intuitions about random sampling 
that were simply wrong. They illustrated this with the fol-
lowing problem:

A certain town is served by two hospitals. In the larger hospital 
about 45 babies are born each day, and in the smaller hospital 
about 15 babies are born each day. As you know, about 50% 
of all babies are boys. However, the exact percentage varies 
from day to day. Sometimes it may be higher than 50%, 
sometimes lower. For a period of 1 year, each hospital 
recorded the days on which more than 60% of the babies born 
were boys. Which hospital do you think recorded more such 
days?

1. The large hospital

2. The small hospital

3. About the same (that is, within 5% of each other)

Most people selected Option 3, whereas, as illustrated 
in Figure 3, Option 2 is the correct answer—with only 15 
births per day, the day-to-day variation in the proportion of 
boys will be much higher than with 45 births per day, and 
hence, more days will have more than 60% boys. One rea-
son why our intuitions deceive us is because the sample 
size does not affect the average percentage of male births 
in the long run: this will be 50%, regardless of the hospital 

size. But sample size has a dramatic impact on the variabil-
ity in the proportion of male births from day to day. More 
formally, if you have a big and small sample drawn from 
the same population, the expected estimate of the mean 
will be the same, but the standard error of that estimate 
will be greater for the small sample.

Statistical power depends on the effect size, which, for 
a simple comparison of two means, can be computed as the 
difference in means divided by the pooled standard devia-
tion. It follows that power is crucially dependent on the 
proportion of variance in observations that is associated 
with an effect of interest, relative to background noise. 
Where variance is high, it is much harder to detect the 
effect, and hence, small samples are often underpowered. 
Increasing the sample size is not the only way to improve 
power: other options include improving the precision of 
measurement, using more effective manipulations, or 
adopting statistical approaches to control noise (Lazic, 
2018). But in many situations, increasing the sample size 
is the preferred approach to enhance statistical power to 
detect an effect.

Bias in data analysis: p-hacking

P-hacking can take various forms, but they all involve a pro-
cess of selective analysis. Suppose some researchers 
hypothesise that there is an association between executive 
function and implicit learning in a serial reaction time task, 
and they test this in a study using four measures of executive 
function. Even if there is only one established way of scor-
ing each task, they have four correlations; this means that 
the probability that none of the correlations is significant at 
the .05 level is .954—i.e., .815—and conversely, the proba-
bility that at least one is significant is .185. This probability 
can be massaged to even higher levels if the experimenters 
look at the data and then select an analytic approach that 
maximises the association: maybe by dropping outliers, by 

Figure 3.  Simulated data showing proportions of males born in a small hospital with 15 births per day versus a large hospital with 
45 births per day. The small hospital has more days where more than 60% of births are boys (points above red line).
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creating a new scoring method, combining measures in 
composites, and so on. Alternatively, the experimenters may 
notice that the strength of the correlation varies with the age 
or sex of participants and so subdivide the sample to coax at 
least a subset of data into significance. The key thing about 
p-hacking is that at the end of the process, the researchers 
selectively report the result that “worked,” with the implica-
tion that the p-value can be interpreted at face value. But it 
cannot: probability is meaningless if not defined in terms of 
a particular analytic context. P-hacking appears to be com-
mon in psychology (John, Loewenstein, & Prelec, 2012). I 
argue here that this is because it arises from a conjunction of 
two cognitive constraints: failure to understand probability, 
coupled with a view that omission of information when 
reporting results is not a serious misdemeanour.

Failure to understand probability

In an influential career guide, published by the American 
Psychological Association, Bem (2004) explicitly recom-
mended going against the “conventional view” of the 
research process, as this might lead us to miss exciting new 
findings. Instead readers were encouraged to

become intimately familiar with .  .  . the data. Examine them 
from every angle. Analyze the sexes separately. Make up 
new composite indexes. If a datum suggests a new 
hypothesis, try to find additional evidence for it elsewhere in 
the data. If you see dim traces of interesting patterns, try to 
reorganize the data to bring them into bolder relief. If there 
are participants you don’t like, or trials, observers, or 
interviewers who gave you anomalous results, drop them 
(temporarily). Go on a fishing expedition for something—
anything—interesting. (p. 2)

For those who were concerned this might be inappro-
priate, Bem offered reassurance. Everything is fine because 
what you are doing is exploring your data. Indeed, he 
implied that anyone who follows the “conventional view” 
would be destined to do boring research that nobody will 
want to publish.

Of course, Bem (2004) was correct to say that we need 
exploratory research. The problem comes when explora-
tory research is repackaged as if it were hypothesis testing, 
with the hypothesis invented after observing the data 
(HARKing), and the paper embellished with p-values that 
are bound to be misleading because they were p-hacked 
from numerous possible values, rather than derived from 
testing an a priori hypothesis. If results from exploratory 
studies were routinely replicated, prior to publication, we 
would not have a problem, but they are not. So why did the 
American Psychological Association think it appropriate 
to publish Bem’s views as advice to young researchers? 
We can find some clues in the book overview, which 
explains that there is a distinction between the “formal” 
rules that students are taught and the “implicit” rules that 
are applied in everyday life, concluding that “This book 

provides invaluable guidance that will help new academics 
plan, play, and ultimately win the academic career game.” 
Note that the stated goal is not to do excellent research: it 
is to have “a lasting and vibrant career.” It seems, then, that 
there is recognition here that if you do things in the “con-
ventional” way, your career will suffer. It is clear from 
Bem’s framing of his argument that he was aware that his 
advice was not “conventional,” but he did not think it was 
unethical—indeed, he implied it would be unfair on young 
researchers to do things conventionally as that will prevent 
them making exciting discoveries that will enable them to 
get published and rise up the academic hierarchy. While it 
is tempting to lament the corruption of a system that treats 
an academic career as a game, it is more important to con-
sider why so many people genuinely believe that p-hack-
ing is a valid, and indeed creative, approach to doing 
research.

