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Biological invasions are accelerating worldwide, causing major ecological and economic
impacts in aquatic ecosystems. The urgent decision-making needs of invasive species
managers can be better met by the integration of biodiversity big data with large-domain
models and data-driven products. Remotely sensed data products can be combined with
existing invasive species occurrence data via machine learning models to provide the proactive
spatial risk analysis necessary for implementing coordinated and agile management paradigms
across large scales. We present a workflow that generates rapid spatial risk assessments on
aquatic invasive species using occurrence data, spatially explicit environmental data, and an
ensemble approach to species distributionmodeling using fivemachine learning algorithms. For
proof of concept and validation, we tested this workflow using extensive spatial and temporal
hybridization and occurrence data from a well-studied, ongoing, and climate-driven species
invasion in the upper Flathead River system in northwestern Montana, USA. Rainbow Trout
(RBT;Oncorhynchus mykiss), an introduced species in the Flathead River basin, compete and
readily hybridize with native Westslope Cutthroat Trout (WCT; O. clarkii lewisii), and the spread
of RBT individuals and their alleles has been tracked for decades. We used remotely sensed
and other geospatial data as key environmental predictors for projecting resultant habitat
suitability to geographic space. The ensemble modeling technique yielded high accuracy
predictions relative to 30-fold cross-validated datasets (87% 30-fold cross-validated accuracy
score). Both top predictors and model performance relative to these predictors matched
current understanding of the drivers of RBT invasion and habitat suitability, indicating that
temperature is a major factor influencing the spread of invasive RBT and hybridization with
native WCT. The congruence between more time-consuming modeling approaches and our
rapid machine-learning approach suggest that this workflow could be applied more broadly to
provide data-driven management information for early detection of potential invaders.

Keywords: invasive species, machine learning, species distribution modeling, remote sensing, big data analytics,
early detection and rapid response

Edited by:
Bin Peng,

University of Illinois at Urbana-
Champaign, United States

Reviewed by:
Abel Ramoelo,

University of Pretoria, South Africa
Zachary Langford,

Oak Ridge National Laboratory (DOE),
United States

*Correspondence:
S. Carter

sean2.carter@umontana.edu

†Present address: River Basin Center
and Odum School of Ecology,
University of Georgia, Athens,

GA, 30602.

Specialty section:
This article was submitted to

Data-driven Climate Sciences,
a section of the journal

Frontiers in Big Data

Received: 01 July 2021
Accepted: 17 September 2021

Published: 18 October 2021

Citation:
Carter S, van Rees CB, Hand BK,

Muhlfeld CC, Luikart G and Kimball JS
(2021) Testing a Generalizable
Machine Learning Workflow for

Aquatic Invasive Species on Rainbow
Trout (Oncorhynchus mykiss) in

Northwest Montana.
Front. Big Data 4:734990.

doi: 10.3389/fdata.2021.734990

Frontiers in Big Data | www.frontiersin.org October 2021 | Volume 4 | Article 7349901

METHODS
published: 18 October 2021

doi: 10.3389/fdata.2021.734990

http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2021.734990&domain=pdf&date_stamp=2021-10-18
https://www.frontiersin.org/articles/10.3389/fdata.2021.734990/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.734990/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.734990/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.734990/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.734990/full
http://creativecommons.org/licenses/by/4.0/
mailto:sean2.carter@umontana.edu
https://doi.org/10.3389/fdata.2021.734990
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2021.734990


INTRODUCTION

Non-native, Invasive Species (IS) are causing severe biological
and economic disruption worldwide (Sepulveda et al., 2012;
Shackleton et al., 2019). IS are the second most prevalent driver
of species extinctions (Bellard et al., 2016), with estimated
financial damages amounting to over a hundred billion dollars
annually in certain individual countries (Pimentel 2002;
Bradshaw et al., 2016). Continued anthropogenic landscape
change and climate change may favor invaders by shifting
competitive relationships with native species (Hellmann et al.,
2008). Aquatic IS represent a particular threat to freshwater
ecosystems due to their high potential for establishment and
spread and severe ecosystem impacts (Havel et al., 2015). The
current and predominant paradigm for IS management is
Early Detection and Rapid Response (EDRR), but the
intensive resources and surveillance involved in this
framework’s implementation may be prohibitive without
new and innovative uses of technology (Martinez et al.,
2020). EDRR depends on frequent, widespread, and ongoing
monitoring to enable timely response, but such monitoring is
extremely labor intensive and likely beyond the capabilities of
many management actors. Timely risk assessments allow for
the spatial prioritization of monitoring that could streamline
EDRR and its ability to prevent irreversible damage (Reaser
et al., 2020a; Martinez et al., 2020), such that decision makers
can focus surveillance and intervention efforts where they are
likely to be most effective under budgetary and resource
constraints. Such prioritizations are often based on heuristic
preconceptions rather than data-driven approaches, and as
such are neither repeatable nor transparent for system
stakeholders. By contrast, scientifically informed, formal
target screening may lack adequate temporal agility and
accurate risk assessments. Many conventional modeling
approaches to knowledge creation operate on long time
scales (months to years) which may not be helpful to
managers. Indeed, current modeling methodologies fail to
provide managers with sufficient decision-making
information in near real time (Bayliss et al., 2013).

Given the finite supply of resources and quick timelines for IS
management, there is a need for improved expediency and
accuracy in identifying areas of highest vulnerability to IS
establishment.

Species Distribution Models (SDMs) have been widely applied
as spatial decision support tools for IS managers (Srivastava et al.,
2019) and can be broadly categorized into mechanistic and
correlative model classes (Elith, 2017). Process-based, or
mechanistic, models require considerable developmental and
computational effort (Kearney and Porter, 2009) and can thus
be out of sync with the needs for timely analyses for EDRR
(Merow et al., 2011). These models rely on exhaustive,
experimentally derived functional characteristics (Shabani
et al., 2016) or hierarchal frameworks that are built to
elucidate or test hypotheses about ecological relationships
rather than simply predict patterns in species occurrence (see
Muhlfeld et al., 2014; Berthon 2015; Muhlfeld et al., 2017; Farley
et al., 2018).

