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Abstract

The comprehensibility of good predictive models learned from high-dimensional gene expression 

data is attractive because it can lead to biomarker discovery. Several good classifiers provide 

comparable predictive performance but differ in their abilities to summarize the observed data. We 

extend a Bayesian Rule Learning (BRL-GSS) algorithm, previously shown to be a significantly 

better predictor than other classical approaches in this domain. It searches a space of Bayesian 

networks using a decision tree representation of its parameters with global constraints, and infers a 

set of IF-THEN rules. The number of parameters and therefore the number of rules are 

combinatorial to the number of predictor variables in the model. We relax these global constraints 

to a more generalizable local structure (BRL-LSS). BRL-LSS entails more parsimonious set of 

rules because it does not have to generate all combinatorial rules. The search space of local 

structures is much richer than the space of global structures. We design the BRL-LSS with the 

same worst-case time-complexity as BRL-GSS while exploring a richer and more complex model 

space. We measure predictive performance using Area Under the ROC curve (AUC) and Accuracy. 

We measure model parsimony performance by noting the average number of rules and variables 

needed to describe the observed data. We evaluate the predictive and parsimony performance of 

BRL-GSS, BRL-LSS and the state-of-the-art C4.5 decision tree algorithm, across 10-fold cross-

validation using ten microarray gene-expression diagnostic datasets. In these experiments, we 

observe that BRL-LSS is similar to BRL-GSS in terms of predictive performance, while 

generating a much more parsimonious set of rules to explain the same observed data. BRL-LSS 

also needs fewer variables than C4.5 to explain the data with similar predictive performance. We 
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also conduct a feasibility study to demonstrate the general applicability of our BRL methods on 

the newer RNA sequencing gene-expression data.
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1. Introduction

Predictive modeling from gene expression data is an important biomedical research task that 

involves the search for discriminative biomarkers of disease states from a high-dimensional 

space. Comprehensible models are necessary in order to easily extract the predictive 

biomarkers from learned classifiers. The number of markers is in the order of several 

thousand measurements made from much smaller numbers of bio-specimens, often leading 

to several models that are equally good at the predictive task but differ in their abilities to 

summarize the observed data.

We have previously demonstrated that rule learning methods can be successfully applied to 

biomarker discovery from such sparse biomedical data [1–7]. Recently, we developed and 

extensively evaluated a novel probabilistic method for learning rules called Bayesian Rule 

Learning (BRL) [7]. This BRL algorithm was shown to perform on par or better than three 

state-of-the-art rule classifiers (Conjunctive Rule Learner[8], RIPPER[9], C4.5[10]) using 

24 biomedical datasets. Therein, BRL was shown to outperform even C4.5, which was the 

best among the other methods. BRL used a global search of the space of possible 

constrained Bayesian network structures to infer a set of classification rules containing a 

posterior probability representing their validity. These rules are readily comprehensible and 

contain biomarkers and their cut-off values that discriminate the class variable.

In this paper, we relax some of the constraints from the BRL search space of global 

structures by introducing the more generalized local structure search that we call BRL-LSS 

(Bayesian Rule Learning- Local Structure Search). Henceforth, we refer to the global 

structure search as BRL-GSS (Bayesian Rule Learning- Global Structure Search) to 

distinguish it from BRL-LSS. We hypothesize that the more general local structure would 

lead to more parsimonious rule sets that enhance the comprehensibility of the rule model 

while maintaining the classification performance.

In this work, we develop an algorithm to perform this local structure search, the BRL-LSS, 

and evaluate it for parsimony and classification performance using more recently extracted 

gene expression data from public repositories. We hypothesize that the more generalized 

representation obtained from the local structure search results in a more parsimonious set of 

rules that describes the observed data as well as the global structure. Parsimony in the rule 

set representation contributes towards model comprehensibility by presenting a more 

concise summary of the observed data. In the Materials and Methods section of this paper, 

we introduce the BRL algorithm followed by a description of the global and local structure 

search. We then describe our experimental design to test our hypothesis and observe the 

results in the subsequent sections.
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2. Results and Discussion

Table 1 shows the summary of the predictive performance of the tested classifiers averaged 

across the 10 folds of the cross-validation study. For each of the 10 datasets, we report the 

AUC and the Accuracy. We average the results across the 10 datasets in the bottom of the 

table. We also provide the standard error of the mean.