The use of null-hypothesis significance testing has 
attracted a lot of criticism, with repeated suggestions over 
the years that p-values be banned. I favour the more 
nuanced view expressed by Lakens (2019), who suggests 
that p-values have a place in science, provided they are 
correctly understood and used to address specific ques-
tions. There is no doubt, however, that many people do 
misunderstand the p-value. There are many varieties of 
misunderstanding, but perhaps the most common is to 
interpret the p-value as a measure of strength of evidence 
that can be attached to a given result, regardless of the 
context. It is easy to see how this misunderstanding arises: 
if we hold the sample size constant, then for a single com-
parison, there will be a linear relationship between the 
p-value and the effect size. However, whereas an effect 
size remains the same, regardless of the analytic context, 
a p-value is crucially context-dependent.

Suppose in the fictitious study of executive function 
described above, the researchers have 20 participants and four 
measures of executive function (A–D) that correlate with 
implicit learning with r values of .21, .47, .07, and −.01. The 
statistics package tells us that the corresponding two-tailed  
p-values are .374, .037, .769, and .966. A naive researcher 
may rejoice at having achieved significance with the second 
correlation. However, as noted above, the probability that at 
least one correlation of the four will have an associated  
p-value of less than .05 is 18%, not 5%. If we want to identify 
correlations that are unlikely under the null hypothesis, then 
we need to correct the alpha level (e.g., by doing a Bonferroni 
correction to adjust by the number of tests, i.e., .05/4 = .0125). 
At this point, the researchers see their significant result 
snatched from their grasp. This creates a strong temptation to 
just drop the three non-significant tests and not report them. 
Alternatively, one sometimes sees papers that report the origi-
nal p-value but then state that it “did not survive” Bonferroni 
correction, but they, nevertheless, exhume it and interpret the 
uncorrected value. Researchers acting this way may not think 
that they are doing anything inappropriate, other than going 
against advice of pedantic statisticians, especially given 
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Bem’s (2004) advice to follow the “implicit” rather than “for-
mal” rules of research. However, this is simply wrong: as 
illustrated above, a p-value can only be interpreted in relation 
to the context in which it is computed.

One way of explaining the notion of p-hacking is to use 
the old-fashioned method of games of chance. I find this 
scenario helpful: we have a magician who claims he can 
use supernatural powers to deal a poker hand of “three of a 
kind” from an unbiased deck of cards. This type of hand 
will occur in around 1 of 50 draws from an unbiased deck. 
He points you to a man who, to his amazement, finds that 
his hand contains three of a kind. However, you then dis-
cover he actually tried his stunt with 50 people, and this 
man was the only one who got three of a kind. You are 
rightly disgruntled. This is analogous to p-hacking. The 
three-of-a-kind hand is real enough, but its unusualness, 
and hence its value as evidence of the supernatural, 
depends on the context of how many tests were done. The 
probability that needs to be computed here is not the prob-
ability of one specific result but rather the probability that 
specific result would come up at least once in 50 trials.

Asymmetry of sins of omission and commission

According to Greenwald (1975) “[I]t is a truly gross ethi-
cal violation for a researcher to suppress reporting of diffi-
cult-to-explain or embarrassing data to present a neat and 
attractive package to a journal editor” (p. 19).

However, this view is not universal.
Greenwald’s focus was on publication bias, i.e., failure 

to report an entire study, but the point he made about “prej-
udice” against null results also applies to cases of p-hack-
ing where only “significant” results are reported, whereas 
others go unmentioned. It is easy to see why scientists 
might play down the inappropriateness of p-hacking, when 
it is so important to generate “significant” findings in a 
world with a strong prejudice against null results. But I 
suspect another reason why people tend to underrate the 
seriousness of p-hacking is because it involves an error of 
omission (failing to report the full context of a p-value), 
rather than an error of commission (making up data).

In studies of morality judgement, errors of omission are 
generally regarded as less culpable than errors of commis-
sion (see, e.g., Haidt & Baron, 1996). Furthermore, 
p-hacking may be seen to involve a particularly subtle kind 
of dishonesty because the statistics and their associated  
p-values are provided by the output of statistics software. 
They are mathematically correct when testing a specific, 
prespecified hypothesis: the problem is that, without the 
appropriate context, they imply stronger evidence than is 
justified. This is akin to what Rogers, Zeckhauser, Gino, 
Norton, and Schweitzer (2017) have termed “paltering,” 
i.e., the use of truthful statements to mislead, a topic they 
studied in the context of negotiations. An example was 
given of a person trying to sell a car that had twice needed 

a mechanic to fix it. Suppose the potential purchaser 
directly asks “Has the car ever had problems?” An error of 
commission is to deny the problems, but a paltering answer 
would be “This car drives very smoothly and is very 
responsive. Just last week it started up with no problems 
when the temperature was −5 degrees Fahrenheit.” Rogers 
et al. showed that negotiators were more willing to palter 
than to lie, although potential purchasers regarded palter-
ing as only marginally less immoral than lying.