On the other hand, correlative SDMs require less mechanistic
understanding and instead rely on apparent relationships
between species and environmental characteristics. Such
models are comparatively quick to train and develop but are
often built using low-resolution spatially interpolated climatic
data, such as WorldClim (Hijmans et al., 2005; Elith et al., 2010;
Fourcade et al., 2014). Since the WorldClim data (Fick and
Hijmans, 2017) are not temporally explicit, and static
covariates, by definition, cannot adequately provide a
temporally continuous evaluation of risk, the value of these
data for EDRR is hampered. Although a major drawback of
these correlative models is that long-term extrapolation is more
difficult, this disadvantage is outweighed by the acute need for
rapid risk assessments to inform IS monitoring and
biosurveillance. Indeed, facilitating IS management within the
EDRR framework would be significantly improved by new
workflows that can identify readily available drivers of
invasion and establish relative invasion risk within the
operational time scales of managers.

Many of the challenges outlined above can be met by data-
driven and iterative workflows made possible by machine
learning (ML) and the big data revolution (Runting et al.,
2020). For instance, one challenge is the need for scalable and
fast modeling workflows to guide managers and decision makers
(Reaser et al., 2020a). ML algorithms are an increasingly viable
method for many modeling problems involving big data,
particularly when the primary objective is to achieve high
levels of predictive accuracy rather than develop a mechanistic
understanding of the study system (Bhattacharya, 2013). ML
algorithms, particularly non-parametric iterative algorithms (e.g.,
random forests), are free from many strict assumptions such as
independent observations and the need to avoid collinearity
(Olden et al., 2008; Thessen 2016). In addition, ML models
are well suited to the iterative modeling framework due to
their automated approach, fast development process (Tarca
et al., 2007) and highly scalable nature (Farley et al., 2018).
This enables them to take advantage of other big data
attributes, including its widespread proliferation, global
coverage, and rapid updating (Whitehead et al., 2020). As new
data become available, ML frameworks can be updated to reflect
new understanding.

However, ML models are not a panacea: because they are
immensely complex and, with the exception of intricate Bayesian
ML models, do not incorporate the underlying uncertainty of the
data (Cressie et al., 2009), making inferences about underlying
processes less straightforward and dependent on the type of
model being used (Farley et al., 2018; Parr et al., 2020).
Nevertheless, the rapid, iterative, and predictive characteristics
of ML approaches are an excellent match for the analytical needs
of EDRR implementation, which prioritize speed and
adaptiveness over mechanistic understanding.

Another challenge of EDRR is the availability and distribution
of environmental data typically used to assess relative habitat
suitability (Randin et al., 2020). Conventional spatially
interpolated climate data often require enormous
developmental effort (Daly et al., 2000; Hijmans et al., 2005),
which, when temporally explicit, can hinder their utility in
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developing models that meet the adaptive (e.g., annually
repeating) demands of EDRR. Moreover, because they are
based on interpolations from global weather stations, such
products yield high model uncertainty in areas with sparse
geographic coverage (Bedia et al., 2013).

In contrast, Remote Sensing (RS) products available from
global polar-orbiting environmental satellites have regular
revisit intervals ranging from 1 to 16 days and are derived
from spatially explicit observations, so the burden of
geographic uncertainty is mitigated. Indeed, because of the
complimentary nature and spatial and temporal continuity of
many operational satellite records, RS observational data are
expected to shape the next generation of SDMs (He et al.,
2015) and are the preferred or perhaps the only option for
regional, continental, and global scale prediction of IS spread
(Leitão and Santos, 2019; Vaz et al., 2019). These products are
sensitive to many environmental properties, such as surface
temperature, that constrain and explain species occurrences
(Randin et al., 2020). These and other satellite-based
measurements have rarely been applied to SDMs relative to
spatially interpolated climate data products (Dittrich et al.,
2019), and their use for assessing species distributions has
been increasing in recent years (Lausch et al., 2016; Randin
et al., 2020).

Although the spatial and temporal continuity of RS data
improves the transferability and precision of capturing
ecological niche requirements in many terrestrial
environments (Randin et al., 2020), stream environments
represent a particular challenge in integrating technological
advances with IS management. Because the 2-dimensional
footprint of RS products is often larger than the footprint of
streams, such products can only provide proxies for
physiologically relevant conditions within the aquatic
environment. Thus, models trained to link species occurrences
with environmental remotely sensed information may fail to
capture the actual processes experienced by aquatic organisms,
and care must be taken to avoid spurious conclusions. Coherent
workflows that link remote sensing data and machine learning
functionalities are especially needed for freshwater systems to
mobilize myriad spatial products in data-driven aquatic IS risk
analysis.

Here, we demonstrate one such workflow linking these
technologies to produce rapid and adaptable species
distribution modeling for spatial risk assessments of aquatic
IS. To provide proof of concept, we implemented this
workflow on a well-documented case study of a climate-
assisted species invasion. This worked case study allowed us to
assess not only the predictive accuracy of this approach but also
whether it gives meaningful insights into the environmental
drivers of habitat suitability for a focal IS. Our study objectives
were to: 1) Identify the most effective remotely sensed proxies for
characterizing habitat suitability (a proxy for invasion risk) for
our focal IS (RBT; Oncorhynchus mykiss); 2) Construct habitat
suitability maps for spatial risk assessments using a combination
of RS data products andMLmethods; and 3) Test the feasibility of
ML models for iterative reassessment of IS risk screening efforts
within the EDRR framework.