In terms of predictive performance each of BRL-GSS, BRL-LSS, and C4.5 appear to be 

comparable. There seems to be a fractional gain in performance by BRL-LSS with an 

average AUC of 0.775.

Table 2 shows the summary of the parsimony statistics of the tested classifiers averaged 

across the 10 folds of the cross-validation study. For each of the 10 datasets, we report the 

Number of rules in the rule base and the number of variables used. We provide the average 

and standard error of mean at the bottom of the table.

The results show that BRL-LSS makes a notably more parsimonious than BRL-GSS. It has 

fewer average number of rules, 5.76, when compared to BRL-GSS, which needs an average 

of 53.61 rules to obtain similar performance. The number of rules in BRL-LSS is almost 

comparable to the state-of-the-art classifier, C4.5, with an average of 4.77 rules. BRL-LSS 

needs fractionally more number of variables to meet the predictive performance of BRL-

GSS. It uses an average of 4.37 variables, while BRL-GSS needs fractionally fewer variables 

at an average of 3.84. However, C4.5 needed almost twice as many variables (average of 

8.49) to obtain the same performance as BRL-LSS.

To summarize, in terms of classification tasks where model parsimony is important (eg. 

Biomarker discovery) BRL-LSS can be preferred since it selects fewer variables than C4.5, 

needs fewer rules than BRL-GSS, while having very similar predictive power as the two.

2.1. Case Study

In this sub-section, we analyze the RNA-Seq dataset (KIRC) as described in section 2.2.2. 

We run BRL-GSS, BRL-LSS, and C4.5 on the KIRC dataset to learn predictive models over 

10-fold cross-validation. We observe that the task of differentiating the tumor gene 

expression from matched normal samples is an easy task for the three algorithms. Each of 

the tested classifiers were evaluated using the predictive performance metrics (AUC and 

Accuracy) and the model parsimony metrics (average number of rules and variables used). 

BRL-LSS emerged as the best predictor with AUC = 0.984 (Accuracy = 99.17%), BRL-GSS 

as the next best with AUC = 0.975 (Accuracy = 98.69%), and C4.5 achieved an AUC = 

0.961 (Accuracy = 98.35%).

We evaluate model parsimony by the average number of rules and variables appearing in 

models across 10-fold cross-validation. BRL-GSS on average required 10 rules and 2.4 

variables. BRL-LSS required fewer rules on average: 7.7 rules with more variables (2.9). 

C4.5 required the least number of rules (4.3 on average), but needed the largest number of 

variables on average (7.2 variables) to model the data.
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With high performing models, there can be several models that can perform more or less 

equally well. So, there can be different rule sets learned with BRL (and C4.5) composed of 

other variables that can match the performance achieved by the greedy best-first search 

algorithm. We now observe the results we obtained from the greedy best-first algorithms: 

BRL-GSS and BRL-LSS. The models were learned on the entire KIRC training dataset.

The rule set learned by BRL-GSS is shown in Figure 1. It uses two variables (genes): APQ2 
and C1orf116. APQ2 takes three discrete values (as determined by EBD during 

discretization). C1orf116 takes four discrete values. As expected, this generates twelve rules 

(four times three). Each rule also shows the number of true positives (TP) and false positives 

(FP) as computed by the rule on the training dataset. The posterior probability is computed 

by the smoothed expression– . The posterior odds are the odds of the rule 

assigning the predicted class against all other classes– . We notice that rules 3 through 

9 have no evidence assigned from the training dataset. BRL produces rule models that are 

mutually exclusive and exhaustive. This means that for a given test instance, BRL explains 

the instance using utmost and at least one rule. The consequence is having rules with no 

evidence in the training dataset. This was the primary motivation for the development of 

BRL-LSS that limits the creation of these branches by merging them.