Regardless of the habitual behaviour of researchers, the 
general public does not find p-hacking acceptable. Pickett 
and Roche (2018) did an M-Turk experiment in which a 
community sample was asked to judge the morality of 
various scenarios, including this one:

A medical researcher is writing an article testing a new drug 
for high blood pressure. When she analyzes the data with 
either method A or B, the drug has zero effect on blood 
pressure, but when she uses method C, the drug seems to 
reduce blood pressure. She only reports the results of method 
C, which are the results that she wants to see.

Seventy-one percent of respondents thought this behav-
iour was immoral, 73% thought the researcher should 
receive a funding ban, and 63% thought the researcher 
should be fired.

Nevertheless, although selective reporting was gener-
ally deemed immoral, data fabrication was judged more 
harshly, confirming that in this context, as in those studied 
by Haidt and Baron (1996), sins of commission are taken 
more seriously than errors of omission.

If we look at the consequences of a specific act of p-hack-
ing, it can potentially be more serious than an act of data 
fabrication: this is most obvious in medical contexts, where 
suppression of trial results, either by omitting findings from 
within a study or by failing to publish studies with null 
results, can provide a badly distorted basis for clinical deci-
sion-making. In their simulations of evidence cumulation, 
Nissen et  al. (2016) showed how p-hacking could com-
pound the impact of publication bias and accelerate the pre-
mature “canonization” of theories; the alpha level that 
researchers assume applies to experimental results is dis-
torted by p-hacking, and the expected rate of false positives 
is actually much higher. Furthermore, p-hacking is virtually 
undetectable because the data that are presented are real, but 
the necessary context for their interpretation is missing. This 
makes it harder to correct the scientific record.

Bias in writing up a study

Most writing on the “replication crisis” focuses on aspects 
of experimental design and observations, data analysis, 
and scientific reporting. The resumé of literature that is 
found in the introduction to empirical papers, as well as in 
literature review articles, is given less scrutiny. I will make 
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the case that biased literature reviews are universal and 
have a major role in sustaining poor reproducibility 
because they lead to entrenchment of false theories, which 
are then used as the basis for further research.

It is common to see biased literature reviews that put a 
disproportionate focus on findings that are consistent with 
the author’s position. Researchers who know an area well 
may be aware of this, especially if their own work is omitted, 
but in general, cherry-picking of evidence is hard to detect. I 
will use a specific paper published in 2013 to illustrate my 
point, but I will not name the authors, as it would be invidi-
ous to single them out when the kinds of bias in their litera-
ture review are ubiquitous. In their paper, my attention was 
drawn to the following statement in the introduction:

Regardless of etiology, cerebellar neuropathology commonly 
occurs in autistic individuals. Cerebellar hypoplasia and 
reduced cerebellar Purkinje cell numbers are the most 
consistent neuropathologies linked to autism. .  .. MRI studies 
report that autistic children have smaller cerebellar vermal 
volume in comparison to typically developing children.

I was surprised to read this because a few years ago, I 
had attended a meeting on neuroanatomical studies of 
autism and had come away with the impression that there 
were few consistent findings. I did a quick search for an 
up-to-date review, which turned up a meta-analysis (Traut 
et  al., 2018), that included 16 MRI studies published 
between 1997 and 2010, five of which reported larger cer-
ebellar size in autism and one of which found smaller cer-
ebellar size. In the article I was reading, one paper had 
been cited to support the MRI statement, but it referred to 
a study where the absolute size of the vermis did not differ 
from typically developing children but was relatively small 
in the autistic participants, after the overall (larger) size of 
the cerebellum had been controlled for.

Other papers cited to support the claims of cerebellar 
neuropathology included a couple of early post mortem 
neuroanatomical studies, as well as two reviews. The 
first of these (DiCicco-Bloom et al., 2006) summarised 
presentations from a conference and supported the 
claims made by the authors. The other one, however 
(Palmen, van Engeland, Hof, & Schmitz, 2004), 
expressed more uncertainty and noted a lack of corre-
spondence between early neuroanatomical studies and 
subsequent MRI findings, concluding,

Although some consistent results emerge, the majority of the 
neuropathological data remain equivocal. This may be due to 
lack of statistical power, resulting from small sample sizes 
and from the heterogeneity of the disorder itself, to the 
inability to control for potential confounding variables such 
as gender, mental retardation, epilepsy and medication status, 
and, importantly, to the lack of consistent design in 
histopathological quantitative studies of autism published to 
date.

In sum, a confident statement “cerebellar neuropathol-
ogy commonly occurs in autistic individuals,” accompa-
nied by a set of references, converged to give the 
impression that there is consensus that the cerebellum is 
involved in autism. However, when we drill down, we 
find that the evidence is uncertain, with discrepancies 
between neuropathological studies and MRI and method-
ological concerns about the former. Meanwhile, this study 
forms part of a large body of research in which genetically 
modified mice with cerebellar dysfunction are used as an 
animal model of autism. My impression is that few of the 
researchers using these mouse models appreciate that the 
claim of cerebellar abnormality in autism is controversial 
among those working with humans because each paper 
builds on the prior literature. There is entrenchment of 
error, for two reasons. First, many researchers will take at 
face value the summary of previous work in a peer-reviewed 
paper, without going back to original cited sources. Second, 
even if a researcher is careful and scholarly and does read 
the cited work, they are unlikely to find relevant studies that 
were not included in the literature review.