Study System
The study area encompassed the tributaries of upper Flathead
River system extending over portions of northwestern Montana
United States, and southern British Columbia and Alberta,
Canada (Figure 1). These mountain streams flow through
forested landscapes and host several native fish species
including Westslope Cutthroat Trout (WCT; Oncorhynchus
clarki lewisi). Stream temperature and the timing and duration
of peak streamflow events are key ecological drivers in these
streams (Hauer et al., 2007), while the timing and intensity of
snowmelt is a key driver influencing spring runoff in this system
(Pederson et al., 2010; Wu et al., 2012).

Rainbow trout (O. mykiss) were artificially propagated and
introduced into watersheds across the Continental United
States for recreational purposes between 1870 and 1971
(Pister 2001; Bennett et al., 2010). Since their introduction
into the Flathead River in 1880 (Hitt et al., 2003), RBT have
been hybridizing with native WCT (Hitt et al., 2003; Allendorf
et al., 2004; Boyer et al., 2008; Muhlfeld et al., 2017). The
impacts of RBT on WCT populations, particularly due to the
spread of RBT individuals and their alleles, has been tracked for
decades (Kovach et al., 2016). The spread of alleles appears to be
driven more by legacy introductions, and thus propagule
pressure, than environmental conditions (Muhlfeld et al.,
2017; Boyer et al., 2008). Relative to WCT, RBT prefer
warmer temperatures, lower spring flows, earlier spring
runoff, and tolerate greater environmental disturbance
(Fausch et al., 2001; Muhlfeld et al., 2009a; Muhlfeld et al.,
2009b; Bear et al., 2007). During spawning, WCT generally
migrate greater distances and spawn during peak flows, whereas
RBT spawn earlier (i.e., during periods of lower flows) and
lower in the river system (Muhlfeld et al., 2009b). High flows
can affect both RBT and WCT, although reduced spring flows
and warmer water temperatures have been associated with
increased spread of RBT hybridization in the Flathead River
and across the northern Rocky Mountains (Muhlfeld et al.,
2014; Muhlfeld et al., 2017), which are strongly influenced by
spring precipitation, winter snowpack, and the timing of spring
snowmelt (Pederson et al., 2010).

Data Acquisition-Genetic and Genomic
Data
Trout have been periodically captured, sampled, and
genotyped to assess the degree of RBT genetic admixture
(the proportion of RBT alleles at the population level) in
the study system since 2000. We used the associated long-
term genetic monitoring data between years 2002 and 2019 as
an index of RBT invasion. U.S. Geological Survey and Montana
Fish Wildlife and Parks personnel selectively sampled streams
where there was concern that WCT were hybridizing with non-
native RBT, collecting fin clips from electrofished individuals
and genotyping these individuals using various markers
(microsatellites, SNPs, RAD-Capture sequencing). The
genetic data were used to calculate RBT admixture in
sampled populations.
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Data Acquisition-Presence Absence Data

We generated a presence-absence dataset by classifying all
occurrence records of less than 10% admixture to be “absent.”

Although 10% still represents the presence of RBT alleles,
conditions at these locations are less favorable for the
establishment of this invasive taxon. Considering the difficulty
of acquiring actual absence data (Jiménez-Valverde et al., 2008)

FIGURE 1 | Overview of study area, including a sample data product (Land Surface Temperature) aggregated by hydrologic units.

TABLE 1 | Library of hypothesized and known ecologically relevant drivers of RBT hybridization and distribution.

Environmental
Covariate

Source Description Hypothesized Ecological
Connection

Units Resolution

Land Surface
Temperature

MODIS AQUA LST
MYD11A2 (V6; Wan et al.,
2015)

Temperature on the surface of the Earth
measured using thermal infrared passive
sensors

Stream Temperature;
Maximum annual temperature
record

Kelvin 1 km

Precipitationa National Land Data
Assimilation System
(NLDAS; Mitchell 2004)

Rain and snow accumulation, interpolated
from weather stations and integrated with
actively sensed radar products

Magnitude of peak flow events kg/m2 0.125 arc
degrees 10 km

Flashinessa USGS Dynamic Surface
Water Extent Product
(Jones 2018)

Annual per-pixel variation of a dynamic surface
water extent algorithm; Derived from Landsat
satellite imagery

Flood disturbances; Seasonal
flow variation

Unitless 30 m

Surface Water
Occurrence

JRC Global Surface Water
Mapping Layers (Pekel et al.
2016)

Persistence of water on the surface; Derived
from Landsat satellite imagery

Stream flow rates (at HUC -
level aggregation); Habitat
connectivity

Unitless 30 m

Topographic Diversity Theobald et al. (2015) Variation in temperature and moisture
conditions available to species

Habitat structure and diversity Unitless 90 m

Gross Primary
Productivity

Robinson et al. (2018) Amount of carbon captured by plants in an
ecosystem; Derived from Landsat satellite
imagery

Carbon available to the system kg C/m2/
16-days

30 m

Normalized Difference
Vegetation Index

MODIS AQUA MYD13A2
(V6) Vegetation Indices

Density of “greenness” on landscape Photosynthetic Activity Unitless 250 m

Enhanced Vegetation
Index

MODIS AQUA MYD13A2
(V6) Vegetation Indices

Modified vegetation index that reduces
atmospheric contamination and maintains
sensitivity over dense vegetation

Photosynthetic Activity relative
to Canopy Structure

Unitless 250 m

Percent Tree Cover MODIS TERRA MOD44B
(Hansen et al., 2003)

Percent of woody vegetation Stream structure and habitat
diversity

Percent
cover

250 m

Heat Insolation Load Theobald et al. (2015) Incident radiation derived from latitude, slope,
and aspect

Daily temperature variation;
Stream Temperature

Unitless 90 m

aPreprocessed further from published products (see methods).
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and that many SDM’s rely on “pseudo absences”–background
points used to characterize the range of environmental conditions
in a given study area (Lobo et al., 2010)–we assume that these
genotypic absences contain insightful information regarding the
distribution of RBT, particularly in comparison to pseudo
absences. We supplemented these absences with a RBT dataset
acquired from the Non-indigenous Aquatic Species (NAS; U.S.
Geological Survey, 2020) database and clipped these records to
the bounding box of the RBT genetics dataset. We included only
data records acquired after year 2002 to match the availability of
RS data. We also corrected for the influence of spatial
autocorrelation by systematically subsampling data records so
that no two points fell within 500 m of each other in a given year
(Fourcade et al., 2014). The resultant occurrence dataset included
323 RBT presence locations and 167 absence point locations
distributed across the study region over a 14 year record. The
occurrence data were then joined to Hydrologic Unit Catchment
polygons (HUC; Seaber et al., 1987). HUC polygons represent the
landscape catchment area that drains to a portion of the stream
network, whose hierarchical structure allows for a multi-scale
delineation of drainage systems.

