
Calcitonin Gene–Related Peptide and Thermal
Injury: Review of Literature

Giulio Gherardini, MD, PhD,a Giuseppe Curinga, MD,b Giuseppe Colella, MD,a

Nicola Freda, MD,a and Raffaele Rauso, MDc

aPlastic Surgeon, Rome, Italy; bDepartment of Plastic Surgery-Burn Unit, Civico and Benfratelli
Hospital, Palermo, Italy; and cDepartment of Head and Neck Surgery, Second University of Naples,
Italy. Dr Giuseppe Curinga is an ISBI (International Society of Burn Injury) Traveling Fellow
currently at Johns Hopkins Hospital in Baltimore, MD.

Correspondence: giuseppecuringa@libero.it
Published July 28, 2009

The aim of this review article is to report about the anti-inflammatory properties of
calcitonin gene–related peptide (CGRP) in burns. CGRP is a 37-amino acid neuropep-
tide, primarily released from sensory nerves and is well known as the most potent and
long-lasting microvascular vasodilator in vitro and hypotensive agents in vivo.
A wide range of proinflammatory stimuli can induce the release of neuropeptides
from cutaneous sensory nerves, including heat, physical trauma, UV radiation, and
irritant chemicals. These proinflammatory stimuli are known to induce the release of
CGRP from cutaneous sensory nerves. The anti-inflammatory effects of CGRP in a
range of species and in human clinical conditions are detailed, and potential thera-
peutic applications based on the use of antagonists and gene targeting of agonists are
discussed.

Thermal injury of the skin results in local tissue destruction and a systemic response.
The increased temperature kills cells in the immediate area and denatures the surrounding
extracellular matrix proteins. Earlier experimental investigations have shown that the in-
flammatory reaction is divided into early and delayed phases. The first phase is believed to
be due to the direct effect of heat on burned tissue causing an increased capillary filtration
followed by edema formation.1 The second, or delayed phase, depends on a cascade of
mediators released by the local tissue and central nervous system, leading to physiological
changes including increased capillary hydrostatic pressure, leakage of intravascular fluid
and proteins into the interstitium, decreased cardiac output, and suppression of the immune
system. This delayed reaction is induced by the contribution of sensory neuropeptides such
as calcitonin gene–related peptide (CGRP).2

CGRP is a 37-amino acid neuropeptide encoded by an alternative processing of the
calcitonin gene in thyroid C cells.3,4 It is found in sensory peptidergic nerves that are present
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Figure 1. Relevance of calcitonin gene related peptide. Action in tissue
repair.

in most tissues and organ systems, including blood vessels, heart, kidney, gastrointestinal
system, and lymphoid organs. CGRP is well know as a potent and long-lasting microvascular
vasodilator in vitro and a hypotensive agent in vivo.5−11

CGRP can potentiate inflammatory edema in skin induced by mediators that in-
crease microvascular permeability.5 This is thought to be a consequence of its action as a
microvascular vasodilator.

CGRP has a proliferative effect on human endothelial cells; therefore, it is important
for the formation of new vessels, for example, in ischemia, inflammation, and the healing
of wounds; it is also regarded as an important modulator of the inflammatory response after
the activation of sensory nerves (Fig 1).2,12 The aim of this review article is to report the
anti-inflammatory properties of CGRP in burns.

BURN PATHOPHYSIOLOGY

Several investigations have focused on the circulatory and microcirculatory alterations
associated with burn shock and edema formation in both burned and nonburned tissues.

Under normal physiological conditions, blood pressure in the capillaries causes the
filtration of fluid into the interstitial space. The thermal injury causes extravasation of plasma
into the burn wound and the surrounding tissues. Edema develops when the filtration rate
exceeds the flow in the lymphatic vessels draining the same tissue. It follows a biphasic
pattern. An immediate increase in water is seen in the first hour after injury. A second phase,
which is more gradual, occurs 12 to 24 hours after burn injury.13 Thermal injury causes
direct and indirect mediator-modulated changes of the permeability of blood tissue barrier
of the capillaries and venules. This pathophysiological response involves several classes
of chemical mediators14 interacting in a complex manner to cause the pain and secondary
tissue damage (Table 1).
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Table 1. Inflammatory mediators of burn

Mediators Effects Tissue effect References

Histamine ↓Blood pressure
Hypovolemia

Arteriolar dilation and
venular constriction
↑Blood flow
↑Permeability

15–18

Prostaglandin E2 ↓Systemic arterial and
pulmonary arterial blood
pressure

Vasodilation
↑Blood flow
↑Permeability

19, 20

Prostacyclin (PGI2) ↓Blood pressure ↑Permeability 21
Leukotriene B4

Leukotriene D4

Pulmonary hypertension Vasoconstriction of
pulmonary vessels

21

Tromboxane A2

Tromboxane B2

GI∗ ischemia
Pulmonary hypertension

Vasoconstriction
↑Permeability

19, 22–24

Bradykinin ↓Blood pressure
Hypovolemia

Vasodilation
↑Permeability

21, 25

Serotonin ↑Permeability 18
Catecholamine ↑Heart rate

↑Blood pressure
↑Metabolism

Vasoconstriction (α
receptors)
Vasodilation (β2 receptors
in muscle)
Block ↑ permeability due
to histamine and
bradykinin (β receptors)