It is easy to take an example like this and bemoan the 
lack of rigour in scientific writing, but this is to discount 
cognitive biases that make it inevitable that, unless we 
adopt specific safeguards against this, cherry-picking of 
evidence will be the norm. Three biases lead us in this 
direction: confirmation bias, moral asymmetry, and reli-
ance on schemata.

Confirmation bias: cherry-picking prior literature

A personal example may serve to illustrate the way con-
firmation bias can operate subconsciously. I am inter-
ested in genetic effects on children’s language problems, 
and I was in the habit of citing three relevant twin studies 
when I gave talks on this topic. All these obtained similar 
results, namely that there was a strong genetic compo-
nent to developmental language disorders, as evidenced 
by much higher concordance for disorder in pairs of 
monozygotic versus dizygotic twins. In 2005, however, 
Hayiou-Thomas, Oliver, and Plomin published a twin 
study with very different findings, with low twin/co-twin 
concordance, regardless of zygosity. It was only when I 
came to write a review of this area and I checked the lit-
erature that I realised I had failed to mention the 2005 
study in talks for a year or two, even though I had col-
laborated with the authors and was well aware of the 
findings. I had formed a clear view on heritability of lan-
guage disorders, and so I had difficulty remembering 
results that did not agree. Subsequently, I realised we 
should try to understand why this study obtained differ-
ent results and found a plausible explanation (Bishop & 
Hayiou-Thomas, 2008). But I only went back for a fur-
ther critical look at the study because I needed to make 
sense of the conflicting results. It is inevitable that we 



Bishop	 11

behave this way as we try to find generalisable results 
from a body of work, but it creates an asymmetry of 
attention and focus between work that we readily accept, 
because it fits, and work that is either forgotten or looked 
at more critically, because it does not.

A particularly rich analysis of citation bias comes from 
a case study by Greenberg (2009), who took as his starting 
point papers concerned with claims that a protein, β amy-
loid, was involved in causing a specific form of muscle 
disease. Greenberg classified papers according to whether 
they were positive, negative, or neutral about this claim 
and carried out a network analysis to identify influential 
papers (those with many citations). He found that papers 
that were critical of the claim received far fewer citations 
than those that supported it, and this was not explained by 
lower quality. Animal model studies were almost exclu-
sively justified by selective citation of positive studies. 
Consistent with the idea of “reconstructive remembering,” 
he also found instances where cited content was distorted, 
as well as cases where influential review papers amplified 

citation bias by focusing attention only on positive work. 
The net result was an information (perhaps better termed a 
disinformation) cascade that would lead to a lack of aware-
ness of critical data, which never gets recognised. In effect, 
when we have agents that adopt Bayesian reasoning, if 
they are presented with distorted information, this creates 
a positive feedback loop that leads to increasing bias in the 
prior. Viewed this way, we can start to see how omission of 
relevant citations is not a minor peccadillo but a serious 
contributor to entrenchment of error. Further evidence of 
the cumulative impact of citation bias is shown in Figure 4, 
which uses studies of intervention for depression. Because 
studies in this area are registered, it is possible to track the 
fate of unpublished as well as published studies. The 
researchers showed that studies with null results are far 
less likely to be published than those with positive find-
ings, but even if the former are published, there is a bias 
against citing them.

While describing such cases of citation bias, it is worth 
pausing to consider one of the best-known examples of 

Figure 4.  The cumulative impact of reporting and citation biases on the evidence base for antidepressants. (a) Displays the initial, 
complete cohort of trials that were recorded in a registry, while (b) through (e) show the cumulative effect of biases. Each circle 
indicates a trial, while the colour indicates whether results were positive or negative or were reported to give a misleadingly 
positive impression(spin). Circles connected by a grey line indicate trials from the same publication. The progression from (a) to (b) 
shows that nearly all the positive trials but only half of those with null results were published, and reporting of null studies showed 
(c) bias or (d) spin in what was reported. In (e), the size of the circle indicates the (relative) number of citations received by that 
category of studies.
Source. Reprinted with permission from De Vries et al. (2018).
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distorted thinking: experimenter bias. This is similar to 
confirmation bias, but rather than involving selective 
attention to specific aspects of a situation that fits with 
our preconceptions, it has a more active character, 
whereby the experimenter can unwittingly influence the 
outcome of a study. The best-known research on this 
topic was the original Rosenthal and Fode (1963) study, 
where students were informed that the rats they were 
studying were “maze-bright” or “maze-dull,” when in 
fact they did not differ. Nevertheless, the “maze-bright” 
group learned better, suggesting that the experimenter 
would try harder to train an animal thought to have poten-
tial. A related study by Rosenthal and Jacobson (1963) 
claimed that if teachers were told that a test had revealed 
that specific pupils were “ready to bloom,” they would do 
better on an IQ test administered at the end of the year, 
even though the children so designated were selected at 
random.