Data Acquisition and Processing-RS Data
To test whether proximal remote sensing cues contain sufficient
environmental information to capture RBT niche requirements,
we selected a number of readily available satellite RS data
products based on a priori assumptions of ecologically relevant
drivers of hybridization and distribution (see below; Table 1). To
avoid scale mismatch issues among predictors, we modeled
environmental variables aggregated over HUC-12 polygons at
the sub-watershed scale. Aggregating each covariate to HUC
polygons mitigates the potential footprint mismatch between
the RS observations and stream network within a catchment
and is a common technique used in building freshwater SDMs in
order to handle issues of scale relating to predictor variables
(Friedrichs-Manthey et al., 2020). In addition, this method
alleviates the inconsistent sampling inherent in the data and
implicitly accommodates the mobile nature of RBT. Here, we give
a brief description of the data products selected for model training

and their connection to RBT niche requirements. The data
products were preprocessed before being spatially aggregated
to HUC-12 polygons as follows.

Land Surface “skin” Temperature (LST) observations were
obtained from thermal-infrared measurements from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
mounted on the NASA EOS Aqua satellite (Li et al., 2013;
Wan et al., 2015). The MODIS LST product is mapped to a 1-
km resolution spatial grid similar to the sensor footprint. LST
retrievals are acquired on a daily basis and composited over
coarser 8-day intervals to reduce cloud and atmosphere
contamination effects. The MODIS Aqua LST retrievals are
acquired at 13:30 local time from the sun-synchronous polar
orbiting satellite and reflect mid-day conditions close to the
maximum diurnal temperature range. Because trout species
are limited by high temperature (Wenger et al., 2011), we
constructed a maximum composite image by capturing the
maximum LST recorded in each grid cell for each year in our
study period.

The National Land Data Assimilation System (NLDAS) uses a
land surface model to integrate ground and space based observing
systems, providing spatially explicit and temporally continuous
estimates for various environmental variables including
precipitation, potential evaporation, and specific humidity
(Mitchell, 2004) at 0.125 arc° and hourly resolutions. We
aggregated the NLDAS precipitation product with a per-pixel
sum composite at 3-month seasonal intervals (i.e., Spring
Precipitation, Summer Precipitation, etc).

The Dynamic SurfaceWater Extent (DSWE) product provides
high temporal (8-days) repeat, moderate spatial resolution (30 m)
data on surface water inundation across broad spatial scales
(Jones 2019). It uses an experimentally derived spectral
mixture model and 5 rule-based decision criteria to classify
Landsat surface reflectance pixels as “not water,” “open water,”
or “partial surface water” in a spatially and temporally explicit
manner. For each week in our study period (i.e., 2002–2018), we
gathered DSWE observations and generated a weekly per-pixel
estimate of surface water inundation in our study area. We
produced a surface water variation metric by finding the per-
pixel temporal standard deviation within each year. The temporal
standard deviation (as opposed to the IQR or variance) of the
water variation was chosen as a proximal cue for stream flashiness
due to its sensitivity to outliers, since RBT spawning is known to
be sensitive to variations in stream flow rates.

In contrast to the DSWE product, the Landsat global surface
water extent product identifies the presence of water over time
using a mix of expert systems, visual analytics, and evidential
reasoning (Pekel et al., 2016). Using this algorithm, Pekel et al.
(2016) developed several thematic mapping layers including the
Surface Water Occurrence metric, which quantifies the overall
location and persistence of surface water cover at 30 m spatial
resolution from 1984 to present. The surface water persistence
metrics are derived from the Landsat satellite series record, which
provides consistent 30 m spatial resolution and potential 16-days
repeat coverage over the globe. However, actual spatial and
temporal coverage of surface water dynamics is degraded by
cloud and atmosphere contamination, seasonal reductions in

TABLE 2 | Predictive capability of each ensemble model. Bold indicates highest
accuracy models. Asterisk indicates models that were removed due to
unrealistic predictions.

Occurrence Model Area Under the Curve
Score

Random Forest 0.89
Logistic Regression 0.69
Artificial Neural Network * 0.62
Gradient Boosted Trees 0.84
XGBoost 0.83
Classification Tree 0.81

Hybridization Model Mean Absolute Error

Random Forest 0.05
Linear Regression 0.07
Artificial Neural Network * 121.79
Gradient Boosted Trees 0.05
XGBoost 0.06
Classification Tree 0.05
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solar illumination at higher latitudes, and overlying vegetation
cover. Slow moving main-stem rivers generally have larger
surface areas than lower order streams, so when spatially
aggregated to HUC-level polygons, this product encapsulates
information about flow rates and overall aquatic habitat
connectivity.