We observe this change in the rule set learned by BRL-LSS as shown in Figure 2. We 

immediately notice that the number of rules required by the model is fewer but needs more 

variables to explain the data. In this scenario, it also leads to an improvement in 

performance. The BRL-LSS model uses three variables (genes): AIF1L, AMPH and 

C1orf116. AIF1L takes two discrete values (as determined by EBD during discretization). 

AMPH takes three discrete values. C1orf116 takes four discrete values. Note that a BRL-

GSS model with the same performance as this BRL-LSS model would require 24 rules(two 

times three times four) that is largely composed of rules with no evidence in the training 

dataset. Using BRL-LSS, we manage to maintain the property of the rule set being mutually 

exclusive and exhaustive while achieving parsimony. The BRL-LSS rule set only requires 7 

rules to describe the training data, while needing 3 variables to do so. We still end up with 

rules with no evidence (rule 4) but they are much fewer.

The purpose of this case study was to demonstrate the application of BRL-GSS and BRL-

LSS in data from RNA-Seq technology. A complete data analysis of the KIRC dataset would 

involve further exploratory data analysis and examination of multiple rule sets to explain 

different hypothesis. Such thorough analysis of this dataset is beyond the scope of this paper.

3. Materials and Methods

3.1. Bayesian Rule Learning

A classifier is learned from gene expression data to explain disease states from historical 

data. The variable of interest that is predicted is called the target variable (or simply the 

target), and the variables used for prediction are called the predictor variables (or simply 

features).
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Rule-based classifiers are a class of easily comprehensible supervised machine learning 

models that explain the distribution of the target, in the observed data, using a set of IF-

THEN rules described using predictor variables. The ’IF’ part of the rule specifies a 

condition, also known as the rule antecedent, which if met, fires the ’THEN’ part of the rule, 

known as the rule consequent. The rule consequent makes a decision on the class label, 

given the value assignments of the predictor variables met by the rule antecedent. A set of 

rules is called a rule base, which is a type of knowledge base. The C4.5 algorithm learns a 

decision tree, where each path in the decision tree (from root of the tree to each leaf) can be 

interpreted as a rule. Here the variables selected in the path compose the rule antecedents as 

a conjunctions of predictive variable and value assignment to those variables. We infer a rule 

consequent based on the distribution of instances over the target that match this rule 

antecedent.

Bayesian Rule Learning (BRL) infers a rule base from a learned Bayesian network (BN). 

BN is a probabilistic graphical model with two components— a graphical structure, and a 

set of probability parameters [11]. The graphical structure consists of a directed acyclic 

graph. Here, the nodes represent variables and variables are related to each other by directed 

arcs that do not form any directed cycles. When there is a directed arc from node A to node 

B, node B is said to be the child node, and node A is said to be the parent node. A 

probability distribution is associated with each node, X, in the graphical structure given the 

state of its parent nodes, P(X|Pa(X)), where Pa(X) represents the different discrete value 

assignments of the parents of node X. This probability distribution is generally called a 

conditional probability distribution (CPD). For discrete-valued random variables, the CPD 

can be represented in form of a table called conditional probability table (CPT). 

Furthermore, any CPT can be represented as a rule base. Here, we consider only the CPT for 

the target variable. Each possible value assignments of the parents represent a different rule 

in the rule base. The evidence in form of the distribution of instances, for each target value, 

in the training data helps infer the rule consequent. The resulting rule base consists of rules 

that are mutually exclusive and exhaustive. In other words, at least one rule from the rule 

base matches a given instance and only one rule matches that instance.

We learn a BN from a training dataset using a heuristic search of the decision tree that 

results from the CPT described above. We evaluate how likely our learned BN generated the 

observed data using the Bayesian score (the K2 metric [12]). We demonstrated this process 

in our previous work [7].