17, 21, 26

Oxygen radicals Cardiac dysfunction Tissue damage
↑Permeability

15, 16, 21, 27

Platelet aggregation factor ↑Blood pressure Vasoconstriction 28–30
Angiotensin II GI ischemia

↑Blood pressure
Vasoconstriction 31

Vasopressin GI ischemia
↑Blood pressure

Vasoconstriction 32

Procalcitonin 33, 34
Antimicrobial peptides
(defensins and
cathelicidins)

Protective role against
microbes

35–37

Tachykinins
Substance P
Neurokinin A
Neurokinin B

Edema Vasodilation
↑Permeability

38–43

Calcitonin gene–related
peptide

↑Heart rate
↓Blood pressure

Vasodilation
↑Permeability
Proliferative effect on
human endothelium

38, 44

∗GI indicates gastrointestinal.

SENSORY NERVOUS SYSTEM AND INFLAMMATION

There is evidence that the activation of the peripheral nervous system generates the major
features of inflammation. The so-called “neurogenic inflammation” is mainly due to the
activation of C-fibers45 and Aδ-fibers,46,47 leading to erythema, wheal, and flare.48
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It is also accepted that these symptoms are due to antidromic release of sensory
neuropeptides, in which tachykinins, such as substance P (SP), neurokinin (NK) A, and
NKB together with CGRP, play a major role.48−54

The neurogenic inflammatory response is complex and cannot simply be regarded
as a series of neuronal events occurring in isolation. Indeed, it is known that the initia-
tion and sustenance of neurogenic inflammation depend on a variety of factors, such as
endothelium, kininogens, and neuropeptides, present in the local environment. The va-
sodilation response characteristic of neurogenic inflammation requires the presence of
endothelium and is linked to the production of nitric oxide (NO).55 It has been suggested
that NO may act prejunctionally or within peripheral neurons to mediate the release of
neuropeptides during neurogenic inflammation within the skin microvasculature.56,57 In
the course of inflammation, ubiquitous kininogens, including bradykinin, are important
mediators of inflammation. In addition to direct activation and sensitization of nocicep-
tors, there is evidence that kinins are proinflammatory, leading to vasodilation, plasma
extravasation, and the release of other inflammatory mediators, notably the neuropeptides
SP and CGRP.58 The finding that the pungent extract of the Hungarian pepper, capsaicin
(8-methyl-N -vanillyl-6-noneamide), can be used as a neurotoxin for the nonmyelinated
sensory afferents59 is of crucial importance to research on the role of the nervous system
in the inflammatory process. Capsaicin is selective for the stimulation and blockage of a
subset of mammalian afferent neurons of dorsal root ganglia with C- and Aδ-fibers. In
response to stimulation, peptide mediators are released from the central and peripheral
nerve endings of these neurons, and both SP and CGRP are involved in the capsaicin-
induced reaction. SP induces a short-lasting endothelium-dependent vasodilation through
the activation of the NKI receptor,60 which is partly dependent on NO release.61 SP also
causes plasma protein extravasation62,63 and a concomitant histamine release from mast
cells.64−67

The most prominent features of the neurogenic inflammation are vasodilation. CGRP,
most often co-released with SP, is the most potent endogenous vasodilator found in an-
imals and humans5,68 and the most abundant neuropeptide in the peripheral nervous
system.

CALCITONIN GENE–RELATED PEPTIDE

CGRP was identified in 1982 when Rosenfeld et al4 showed that alternative RNA processing
of the calcitonin gene generated mRNAs encoding a peptide they named CGRP. It is highly
expressed in certain nerves and is now known to belong to a family that includes the
more recently discovered peptides adrenomedullin and amylin. This group belongs to a
larger family of peptides that includes calcitonin. Calcitonin is a potent inhibitor of bone
resorption, acting via receptor-mediated inhibition of osteoclast function.69 The overall
effect of CGRP on bone resorption is unclear, although it can inhibit osteoclast activity,70

but it is best known for its potent cardiovascular effects.71 CGRP is distributed throughout
the central and peripheral nervous systems and exhibits a range of biological effects on
tissues including those associated with gastrointestinal, respiratory, endocrine, and central
nervous systems (Fig 2).63,72−78
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Figure 2. The CGRP gene is expressed in the dorsal root ganglion (DRG) and is upregulated by
factors that include nerve growth factor (NGF) and tissue inflammation. CGRP is released from
nerves in response to several stimuli, such as capsaicin and low pH, proteinase-activated receptor
(PAR activation), and mediators (eg, kinins and prostaglandins [PG]). Opioids can inhibit the
release of CGRP. The response to CGRP is inhibited by CGRP receptor antagonists

Vascular system

CGRP is a potent arterial and venous vasodilator and is frequently co-localized with SP.
Indeed, SP regulates the vasodilator activity of CGRP,79 suggesting that there is an important
functional significance to this co-localization. There are several mechanisms by which
CGRP produces vascular relaxation, as discussed in earlier reviews.80−82 It is accepted that
vasodilation is mediated via the CGRP1 receptor and blocked in a competitive manner by
CGRP8–37.