Gross Primary Productivity (GPP) quantifies the plant
photosynthetic uptake of atmospheric CO2 and represents the
amount of carbon and energy flow into the ecosystem. In this
study, a 30 m resolution daily GPP record for the continental
United States was used to characterize energy (and nutrients)
available to ultimately support aquatic food webs. The GPP
record is calculated using a modified form of the MOD17
light use efficiency algorithm driven by satellite observed
fraction of photosynthetic active radiation (FPAR) derived
from Landsat 30 m spectral reflectances, gridded (4-km
resolution) daily surface meteorology observations
(i.e., gridMET; Abatzoglou 2013), and the national land cover
database (Robinson et al., 2018). GPP has been used to predict
freshwater fish species richness across the globe (Pelayo-Villamil
et al., 2015), and previous research supports the link between
primary production and fish productivity (Downing et al., 1990).
Thus, this proximal product may contain information pertaining
to the invertebrate community or vegetation structure. We
calculated the accumulated annual GPP during each year of
interest as a temporal sum composite, hypothesizing that the
Landsat based GPP record captures bioenergetic constraints at
scales relevant to RBT.

The MODIS Enhanced Vegetation Index (EVI; Didan 2015) is
a modified version of the Normalized Difference Vegetation
Index (NDVI), has improved sensitivity to green vegetation
cover in high biomass regions, and minimizes atmospheric
contamination effects. The MODIS (MOD13Q1) EVI product
is derived globally at 250m, 16-days spatiotemporal resolutions.
Because plants both absorb radiation in the visible spectrum and
emit radiation in the near-infrared spectrum, the EVI is sensitive
to the photosynthetic activity of terrestrial systems. Massicotte
et al. (2015) used EVI as a proxy for aquatic vegetation biomass to
predict larval fish abundance. Here, we used EVI as a proxy for
the potential productivity of stream and riparian systems, where
higher productivity systems would be more susceptible to
invasion (i.e., hot spots). Thus, we calculated a temporal EVI
mean composite for each year to capture average conditions
relevant to RBT.

The NASA MODIS Vegetation Continuous Fields (VCF)
product provides a spatially continuous land cover estimate of
general vegetation traits such as percent tree cover, percent non-
tree cover, and percent barren land at 250 m resolution and
annual temporal fidelity (Hansen et al., 2003). The MODIS
(MOD44B) VCF product is derived using a decision tree
classification trained on MODIS surface reflectance and LST.
We used the VCF percent tree cover metric to define the
vegetative structure of the system within each HUC. The
vegetation structure of various riparian areas has been linked
to macro-invertebrate species richness (Sweeney 1993; Death and
Collier 2009). We chose the VCF product to represent the overall
disturbance and shadiness of a given HUC. Although GPP, EVI,

and Percent Tree Cover quantify similar aspects of bioenergetic
constraints, macro-invertebrate potential, and habitat structure,
we expected to see differences in predictive power due to their
differing resolutions, underlying algorithms, and retrieval
accuracy.

In addition, topographic indices such as Topographic
Diversity and Heat Insolation Load (Theobald et al., 2015)
provide information about the topographic structure,
microclimate variability, and resultant thermal dynamics of a
given HUC. Topographic diversity is also congruent with the
measurement of the heterogeneity of various landforms including
valley bottom constraints, hills, and ridges as derived from a
multi-scale neighborhood analysis. This metric indicates the
structural diversity and, therefore, the likelihood of
connectivity of stream networks within watersheds. Heat
Insolation Load reflects variations in latitude and incident
solar radiation to quantify the heat-loading capacity of
different regions. Together with LST, heat insolation load
provides a proximal cue to the overall stream temperature of a
given HUC.

Covariates were obtained through data preprocessing
performed within Google Earth Engine (GEE; Gorelick et al.,
2017).We subjected each lower-level remote sensing variable (e.g.
LST, GPP, EVI, Percent Tree Cover) to stringent quality filtering
based on pre-published quality bands included in each product
(see Supplementary Material S1). We kept the quality control
filters inherent in the higher-level development products (e.g.
Surface Water Occurrence, Heat-insolation Load). We
intersected the RBT survey locations to their encompassing
HUC12 catchments and calculated a weighted average of
genetic admixture relative to the number of individuals in a
dataset. For the RBT occurrence dataset, we simply aggregated
occurrence points to the HUC level. We classified any HUC
containing at least one presence location to be suitable. We then
averaged each environmental covariate across all HUCs in our
study area. This resulted in a tabular dataset with each column
corresponding to the spatial average of an environmental
covariate, or—depending on what our dependent variable
was—a HUC-level weighted admixture percentage or HUC-
level occurrence Boolean. By taking HUC-level aggregates, we
controlled for the effects of steep topography that concentrate
environmental gradients at small spatial scales and the potential
footprint mismatch between environmental data pixels and
stream conditions. Although the same HUC may have been
sampled in multiple years, we treated each HUC–year pair as
an independent observation.

Data were exported from GEE, and due to the reliance of
variable importance techniques on predictors being independent
of one another, all covariates with a Pearson’s correlation
coefficient >0.7 were dropped (Dormann et al., 2013). In
addition, because covariates may contain similar explanatory
information but may not be represented by a linear
relationship, we tested for multicollinearity (Mansfield and
Helms 1982) by fitting Random Forest models with each
covariate as an independent variable, and we dropped each
variable that was shown to have a feature dependence score
>0.7 in predicting another variable. This process was repeated
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until no two columns had a partial dependency exceeding 0.6.
This process resulted in 12 covariates: land surface temperature,
surface water occurrence, heat insolation load, percent tree cover,
flashiness, winter precipitation, fall precipitation, topographic
diversity, summer precipitation, spring precipitation, gross
primary productivity, and enhanced vegetation index. An
overview of model inputs, outputs, and overall workflow can
be found in Figure 2.