Decision trees are popular compact representations of the CPT of a node in a BN. Most of 

BN literature is dedicated to learning global independence constraints in the domain. The 

global constraints only capture the dependent and independent variables that are parents to 

the node in the graphical representation. The number of parameters needed to describe the 

CPT is the number of joint assignments for the different parent variables of the node. The 

size of this CPT grows combinatorially to the number of parents of the node. As an example, 

let us consider a node representing a disease state. Let there be 10 genes (henceforth when 

we mention gene as a variable we are referring to its expression) that lead to the change of 

disease state. Let each gene take two discrete values (UP: up-regulated, DOWN: down-

regulated). This would require 210 = 1024 parameters to be represented by the CPT. 
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Consequently our rule base has 1024 rules, one for each value assignment of the parent 

variables. Biomedical research, especially gene expression data rarely have enough training 

data to provide sufficient evidence to make class inference from the 1024 rules in our 

example scenario. It is therefore important to come up with a more efficient representation 

of the CPT.

3.1.1. Bayesian Rule Learning- Global Structure Search (BRL-GSS)—We 

constrained our model to only those models with variables being a direct parent of the target 

variable. BRL uses breadth-first marker propagation (BFMP) for this algorithm, which 

provides significant speed up since database look-up is an expensive operation [13]. BFMP 

[13] permits bi-directional look-up using vectors of pointers by linking a sample to its 

respective variable-values, and the variable value to those samples that have it. It enables 

efficient generation of counts of matches for all possible specializations of a rule using these 

pointers.

Figure 3 depicts a BN (3a), the corresponding global CPT representation using decision tree 

(3b), and the corresponding rules to the decision tree (3c). The BN in Figure 3a is a 

Bayesian network with one child variable also the target, D, and two parent variables (the 

predictor variables), Gene A and Gene B. Each predictor variable, Gene A and Gene B is 

binary. When the gene is up regulated they take the value UP. When the gene is down-

regulated, they take the value DOWN. Figure 3b represents the CPT represented as a 

decision tree with global constraints. Since, both the predictor variables are binary, the 

decision tree has 22 = 4 parameters, each represented by a leaf in the decision tree. Each leaf 

of the decision tree is a parameter, the conditional probability distribution over the target, 

given the values assigned by the path in the tree. This distribution for target D is shown in 

the leaf node. For example, given that Gene A takes value UP and Gene B takes value UP, 

the probability of D = true is 0.89, while probability of D = f alse is 0.11.

Figure 3c depicts a decision tree represented as a rule base. The rule antecedent (IF part) 

contains a conjunction of predictor variable assignments as shown in the path of the decision 

tree. The rule consequent is the conditional probability distribution over the target values (in 

square brackets) followed by the the distribution of the instances from the training data for 

each target value that match the rule antecedent. In rule 1, we see the evidence to be (50, 5) 

where there are 50 instances in the training dataset that matches the rule antecedent that have 

value D = true. There are only 5 instances that matches the rule antecedent that have value D 
= f alse. They are then smoothed with a factor α, set to 1 as a default. This simplifies the 

posterior odds to the ratio of (TP + α)/(FP + α), where TP is the number of true positives for 

the rule (where both the antecedent and consequent match with the test instance) and FP is 

the number of false positives (antecedent matches, but consequent does not match the test 

instance).

During prediction the class is determined by simply the higher conditional probability. In 

our example, since D = true has a probability of 0.89, the prediction for a test case that 

matches this rule antecedent is D = true. If there is a tie, by default the value of the majority 

class is the prediction.
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We developed and tested two variants of global structure search using BRL, the BRL1 and 

BRL1000 in [7]. The subscripts indicate the number of BN models that are kept in memory 

during the best-first search. We concluded that BRL1000 was statistically significantly better 

than BRL1 and C4.5 on Balanced Accuracy, and RCI (relative classifier information). For 

this paper, we choose the BRL1000 version of the algorithm and rename it to BRL-GSS to be 

consistent with nomenclature for the local structure search algorithm we present in the next 

section. The worst-case time-complexity of BRL-GSS, for a dataset with n variables and m 
instances, where each variable i has ri discrete values and r = max ri, is O(n2mr). If we 

constrain the maximum number of discrete values that a variable can take on (for example, 

assume all variables are binary-valued), then the time-complexity reduces to O(n2m).