Both these studies are widely cited. It is less well 
known that work on experimenter bias was subjected to 
a scathing critique by Barber and Silver (1968), entitled 
“Fact, fiction and the experimenter bias effect,” in 
which it was noted that work in this area suffered from 
poor methodological quality, in particular p-hacking. 
Barber and Silver did not deny that experimenter bias 
could affect results, but they concluded that these effects 
were far less common and smaller in magnitude than 
those implied by Rosenthal’s early work. Subsequently, 
Barber (1976) developed this critique further in his 
book Pitfalls in Human Research. Yet Rosenthal’s work 
is more highly cited and better remembered than that of 
Barber.

Rosenthal’s work provides a cautionary tale: although 
confirmation bias helps explain distorted patterns of cita-
tion, the evidence for maladaptive cognitive biases has 
been exaggerated. Furthermore, studies on confirmation 
bias often use artificial experiments, divorced from real 
life, and the criteria for deciding that reasoning is errone-
ous are often poorly justified (Hahn & Harris, 2014). In 
future, it would be worthwhile doing more naturalistic 
explorations of people’s memory for studies that do and 
do not support a position when summarising scientific 
literature.

On a related point, in using confirmation bias as an 
explanation for persistence of weak theories, there is a dan-
ger that I am falling into exactly the trap that I am describ-
ing. For instance, I was delighted to find Greenberg’s (2009) 
paper, as it chimed very well with my experiences when 
reading papers about cerebellar deficits in autism. But 
would I have described and cited it here if it had shown no 
difference between citations for papers that did and did not 
support the β amyloid claim? Almost certainly not. Am I 
going to read all literature on citation bias to find out how 
common it is? That strategy would soon become impossible 
if I tried to do it for every idea I touch upon in this article.

Moral asymmetry between errors of omission 
and commission

The second bias that fortifies the distortions in a literature 
review is the asymmetry of moral judgement that I referred 
to when discussing p-hacking. To my knowledge, paltering 
has not been studied in the context of literature reviews, 
but my impression is that selective presentation of results 
that fit, while failing to mention important contextual fac-
tors (e.g., the vermis in those with autism is smaller but 
only when you have covaried for the total cerebellar size), 
is common. How far this is deliberate or due to reconstruc-
tive remembering, however, is impossible to establish.

It would also be of interest to conduct studies on peo-
ple’s attitudes to the acceptability of cherry-picking of lit-
erature versus paltering (misleadingly selective reporting) 
or invention of a study. I would anticipate that most would 
regard cherry-picking as fairly innocuous, for several rea-
sons: first, it could be an unintended omission; second, the 
consequences of omitting material from a review may be 
seen as less severe than introducing misinformation; and 
third, selective citation of papers that fit a narrative can 
have a positive benefit in terms of readability. There are 
also pragmatic concerns: some journals limit the word 
count for an introduction or reference list so that full cita-
tion of all relevant work is not possible and, finally, sanc-
tioning people for harmful omissions would create 
apparently unlimited obligations (Haidt & Baron, 1996). 
Quite simply, there is far too much literature for even the 
most diligent scholar to read.

Nevertheless, consequences of omission can be severe. 
The above examples of research on the serotonin trans-
porter gene in depression, or cerebellar abnormality in 
autism, emphasise how failure to cite earlier null results 
can lead to a misplaced sense of confidence in a phenom-
enon, which is wasteful in time and money when others 
attempt to build on it. And the more we encounter a claim, 
the more likely it is to be judged as true, regardless of 
actual accuracy (see Pennycook, Cannon, & Rand, 2018, 
for a topical example). As Ingelfinger (1976) put it, “faulty 
or inappropriate references . . . like weeds, tend to repro-
duce themselves and so permit even the weakest of allega-
tions to acquire, with repeated citation, the guise of 
factuality” (p. 1076).

Reliance on schemata

Our brains cannot conceivably process all the information 
around us: we have to find a way to select what is impor-
tant to function and survive. This involves a search for 
meaningful patterns, which once established, allow us to 
focus on what is relevant and ignore the rest. Scientific 
discovery may be seen as an elevated version of pattern 
discovery: we see the height of scientific achievement as 
discovering regularities in nature that allow us to make 
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better predictions about how the world behaves and to cre-
ate new technologies and interventions from the basic 
principles we have discovered.

Scientific progress is not a simple process of weighing up 
competing pieces of evidence in relation to a theory. Rather 
than simply choosing between one hypothesis and another, 
we try to understand a problem in terms of a schema. Bartlett 
(1932) was one of the first psychologists to study how our 
preconceptions, or schemata, create distortions in perception 
and memory. He introduced the idea of “reconstructive 
remembering,” demonstrating how people’s memory of a 
narrative changed over time in specific ways, to become 
more coherent and aligned with pre-existing schemata.

Bartlett’s (1932) work on reconstructive remembering 
can explain why we not only tend to ignore inconsistent 
evidence (Duyx, Urlings, Swaen, Bouter, & Zeegers, 
2017) but also are prone to distort the evidence that we do 
include (Vicente & Brewer, 1993). If we put together the 
combined influence of confirmation bias and reconstruc-
tive remembering, it suggests that narrative literature 
reviews have a high probability of being inaccurate: both 
types of bias will lead to a picture of research converging 
on a compelling story, when the reality may be far less tidy 
(Katz, 2013).