Admixture Model Training
Using the above covariates, we trained an ensemble of Linear
Regression (GLM), Gradient Boosted Regressor (GBM),
Classification Tree Regressor (CTA), Artificial Neural Network
Regressor (ANN), XGBoost Regressor (XGB), and Random
Forest Regressor (RF) models using sklearn version 0.23.1
(Pedregosa et al., 2011) in Python 3.7.7, with 20% of data
randomly withheld for testing. We used the ensemble method
because it has been shown to be an improvement over single
models by reducing model-based uncertainty (Marmion et al.,
2009; Elith et al., 2010). For a brief description of each component
model, see Supplementary Material S2. Because the distribution
of RBT hybridization was severely skewed toward higher rates
(i.e., right skewed), we visually confirmed that testing data had
similar distributions to training data. To consolidate model
estimates, we implemented an ensemble method consisting of
each of the above models, weighting the overall prediction by the
mean absolute error (Willmott and Matsuura 2005) and omitting
the artificial neural network due to severe inaccuracy.

Presence Absence Model Training
The same covariates were used for both the hybridization and
occurrence models. We implemented an ensemble method
consisting of the classification analogues for the above
regression models, again using Scikit-learn version 0.23.2. We
took a weighted average of each component model prediction by
the area under the receiver operative characteristic curve statistic
(i.e., AUC score; Bradley 1997), omitting the GLM and ANN due
to the unrealistic predictions (see below; Elith et al., 2010). For
example, if the random forest model were to have a higher
accuracy score than the decision tree model, the overall
ensemble model prediction would be more influenced by the
random forest than the decision tree. We evaluated the predictive
accuracy of the resultant ensemble model by computing a 30-fold
cross validation accuracy score, where the training data were
partitioned into 30 random segments of equal size, 29 of which
were used to train the model, while the remaining segment was
used to calculate the accuracy score. We calculated this accuracy
score by computing the fraction of correct predictions of each
segment, averaging the scores over all 30 folds for an overall
metric of ensemble model accuracy. We then generated
choropleth range maps (i.e., thematic maps showing summary
statistics over a set number of polygons) by applying the ensemble
of models to predict suitable habitat for mean covariates across
two vector datasets representing the “first decade” (years
2002–2010) and the “second decade” (2010–2018) of the study
period, each spatially aggregated to HUC level. Although each
ensemble model predicted different presence amounts for the

FIGURE 2 | Overall workflow, model inputs, and model outputs. Yellow box indicates model inputs. Green boxes indicate steps as referenced in the methods.
Purple box indicates each model output. RBT presence and absence observation locations are denoted by respective red and blue points on the associated study
area maps.
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testing dataset, both the GLM and ANN did not show any
variation of predicted suitability among first decade and
2nd decade HUCs, so were removed from further analysis. To
examine the degree of extrapolation, we calculated the
Multivariate Environmental Similarity Surface (Elith et al.,
2010) for each vector dataset. To examine the model
prediction certainty, we calculated the standard deviation of
prediction probabilities for each remaining estimator.

Discerning Top Predictors
To identify top predictors of RBT distributions, we implemented
an ensemble of different feature importance techniques with each
of the aforementioned ML models trained to predict occurrence
and their analogues trained to predict hybridization. Each model
was subject to Recursive Feature Elimination (Chen et al., 2018),
Permutation Importance (Altmann et al., 2010), and Backwards
Elimination (Draper and Smith, 1981). These feature importance
methods are similar, but contain some important distinctions.
Recursive Feature Elimination iteratively drops features which
have the smallest impact on model prediction until a pre-defined
number of features is leftover. Permutation Importance
iteratively shuffles the values of a given predictor, predicts
using all covariates including the artificially permuted feature,
and measures the subsequent drop in classification accuracy. The
predictor whose permutation yields the largest drop in
classification accuracy is identified as the most important
predictor. Backwards Selection drops a single predictor
entirely, retraining a different model for each iteration and
again measuring the drop in predictive performance. The top
three predictors were selected for each remaining model and
importance technique, and we tallied the number of times a given
predictor was found in the top three. We also interrogated partial
dependency plots for knownmechanisms driving occurrence and
hybridization.

RESULTS

The tree-based methods (i.e., Random Forest, Decision Tree,
Gradient Boosted Trees, XGBoost) yielded higher predictive
accuracy than the linear and deep learning models for the
RBT application (Table 2). Although the occurrence ANN and
logistic regression models predicted a mix of RBT presence and
absence for an unseen test dataset, both models predicted
homogenous vectors of presence or absence for the first and
second decades. For instance, the logistic regression predicted
that all HUCs in both decades were suitable; conversely, the ANN
predicted that all HUCs in both decades were unsuitable.
Similarly, both the hybridization ANN and linear regression
models predicted unrealistic hybridization levels of 100% for
every HUC, whereas all the tree-based regressors predicted
RBT hybridization levels between 0 and 100%.

In evaluating the hybridization predictor (i.e., the ensemble of
regression models), Land Surface Temperature, Heat Insolation
Load, and Gross Primary Productivity were the most predictive
features explaining RBT hybridization trends. The ensemble
model also produced a favorable Mean Absolute Error of

5.5%. 90% of the residuals were less than 15% hybridization,
although some predicted hybridization values had errors greater
than 15%. Although observed hybridization percentages ranged
from 0 to 100%, admixture predictions only ranged from 0 to
60%. Choropleth maps trained on the hybridization dataset did
not correspond with known hybridization levels within the study
area and showed unrealistic spatial patterning (i.e.,
checkerboarding rather than being spatially correlated)
(Figure 3).

In evaluating the ensemble RBT occurrence model, we
identified Land Surface Temperature, Surface Water
Occurrence, and Heat Insolation Load as key predictive
indices explaining RBT presence and absence (Figure 4). The
model results also showed a favorable 30-fold cross validation
accuracy score of 0.87. Surprisingly, Gross Primary Productivity
did not show up as a top predictor of RBT occurrence, even
though it was identified as a key predictor of RBT hybridization.
Choropleth maps showed spatial patterns that agreed with
known RBT occurrence records within the study area and
reveal a strong tendency to predict high RBT relative
suitability in main-stem rivers (Figure 5). In particular, the
ensemble model predicted high relative suitability in the North
Fork of the Flathead River basin and in the upper Flathead River
system for both the first and second decade. For a comparison of
the component classifier predictions, see the Supplementary
Material S3. The predicted RBT occurrences showed relatively
small changes between the first and second decades. Although
most predicted suitability differences were negligible, the
ensemble model predicted a large degree of decreasing RBT
suitability in the Salish Mountains and Lewis Range, with
increased suitability in the northern Mission mountains and
East Glacier Park regions (Figure 6). The multivariate
environmental similarity surface map shows that most HUCs
fall within reasonable extrapolation distance from training
locations (Figure 7).