3.1.2. Bayesian Rule Learning- Local Structure Search (BRL-LSS)—We adapted 

the method developed by [14] which can be used for developing an entire global network 

based on local structure. In Figure 3a, we see the same BN with two parents as the one we 

saw in BRL-GSS. Figure 3d, shows the local decision tree structure. In Figure 3, we saw that 

the distribution of the target, when Gene A = DOWN is the same regardless of the value of 

Gene B. To be precise, P(D|GeneA = DOWN, GeneB = UP) = P(D|GeneA = DOWN, GeneB 
= DOWN) = [0.34, 0.66]. The more general representation in Figure 3d, merges the two 

redundant leaves to provide a single leaf. As a result Figure 3e, reduces the number of rules 

to 3 down from 4. So, Figure 3e is said to be a more parsimonious representation of the data 

when compared to Figure 3c.

Next, we describe our algorithmic implementation to learn local decision trees as seen in 

Figure 3d. At a high level, our algorithm initializes a model with a single variable (gene) 

node as the root. For each unique variable in the dataset, there can be a unique root at the 

decision tree. A leaf in the initial model represents a specific value assignment of the root 

variable. By observing the classes of instances in the dataset that match this variable value 

assignment, we infer the likely class of an instance that would match this variable value 

assignment. To evaluate the overall model, we use the Bayesian Score to evaluate the 

likelihood that this model generated the observed data. The algorithm then iteratively 

explores further specialized models by adding other variables as nodes to one of the leaves 

of the decision tree. The model is then re-evaluated using the Bayesian Score. The model 

space here is huge at O(n!). Our algorithm adds some greedy constraints to bring the space 

down. In the following paragraphs, we specify how we constrain the search.

Algorithm 1 is the pseudocode of the local structure search module in the BRL. This 

algorithm takes as input, the data D and two parameters maxConj and beamWidth similar to 

BRL-GSS. We also used the heuristic of maximum number of parents (maxConj) to prevent 

overspecialization as well as to reduce the running time (default is set to 8 variables per 

path). The beamWidth parameter is the size of the priority queue (beam) that limits the 

number of BNs that the search algorithm stores in memory at a given step of the search. This 

beam sorts the BNs in reducing order of their Bayesian score. Line 2 initializes this beam 

with singleton models. These BNs have a single child and a single parent. The child is fixed 

to be the target. The parent is set iteratively to all the predictor variables in the training data 

D. During the search, this initial parent variable is set as the root node of the tree. A variable 

node is split in two ways— 1) Binary split and 2) Complete split. In binary split the variable 
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is split into two values. If the variable has more than two discrete values (say |v|), the binary 

split creates  different combinations of local decision trees. The complete split 

generates |v| different paths, one for each discrete value of the variable.

In line 3, the search algorithm specializes each model on the beam by adding a new parent 

variable as a candidate conjunct for each leaf in the decision tree. The best models from this 

specialization step are added to the final beam (line 6), which keeps track of the best models 

seen by the search algorithm so far. Line 7 checks to ensure that any candidate models for 

further specialization do not exceed the maxConj limit for the number of parents of the 

target in the BN. The loop at line 8 iterates through each unexplored variable in D for 

specialization. The loop in line 10 iterates through all the leaves of the local structure 

decision tree inferred from the BN. From lines 11 through 17, the algorithm performs a 

binary and complete split using the variable currently being explored at the specific leaf of 

the decision tree. It stores only the best model (as determined by the Bayesian Score) seen in 

this iteration.