I have focused so far on bias in citing prior literature, 
but schemata also influence how researchers go about 
writing up results. If we just were to present a set of facts 
that did not cohere, our work would be difficult to under-
stand and remember. As Chalmers, Hedges, and Cooper 
(2002) noted, this point was made in 1885 by Lord Raleigh 
in a presidential address to the British Association for the 
Advancement of Science:

If, as is sometimes supposed, science consisted in nothing 
but the laborious accumulation of facts, it would soon come 
to a standstill, crushed, as it were, under its own weight. The 
suggestion of a new idea, or the detection of a law, supersedes 
much that has previously been a burden on the memory, and 
by introducing order and coherence facilitates the retention 
of the remainder in an available form. (Rayleigh, 1885,  
p. 20)

Indeed, when we write up our research, we are exhorted 
to “tell a story,” which achieves the “order and coherence” 
that Rayleigh described. Since his time, ample literature on 
narrative comprehension has confirmed that people fill in 
gaps in unstated information and find texts easier to com-
prehend and memorise when they fit a familiar narrative 
structure (Bower & Morrow, 1990; Van den Broek, 1994).

This resonates with Dawkins’ (1976) criteria for a 
meme, i.e., an idea that persists by being transmitted from 
person to person. Memes need to be easy to remember, 
understand, and communicate, and so narrative accounts 
make far better memes than dry lists of facts. From this 
perspective, narrative serves a useful function in providing 

a scaffolding that facilitates communication. However, 
while this is generally a useful, and indeed essential, aspect 
of human cognition, in scientific communication, it can 
lead to propagation of false information. Bartlett (1932) 
noted that remembering is hardly ever really exact, “and it 
is not at all important that it should be so.” He was thinking 
of the beneficial aspects of schemata, in allowing us to 
avoid information overload and to focus on what is mean-
ingful. However, as Dawkins emphasised, survival of a 
meme does not depend on it being useful or true. An idea 
such as the claim that vaccination causes autism is a very 
effective meme, but it has led to resurgence of diseases that 
were close to being eradicated.

In communicating scientific results, we need to strike a 
fine balance between presenting a precis of findings that is 
easily communicated and moving towards an increase in 
knowledge. I would argue the pendulum may have swung 
too far in the direction of encouraging researchers to tell 
good narratives. Not just media outlets, but also many jour-
nal editors and reviewers, encourage authors to tell simple 
stories that are easy to understand, and those who can pro-
duce these may be rewarded with funding and promotion.

The clearest illustration of narrative supplanting accu-
rate reporting comes from the widespread use of HARKing, 
which was encouraged by Bem (2004) when he wrote,

There are two possible articles you can write: (a) the article 
you planned to write when you designed your study or (b) 
the article that makes the most sense now that you have seen 
the results. They are rarely the same, and the correct answer 
is (b).

Of course, formulating a hypothesis on the basis of 
observed data is a key part of the scientific process. 
However, as noted above, it is not acceptable to use the 
same data to both formulate and test the hypothesis—rep-
lication in a new sample is needed to avoid being misled 
by the play of chance and littering literature with false 
positives (Lazic, 2016; Wagenmakers et al., 2012).

Kerr (1998) considered why HARKing is a successful 
strategy and pointed out that it allowed the researcher to 
construct an account of an experiment that fits a good story 
script:

Positing a theory serves as an effective “initiating event.” It 
gives certain events significance and justifies the investigators’ 
subsequent purposeful activities directed at the goal of testing 
the hypotheses. And, when one HARKs, a “happy ending” 
(i.e., confirmation) is guaranteed. (p. 203)

In this regard, Bem’s advice makes perfect sense: “A 
journal article tells a straightforward tale of a circum-
scribed problem in search of a solution. It is not a novel 
with subplots, flashbacks, and literary allusions, but a 
short story with a single linear narrative line.”
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We have, then, a serious tension in scientific writing. 
We are expected to be scholarly and honest, to report all 
our data and analyses and not to hide inconvenient truths. 
At the same time, if we want people to understand and 
remember our work, we should tell a coherent story from 
which unnecessary details have been expunged and where 
we cut out any part of the narrative that distracts from the 
main conclusions.

Kerr (1998) was clear that HARKing has serious costs. 
As well as translating type I errors into hard-to-eradicate 
theory, he noted that it presents a distorted view of science 
as a process which is far less difficult and unpredictable 
than is really the case. We never learn what did not work 
because inconvenient results are suppressed. For early 
career researchers, it can lead to cynicism when they learn 
that the rosy picture portrayed in the literature was achieved 
only by misrepresentation.

Overcoming cognitive constraints to 
do better science

One thing that is clear from this overview is that we have 
known about cognitive constraints for decades, yet they 
continue to affect scientific research. Finding ways to miti-
gate the impact of these constraints should be a high prior-
ity for experimental psychologists. Here, I draw together 
some general approaches that might be used to devise an 
agenda for research improvement. Many of these ideas 
have been suggested before but without much considera-
tion of cognitive constraints that may affect their imple-
mentation. Some methods, such as training, attempt to 
overcome the constraints directly in individuals: others 
involve making structural changes to how science is done 
to counteract our human tendency towards unscientific 
thinking. None of these provides a total solution: rather, the 
goal is to tweak the dials that dictate how people think and 
behave, to move us closer to better scientific practices.