Partial Dependency Plots (PDP) for the RBT occurrence and
hybridization models revealed differing model performances
relative to the top predictors, although the PDPs for the RBT
occurrence model are more reliable because this model revealed
more realistic spatial patterns of habitat suitability (Figure 3). For
example, the occurrence PDP for flashiness predicted the highest
suitability relative to (unitless) flashiness values of 3, whereas the
hybridization PDP for flashiness predicted the highest
hybridization levels at 7 (Figure 8). The PDPs for both Land
Surface Temperature and Surface Water Occurrence showed
similar performance between models, and both models showed
increasing suitability at temperatures below 34°C. Although both
ensemble models identified Heat Insolation Load as a top
predictor, the shape of this PDP differed substantially for both
models (Figure 9).

DISCUSSION

We present a streamlined workflow that can be used for
identifying top predictors of species occurrence and evaluating
areas of high risk for invasion and establishment of IS in
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freshwater ecosystems. This case study allowed us to identify
strengths, pitfalls, and opportunities for refinement of this
workflow. We attained high cross-validation accuracy and
identified key environmental predictors. Model performance
relative to the top predictors reinforced known assumptions
about RBT distributional requirements in the case of the
occurrence model.

We place the utility of this methodology squarely in the realm
of prediction-first objectives, to be used in tandem with other

management tools. Our methodology provides pivotal
advancement towards integrating research insights between
managers, stakeholders, and decision makers, a crucial step
towards proactive IS management (Reaser et al., 2020b). The
effectiveness and efficiency of this data-driven approach not only
permit managers to objectively prioritize “high-risk pathways”
(Pyšek et al., 2020), but also enable frequent sharing of maps
created from rapidly mobilized occurrence data (Groom et al.,
2019). These advantages allow for weighing the costs and benefits
of potential management actions at intervals and time scales
relevant to managers. As species occurrence data and temporally
dynamic environmental information are received, they can be
readily mobilized into actionable products using methodologies
similar to the current study.

The lack of spatial continuity of RBT hybridization predictions
suggests that our workflow was unable to accurately model this
process, in part due to a non-random field sampling effort.
Understandably, sampling protocols prioritized streams where
there was concern that RBT were hybridizing with native WCT,
resulting in an overrepresentation of recent hybrids that may
have skewed the distribution of hybridization training data or at
least underrepresented hybridization values in the 40–70% range.
It remains unclear whether the unreliable model performance was
due to the weaknesses of the training information or the difficulty
in representing this process from remotely sensed data products.
Indeed, modeling hybridization may not be possible without
incorporating a clear dispersal mechanism in the model. In
fact, RBT hybridization appears to be driven more by
propagule pressure than environmental conditions (Muhlfeld
et al., 2017). Thus, results of the hybridization model must be
interpreted cautiously—unless stated explicitly, the remainder of
this discussion addresses the RBT occurrence model.

FIGURE 3 | Predicted RBT hybridization for the second decade (2010–2018) composite, with dimensionless hybridization levels ranging from low (0) to high (1);
black lines delineate individual HUCs within the larger study basin.

FIGURE 4 | Top predictors of RBT occurrence as identified by the
occurrence model.
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Correlative approaches to evaluating relative habitat suitability
are well suited to the EDRR framework, although the tree-based
models (both hybridization and occurrence) performed relatively
well without additional tuning steps and could be better suited to
EDRR. Reaser et al. (2020a) define EDRR as a “guiding principle
for minimizing the effects of invasive species in an expedited, yet
effective and cost-efficient manner.” Here, we demonstrate that
readily-available data products and empirical machine learning
models can facilitate these foundational principles and specifically
address the target analysis portion of the EDRR paradigm. Due to
their flexibility and swiftness without the need of tuning
procedures, tree-based ML models are especially suited to this

stage, which is characterized by intensive surveys and proactive
biosurveillance to detect the presence of IS with limited resources
(Ricciardi et al., 2017). This spatial prioritization tool is critical
during the early stages of invasion (Carlson et al., 2019), and
managers using our workflow could prioritize high suitability areas
tomaximize the effectiveness and cost-efficiency of field efforts. For
example, our occurrence model predicts high RBT suitability in the
North Fork of the Flathead River and therefore suggests that
monitoring efforts could be focused in that region. In addition,
identifying top environmental drivers of RBT occurrence allows for
more robust assessments of shifting conditions as observational
data products are updated and released.

FIGURE 5 | (A) Predicted RBT relative suitability of first decade (2002–2010) and (B) second decade (2010–2018) vector composites within the Flathead basin
study region; black lines delineate individual HUCs within the larger basin.

FIGURE 6 |Normalized predicted relative RBT suitability change between the second and first decades of the study period (2002–2018) within the Flathead basin.
The Salish Mountains and Lewis Range sub-regions decreased in suitability (blue-green shades; blue arrow), while suitability marginally increased in other regions and
increased more drastically in portions of the northern Mission Range and east Glacier National Park regions (red shades; pink arrow).
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FIGURE 7 | Multivariate Environmental Similarity Surface in the Flathead basin for the 2nd decade (2010–2018) vector composite, which was consistent with the
first decade (2002–2010) composite. Greener shades in the similarity surface indicate that most HUCs fall within a reasonable extrapolation distance from RBT training
locations.

FIGURE 8 | Partial dependency plots for surface water flashiness in both the RBT occurrence ensemble (A) and the hybridization ensemble (B) models.