Lines 18 through 21 check if the specialization process led to an improvement (better 

Bayesian score) to the model it started with. If the score improves, the new model is queued 

for further specialization in the subsequent iterations of the search algorithm.

Finally, in line 23 the best model seen during the search so far is returned by the search 

algorithm. This best-first search algorithm uses a beam to search through a space of local 

structured CPTs of BNs. As described in Figure 3e, BRL interprets this decision tree as a 

rule base.

Lustgarten et al. Page 8

Data (Basel). Author manuscript; available in PMC 2017 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Algorithm 1

Bayesian Local Structure Search

The worst-case time-complexity of BRL-LSS remains O(n2mr) as with BRL-GSS.We 

achieve this by the same global constraint on the maximum number of parents that the 

model can have in line 7 of the algorithm. However, in practice BRL-LSS tends to be 

generally slower than BRL-GSS. This is because in BRL-GSS we keep track of the variables 

already explored, for the entire beam. In BRL-LSS we keep track of the explored variables 

for each model separately. We still only have a constant number of models as constrained by 

the beam width. As a result the worst-case time-complexity remains the same as BRL-GSS. 

If we restrict the maximum number of discrete values each variable can take, the complexity 

reduces to O(n2m). As a result, with BRL-LSS we now explore a much richer space of 

models with the same time-complexity as BRL-GSS.
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3.2. Experimental Design

For each biomedical dataset, we split the data into train and test set using cross-validation 

split. BRL-GSS and BRL-LSS require discrete data so, the training dataset is discretized. 

After learning the discretization scheme for each of the features from the training data, we 

apply the discretization scheme on those features in the test dataset. Finally, we learn a rule 

model from our different algorithms on the training data. We use this model to predict on the 

test data and we evaluate our performance. The detailed description on the cross-validation 

design, discretization method, classification algorithms, and performance metrics used for 

evaluation is described below.

3.2.1. Classification Algorithms—We test three algorithms in the modeling step of the 

experimental design framework, to generate our rule models— 1) The BRL-GSS, which was 

the significantly best model from our previous study [7] comparing other state-of-the-art rule 

models; 2) BRL-LSS, which is our proposed method in this paper with a promise on model 

parsimony; and finally 3) We have shown previously [7] that C4.5 outperforms other readily 

available rule learners, and therefore for the purposes of comparison in this paper, we 

consider C4.5 as state-of-the-art. Decision trees can be translated into a rule base by 

inferring a rule from each path in the decision tree. C4.5[10] is the most popular decision 

tree based method. It was an extension to an earlier ID3 algorithm.

Both the BRL methods take in two parameters— maxConj, maximum number of features 

used in the Bayesian Network model, and beamWidth, maximum number of models stored 

in the search memory. For both BRL-GSS and BRL-LSS, we set maxConj = 8, and 

beamWidth = 1000. These were arbitrary choices that we use as defaults for the BRL 

models. The C4.5 also uses its default parameters as set by Weka.

3.2.2. Dataset—We run our experiments on 10 binary class, high-throughput, biomedical 

data. Each of the 10 datasets chosen here represent a cancer diagnostic problem of 

distinguishing cancer patients from normal patients using their gene expression profile. The 

gene expression data is generated from high-throughput microarray technology. Table 3 

shows the dataset dimensions and sources for the 10 datasets.

In addition to the high-throughput microarray technology data for gene expression used in 

our experiments, we also conduct a case study using data generated from the newer RNA-

sequencing (RNA-Seq) technology for gene expression. We obtain Illumina HiSeq 2000, 

RNA-Seq Version 2, normalized, gene expression data of patients with Kidney Renal Clear 

Cell Carcinoma (KIRC), processed using the RNA-Seq Expectation Maximization (RSEM) 

pipeline from The Cancer Genome Atlas (TCGA)[23]. The samples are primary 

nephrectomy specimens obtained from patients with histologically confirmed clear cell renal 

cell carcinoma and the specimens conform to the requirements for genomic study by TCGA. 