Training

It is often suggested that better training is needed to improve 
replicability of scientific results, yet the focus tends to be 
on formal instruction in experimental design and statistics. 
Less attention has been given to engendering a more intui-
tive understanding of probability, or counteracting cogni-
tive biases, though there are exceptions, such as the course 
by Steel, Liermann, and Guttorp (2018), which starts with a 
consideration of “How the wiring of the human brain leads 
to incorrect conclusions from data.” One way of inducing a 
more intuitive sense of statistics and p-values is by using 
data simulations. Simulation is not routinely incorporated 
in statistics training, but free statistical software now makes 
this within the grasp of all (Tintle et al., 2015). This is a 
powerful way to experience how easy it is to get a “signifi-
cant” p-value when running multiple tests. Students are 

often surprised when they generate repeated runs of a cor-
relation matrix of random numbers with, say, five variables 
and find at least one “significant” correlation in about one 
in four runs. Once you understand that there is a difference 
between the probability associated with getting a specific 
result on a single test, predicted in advance, versus the 
probability of that result coming up at least once in a multi-
tude of tests, then the dangers of p-hacking become easier 
to grasp.

Data simulation could also help overcome the mis-
placed “belief in the law of small numbers” (Tversky & 
Kahneman, 1974). By generating datasets with a known 
effect size, and then taking samples from these and sub-
jecting them to statistical test, the student can learn to 
appreciate just how easy it is to miss a true effect (type II 
error) if the study is underpowered.

There is small literature evaluating attempts to specifi-
cally inoculate people against certain types of cognitive 
bias. For instance, Morewedge et  al. (2015) developed 
instructional videos and computer games designed to 
reduce a series of cognitive biases, including confirmation 
bias, and found these to be effective over the longer term. 
Typically, however, such interventions focus on hypotheti-
cal scenarios outside the scope of experimental psychol-
ogy. They might improve scientific quality of research 
projects if adjusted to make them relevant to conducting 
and appraising experiments.

Triangulation of methods in study design

I noted above that for science to progress, we need to over-
come a tendency to settle on the first theory that seems 
“good enough” to account for observations. Any method 
that forces the researcher to actively search for alternative 
explanations is, therefore, likely to stimulate better research.

The notion of triangulation (Munafò & Davey Smith, 
2018) was developed in the field of epidemiology, where 
reliance is primarily on observational data, and experimen-
tal manipulation is not feasible. Inferring causality from cor-
relational data is hazardous, but it is possible to adopt a 
strategic approach of combining complementary approaches 
to analysis, each of which has different assumptions, 
strengths, and weaknesses. Epidemiology progresses when 
different explanations for correlational data are explicitly 
identified and evaluated, and converging evidence is 
obtained (Lawlor, Tilling, & Davey Smith, 2016). This 
approach could be extended to other disciplines, by explic-
itly requiring researchers to use at least two different meth-
ods with different potential biases when evaluating a specific 
hypothesis.

A “culture of criticism”

Smith (2006) described peer review as “a flawed process, 
full of easily identified defects with little evidence that it 
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works” (p. 182). Yet peer review provides one way of 
forcing researchers to recognise when they are so focused 
on a favoured theory that they are unable to break away. 
Hossenfelder (2018) has argued that the field of particle 
physics has stagnated because of a reluctance to abandon 
theories that are deemed “beautiful.” We are accustomed 
to regarding physicists as superior to psychologists in 
terms of theoretical and methodological sophistication. 
In general, they place far less emphasis than we do on 
statistical criteria for evidence, and where they do use 
statistics, they understand probability theory and adopt 
very stringent levels of significance. Nevertheless, 
according to Hossenfelder, they are subject to cognitive 
and social biases that make them reluctant to discard the-
ories. She concludes her book with an Appendix on 
“What you can do to help,” and as well as advocating 
better understanding of cognitive biases, she recom-
mends some cultural changes to address these. These 
include building “a culture of criticism.” In principle, we 
already have this—talks and seminars should provide a 
forum for research to be challenged—but in practice, cri-
tiquing another’s work is often seen as clashing with 
social conventions of being supportive to others, espe-
cially when it is conducted in public.

Recently, two other approaches have been developed, 
with the potential to make a “culture of criticism” more 
useful and more socially acceptable. Registered Reports 
(Chambers, 2019) is an approach that was devised to pre-
vent publication bias, p-hacking, and HARKing. This for-
mat moves the peer review process to a point before data 
collection so that results cannot influence editorial deci-
sions. An unexpected positive consequence is that peer 
review comes at a point when it can be acted upon to 
improve the experimental design. Where reviewers of 
Registered Reports ask “how could we disprove the 
hypothesis?” and “what other explanations should we con-
sider?” this can generate more informative experiments.

A related idea is borrowed from business practices and 
is known as the “pre mortem” approach (Klein, 2007). 
Project developers gather together and are asked to imag-
ine that a proposed project has gone ahead and failed. They 
are then encouraged to write down reasons why this has 
happened, allowing people to voice misgivings that they 
may have been reluctant to state openly, so they can be 
addressed before the project has begun. It would be worth 
evaluating the effectiveness of pre-mortems for scientific 
projects. We could strengthen this approach by incorporat-
ing ideas from Bang and Frith (2017), who noted that 
group decision-making is most likely to be effective when 
the group is diverse and people can express their views 
anonymously. With both Registered Reports and the study 
pre-mortem, reviewers can have a role as critical friends 
who can encourage researchers to identify ways to improve 
a project before it is conducted. This can be a more posi-
tive experience for the reviewer, who may otherwise have 

no option but to recommend rejection of a study with 
flawed methodology.