FIGURE 9 | Partial dependency plots for Heat Insolation Load in both the RBT occurrence ensemble (A) and the hybridization ensemble (B) models.
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The fact that LST was still identified as a top predictor in both the
hybridization and occurrence models suggests that temperature is an
important driver of RBT distributions in this region. In addition, our
connectivity metric (Surface Water Occurrence) was identified as
another top predictor in the case of the more robust RBT occurrence
model. However, the steep topography and dense riparian vegetation
of stream ecosystems create a challenge for interpretation. For
example, the global surface water extent algorithm does not
include water bodies of less than 30 × 30m, is known to
underestimate water occurrence under emergent vegetation, and
resolves the effects of terrain shadows via slopes derived from a
30m DEM (Pekel et al., 2016). Indeed, the diverse vegetation

communities and structural heterogeneity of aquatic systems biases
the detection capability of this product towards open areas and larger
stream orders. Similarly, although the LST product has been linked to
stream temperature at the basin or reach level, the connection is less
clear in smaller streams, particularly in those with mixed inputs
(McNyset et al., 2015). Aggregating at a HUC scale mitigates some
adverse effects but does not preclude all issues of scale mismatch. Still,
given the above caveats, a cautious interpretation of model
performance against such predictors is insightful.

Specifically, the sign and magnitude of PDPs (i.e., Partial
Dependency Plots) relative to proximal predictors of known
niche requirements of RBT can be interrogated for realism. For

FIGURE 10 | Partial dependency plot showing RBT occurrence model performance against stream-temperature adjusted Land Surface temperature in the
Flathead River basin (A) versus predicted water temperature (wtemp) niche requirements of RBT (B) from Wenger et al. (2011).

FIGURE 11 | Partial dependency plot showing RBT occurrence model performance against Gross Primary Productivity in the Flathead basin study region.
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example, the occurrencemodel predicts increasing relative suitability
with increasing LST. Previous research has revealed that LST and
stream temperature follow a linear relationship at roughly a 3:1 slope
in the Columbia River Basin (McNyset et al., 2015). After adjusting
for this relationship, the occurrence model predicts increasing
suitability at our highest observed stream temperature of 13°C,
and Wenger et al. (2011) found that RBT have optimal
temperatures at 16°C (Figure 10). However, not all PDPs showed
realistic model performance. For example, the PDP for GPP showed
an unrealistic dip at 250 kg C/m2/16-days (Figure 11).

Interrogating relatively low-importance model predictors can
also be valuable. There were a few such products whose lack of
explanatory power can be attributed to temporal lag effects, scale
mismatch, or model uncertainty. For example, EVI has been used
as a proxy for submerged aquatic vegetation in open water
systems (Massicotte et al., 2015), although the connection to
species richness in streams is less clear (Vieira et al., 2015). Thus,
EVI may not translate to ecologically relevant conditions for RBT
within the spatial and temporal scale of our study. Similarly, a
terrestrial GPP metric was the most important variable in
predicting global-scale species richness of freshwater fish
(Pelayo-Villamil et al., 2015) and is correlated with fish
production in lakes (Downing et al., 1990). However, our
analysis did not reveal GPP as an important predictor for RBT.

Given that GPP represents terrestrial carbon available to
primary producers (Robinson et al., 2018) and provides the
basis for energy flows supporting aquatic food webs (Welti
et al., 2017), it may not drive the higher-level trophic response
of stream vertebrates until after a lagging period. In addition, the
NLDAS seasonal precipitation metrics did not show up as top
predictors, even though RBT are known to be sensitive to peak
flow events (Fausch et al., 2001). One possible explanation is the
geographic bias present in such spatially interpolated climatic
data. Indeed, an examination of the weather stations used in the
NLDAS product reveals that geographic coverage of the regional
weather station network may be too sparse to fully represent the
climate distribution imposed from relatively complex terrain and
orographic effects in the Pacific Northwest (Mo et al., 2012).
Thus, we recommend the use of landscape scale RS products
because of their spatial contiguity. Lastly, although the seasonal
additive aggregate model inputs (i.e., Spring Total Precipitation,
Summer Total Precipitation) may have captured the magnitude
of peak flow events, these aggregates did not inform the timing
and duration of flow. More work is needed to integrate the
temporal variability of dynamic data products into our workflow.

Our workflow compromises interpretability for speed,
accuracy, and efficiency. Top predictors are correlative at best,
and without explicitly modeling the dispersal potential of these
organisms, our model predicts relative habitat suitability alone. In
addition, using temporally composited covariates results in a loss
of information relating to the timing and duration of
environmental conditions. However, such improvements
would compromise the speed and agility strengths of this
workflow. As the rate of new biological invasions shows no
sign of slowing (Seebens et al., 2017), early detection and
rapid response is becoming more vital to prevent irreversible
ecological damage and massive economic costs to societies. New

technological integrations are needed to facilitate aquatic IS
detection and promote proactive management. We present
and test one such generalizable workflow for integrating
occurrence information with readily available data products to
generate spatiotemporally explicit habitat suitability (i.e., risk)
maps. While this application case study was for RBT, the
underlying models and workflow can be readily extended to
other aquatic and terrestrial species.

Given further testing and validation, this workflow could be
expanded in its geographic and taxonomic breadth by exploiting
web-hosted databases of species occurrence data (e.g. GBIF, www.
gbif.org; USGS NAS, http://nas.er.usgs.gov). Future
considerations include accounting for sampling bias,
integrating presence-only rather than presence-absence
datasets, and working toward fully automating the data
acquisition and preprocessing steps. The advancement of data
sharing capabilities in ecological sciences, born out of the field’s
recent rebirth as a big-data science, has enabled robust
methodologies and automated pipelines that can produce
actionable insight based on continuous occurrence and
environmental data streams. Leveraging workflows such as this
provide a major step in the way of integrating these data with
management action at broad spatial and ecological scales.
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