We develop a model to differentiate the gene expression in tumor samples from matched 

normal samples (normal samples from patient with the tumor). This KIRC dataset has 606 

samples (534 tumor, 72 normal) and 20531 mapped genes.

We pre-process the KIRC dataset by removing genes with sparse expression (more than 50% 

of the samples have value 0). We are left with 17694 genes. As recommended in RNA-Seq 
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analysis literature [24], we use Limma’s voom transformation[25] to remove 

heteroscedasticity from RNA-Seq count data and to be unaffected by outliers in the data. In 

this case study described in the results section 3.1, we demonstrate the feasibility of our rule 

learning methods in analyzing RNA-Seq data.

As described in the experimental design framework, our datasets need to be discretized for 

applying our algorithms. All the biomedical datasets in Table 3 contain continuous 

measurements of the markers. Each training fold of data is discretized using the efficient 

Bayesian discretization method (EBD) [26] with a default parameter, λ = 0.5, which 

controls the expected number of cut-points for each variable in the dataset.

3.2.3. Evaluation—For each of the 10 datasets, we performed a 10-fold stratified cross-

validation for sampling from a dataset. We measure each performance metric (described 

below) for each fold in the cross-validation and then average that metric across the 10 folds 

to get an estimate of that performance metric.

We measure 4 performance metrics. We use 2 metrics to evaluate the classifier predictive 

performance, and another 2 to evaluate model parsimony. The first metric for classifier 

predictive performance is the Area Under the Receiver Operator Characteristics Curve 
(AUC). It indicates the class discrimination ability of the algorithm for each dataset. It 

ranges from 0.0 to 1.0. Higher value indicates a better predictive classifier. The second 

metric for classifier performance is Accuracy, given as a percentage. Again higher value 

indicates a better predictor.

The first parsimony metric is the Number of Rules. All the algorithms tested have rule bases 

that are mutually exclusive and exhaustive. This means that each instance in the dataset is 

covered by at least one rule, and exactly one rule. A small number of rules in the rule base 

indicates greater coverage by individual rules. The coverage of a rule is the fraction of the 

instances in the training data that satisfies the antecedent of the rule. A large number of rules 

indicates that each rule have small coverage, and as a result lesser evidence. A small number 

here is attractive because a parsimonious model with few rules to describe all the observed 

data indicates generalized rules with stronger evidence per rule. The second parsimony 

metric is the Number of Variables. Typically in a biomarker discover task that involves a 

high-dimensional gene expression data, we would like fewer variables to describe the 

observed data. This is because the validation of those markers is time consuming and 

expensive. Having fewer variables to verify is appealing in this domain. So, we prefer fewer 

number of variables that gives us the best predictor.

4. Future Work

We previously extended BRL-GSS with a Bayesian Selective Model Averaged version 

called SMA-BRL[27]. We showed that SMA-BRL was a significantly better predictor than 

BRL-GSS. In the future, we would like to study the selective model averaged version of 

BRL-LSS. For the remainder of this paper, we refer to the collection of classifiers— BRL-

GSS, BRL-LSS, and their Selective Model Averaged versions as the BRL system. The 

descriptive capability and predictive power enables us to envision the applications of the 
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BRL system to other high-profile genomic problems. We discuss two possible applications 

in the following paragraphs.

An important problem in genomics is the classification of a SNP as either neutral or 

deleterious. Deleterious SNPs can disrupt functional sites in a protein and can cause several 

disorders. SNPdryad[28] is one such classifier that uses only orthologous protein sequences 

to derive features (Sequence Conservation Profile) that assist in this classification task. In 

addition to the Sequence Conservation Profile, they use other features like the 

physiochemical property of amino acids, the functional annotation of the region with the 

SNP, number of sequences in the multiple sequence alignment, and the number of distinct 

amino acids for the classification task. They compare 10 different classifiers for the task and 

report excellent predictive performance using Random Forests. However, they do not 

explore any classifier that offers readily interpretable descriptive statistics. We propose to 

explore this problem using the BRL system, since it readily offers descriptive statistics in 

form of rule sets. It would be interesting to learn which features lead to deleterious non-

synonymous human SNPs.