Counteracting cherry-picking of literature

Turning to cherry-picking of prior literature, the estab-
lished solution is the systematic review, where clear crite-
ria are laid out in advance so that a comprehensive search 
can be made of all relevant studies (Siddaway, Wood, & 
Hedges, 2019). The systematic review is only as good as 
the data that go into it, however, and if a field suffers from 
substantial publication bias and/or p-hacking, then, rather 
than tackling error entrenchment, it may add to it. With the 
most scrupulous search strategy, relevant papers with null 
results can be missed because positive results are men-
tioned in titles and abstracts of papers, whereas null results 
are not (Lazic, 2016, p. 15). This can mean that, if a study 
is looking at many possible associations (e.g., with brain 
regions or with genes), studies that considered a specific 
association but failed to find support for it will be system-
atically disregarded. This may explain why it seems to take 
30 or 40 years for some erroneous entrenched theories to 
be abandoned. The situation may improve with increasing 
availability of open data. Provided data are adequately 
documented and accessible, the problem of missing rele-
vant studies may be reduced.

Ultimately, the problem of biased reviews may not be 
soluble just by changing people’s citation habits. Journal 
editors and reviewers could insist that abstracts follow a 
structured format and report all variables that were tested, 
not just those that gave significant results. A more radical 
approach by funders may be needed to disrupt this waste-
ful cycle. When a research team applies to test a new idea, 
they could first be required to (a) conduct a systematic 
review (unless one has been recently done) and (b) repli-
cate the original findings on which the work is based: this 
is the opposite to what happens currently, where novelty 
and originality are major criteria for funding. In addition, 
it could be made mandatory for any newly funded research 
idea to be investigated by at least two independent labora-
tories and using at least two different approaches (triangu-
lation). All these measures would drastically slow down 
science and may be unfeasible where research needs highly 
specialised equipment, facilities, or skills that are specific 
to one laboratory. Nevertheless, slower science may be 
preferable to the current system where there are so many 
examples of false leads being pursued for decades, with 
consequent waste of resources.

Reconciling storytelling with honesty

Perhaps the hardest problem is how to reconcile our need 
for narrative with a “warts and all” account of research. 
Consider this advice from Bem (2004)—which I suspect 
many journal editors would endorse:
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Contrary to the conventional wisdom, science does not care 
how clever or clairvoyant you were at guessing your results 
ahead of time. Scientific integrity does not require you to lead 
your readers through all your wrongheaded hunches only to 
show—voila!—they were wrongheaded. A journal article 
should not be a personal history of your stillborn thoughts . . .

Your overriding purpose is to tell the world what you have 
learned from your study. If your results suggest a compelling 
framework for their presentation, adopt it and make the most 
instructive findings your centerpiece . . . Think of your dataset 
as a jewel. Your task is to cut and polish it, to select the facets 
to highlight, and to craft the best setting for it.

As Kerr (1998) pointed out, HARKing gives a mislead-
ing impression of what was found, which can be particu-
larly damaging for students, who on reading literature may 
form the impression that it is normal for scientists to have 
their predictions confirmed and think of themselves as 
incompetent when their own experiments do not work out 
that way. One of the goals of pre-registration is to ensure 
that researchers do not omit inconvenient facts when writ-
ing up a study—or if they do, at least make it possible to 
see that this has been done. In the field of clinical medi-
cine, impressive progress has been made in methodology, 
with registration now a requirement for clinical trials 
(International Committee of Medical Journal Editors, 
2019). Yet, Goldacre et al. (2019) found that even when a 
trial was registered, it was common for researchers to 
change the primary outcome measure without explanation, 
and it has been similarly noted that pre-registrations in 
psychology are often too ambiguous to preclude p-hacking 
(Veldkamp et  al., 2018). Registered Reports (Chambers, 
2019) adopt stricter standards that should prevent 
HARKing, but the author may struggle to maintain a 
strong narrative because messy reality makes a less com-
pelling story than a set of results subjected to Bem’s (2004) 
cutting and polishing process.

Rewarding credible research practices

A final set of recommendations has to do with changing 
the culture so that incentives are aligned with efforts to 
counteract unhelpful cognitive constraints, and researchers 
are rewarded for doing reproducible, replicable research, 
rather than for grant income or publications in high-impact 
journals (Forstmeier, Wagenmakers, & Parker, 2016; 
Pulverer, 2015). There is already evidence that funders are 
concerned to address problems with credibility of biomed-
ical research (Academy of Medical Sciences, 2015), and 
rigour and reproducibility are increasingly mentioned in 
grant guidelines (e.g., https://grants.nih.gov/policy/repro-
ducibility/index.htm). One funder, Cancer Research UK, 
is innovating by incorporating Registered Reports in a 
two-stage funding model (Munafò, 2017). We now need 
publishers and institutions to follow suit and ensure that 

researchers are not disadvantaged by adopting a self-criti-
cal mind-set and engaging in practices of open and repro-
ducible science (Poldrack, 2019).
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