Another problem of interest is the in silico evaluation of target sites for the CRISPR/Cas9 

system. CCTop[29] is an experimentally validated tool that is used to select and evaluate 

targeting site for the CRISPR/Cas9 system. CCTop evaluates target sites in a genome by 

using a score derived from the likelihood of the stability of the heteroduplex (formed from 

the single guide RNA and the DNA) and the proximity of an exon to the target. BRL system 

can be used to learn rules that indicate a good target site for the CRISPR/Cas9 system. The 

classifiers in the BRL system are composed of rules, each with a posterior probability 

indicating the uncertainty in the validity of the rule. This probability score can be used to 

rank the target sites. In addition, it would be interesting to explore other candidate variables 

to improve the performance of the rule sets.

5. Conclusions

In this paper, we presented extensions to the BRL-GSS by relaxing the constraints on the 

decision tree representation using local structures of the conditional probability table of the 

learned Bayesian network. This led to the creation of BRL-LSS that explores a richer and 

more complex model space while maintaining the worst-case time-complexity with BRL-

GSS. BRL-LSS is now incorporated as part of the BRL system, which is provided in the 

Supplementary materials. This system can be used for predictive modeling of any 

quantitative datasets, even though it has been developed primarily for the analysis of 

biomedical data. The advantages of this system over state-of-the-art machine learning 

classifiers include: 1) comprehensibility and ease in extracting discriminative variables/ 

biomarkers from interpretable rules, and 2) parsimonious models with comparable predictive 

performance, and 3) the ability to handle discretization of high-dimensional biomedical 

datasets using simple command line parameters integrated into the BRL system. We hope 

that BRL system will find applications in other challenging domains especially the ones with 

high-dimensional data.
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Figure 1. 
Rule set learned by BRL-GSS on the entire KIRC training data.
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Figure 2. 
Rule set learned by BRL-LSS on the entire KIRC training data.
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Figure 3. Bayesian Rule Learning
(a) Bayesian Network for target D and predictor variables Gene A and gene B. (b) BRL-
GSS CPT represented as a decision tree with global constraints. (c) BRL-GSS Decision tree 

represented as a BRL rule base. (d) BRL-LSS CPT represented as a decision tree with local 
constraints. (e) BRL-LSS Decision tree represented as a BRL rule base.
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Table 3

The 10 datasets used in our experiments (sorted by the number of instances). The columns indicate the data ID 

number, number of instances, number of features, the class label distribution among the instances, and the 

source of the data.

Data ID # instances # features Class distribution Source

1 249 12625 (201, 48) [15]

2 175 6019 (159, 16) [16]

3 103 6940 (62, 41) [17]

4 100 6019 (76, 24) [18]

5 96 5481 (75, 21) Dr. Kaminski

6 86 5372 (69, 17) [19]

7 72 7129 (47, 25) [20]

8 63 5481 (52, 11) Dr. Kaminski

9 60 7129 (40, 20) [21]

10 36 7464 (18, 18) [22]

Data (Basel). Author manuscript; available in PMC 2017 March 20.


	Abstract
	1. Introduction
	2. Results and Discussion
	2.1. Case Study

	3. Materials and Methods
	3.1. Bayesian Rule Learning
	3.1.1. Bayesian Rule Learning- Global Structure Search (BRL-GSS)
	3.1.2. Bayesian Rule Learning- Local Structure Search (BRL-LSS)


	Algorithm 1
	3.2. Experimental Design
	3.2.1. Classification Algorithms
	3.2.2. Dataset
	3.2.3. Evaluation


	4. Future Work
	5. Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2
	Table 3