Depending on species and blood vessel type, the vasodilating properties of CGRP can
be endothelium dependent or independent, both cases involving an intracellular increase
in cAMP.49,83 In this signaling system, cAMP acts as a second messenger, subsequently
activating cAMP-dependent kinase and ultimately regulating ion channels, enzyme activity,
and/or structural proteins.5,71,84−94

Inflammation

A wide range of proinflammatory stimuli can induce the release of neuropeptides from cu-
taneous sensory nerves, including heat, physical trauma, ultraviolet radiation, and irritant
chemicals. The release of these neuropeptides leads to neurogenic inflammation with ery-
thema and edema. CGRP is considered to be an important modulator of the inflammatory
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response after the activation of sensory nerves.95 The action of CGRP on edema formation
has been extensively studied, and interestingly, CGRP-like immunoreactivity (CGRP-LI)
around blood vessels increases in chronic inflammation.96 In a series of studies, a potenti-
ating action of CGRP in edema formation was demonstrated, but only when CGRP and SP
were administered concomitantly.5,79,97−99 Probably, CGRP’s potentiation of edema forma-
tion is due to its induced vasodilation and not due to its direct effect. The role of CGRP in
mast cell degranulation and histamine release has also been studied. The close anatomical
relationship between mast cells and sensory nerves in many organs suggests that there is a
physiological interaction between these two cell types.100 However, the capability of CGRP
for the activation of mast cells is less pronounced than that of SP.48,100 In fact, CGRP has
been reported to release little or no histamine.101

Wound healing

It has been postulated that sensory neuropeptides in general act as local growth factors.102

There is also increasing evidence that neuropeptides participate in many of the inflammatory
processes that are crucial for normal wound healing.38 Plasma levels of CGRP are increased
in soft tissue injuries103 and in patients with chronic cardiac failure and sepsis,104 indicating
that CGRP may be another important peptide in chronic illness. Animal experiments have
shown that rats depleted with sensory neuropeptides show reduced inflammatory responses,
as well as poor wound healing and diminished skin integrity.105

CGRP seems to be of importance in the formation of new vessels through the induction
of endothelial cell proliferation during pathophysiological events such as ischemia, inflam-
mation, and wound healing.106 In the survival of ischemic denervated tissue, the importance
of reinnervation of mainly CGRP-containing fibers has been stressed.107 These data sug-
gest that the healing process is also related to the anti-inflammatory effects of CGRP, and
upregulation of CGRP binding sites are reported in selective brain areas (involved in the
integration of sensory information) following stress.108

Immune system

Neuropeptides are capable of interacting with almost all components of the immune system.
CGRP is a potent anti-inflammatory mediator; it is thought to inhibit type 1 cytokines (eg,
interleukin [IL]-12 and interferon γ ) and to enhance the production of IL-10, one of
the most immunosuppressive cytokines.109,110 Gomes et al12 observed anti-inflammatory
effects of CGRP in models of acute peritonitis, reducing the recruitment of neutrophils
induced by treatment with lipopolysaccharides. The anti-inflammatory effect of CGRP
is comparable with the proinflammatory effects of SP, bradykinin, and endothelin and
suggests that different vasoactive peptides could participate in opposite ways on macrophage
activation during local and systemic acute inflammation and possibly bacterial sepsis.12

CGRP AND BURNS

The reaction after a local burn injury is dependent on the temperature and duration of the
burn.111 Several experimental investigations have shown that the delayed phase in burn
inflammation is mediated by humoral and neurochemical factors, and pharmacological
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intervention could therefore be of clinical importance.112 The contribution of sensory
neuropeptides has been shown in the delayed phase. Several vasoactive neuropeptides have
been proposed as mediators of the delayed phase reaction.113

Although not necessarily connected, the similarities between neurogenic inflammation
and the reactions after a burn injury are intriguing. The role of neurons in the response
after a burn injury was first suggested by Sevitt,111 who observed that denervated skin
showed a higher (2–3˚C) threshold temperature at which plasma extravasation developed.
By applying a hot iron to the skin, he showed that a specific temperature initially induced
an erythema and if the application was prolonged, plasma extravasation could also be ob-
served. With decreasing temperatures, proportionally longer heat exposure was required
for the development of edema. In this context, it is interesting to note that the threshold
temperature for edema formation has been estimated to 45˚C111,114 and that this is similar
to threshold temperature for the activation of nociceptive fibers in the skin.115 Furthermore,
in more severe burns, edema can also be observed in subdermal structures and this has been
correlated to subdermal temperatures of 41˚C to 45˚C during the time of exposure.111 Early
and delayed edema formation has been demonstrated in burns of different severity.111,116 In
more severe burns, the early part is rapid in onset and the delayed part is often indistinguish-
able from the early or abolished part due to stasis produced by the early massive edema
formation. In milder burns, the early part is less pronounced and sometimes followed by a
distinct delayed increase in edema formation occurring 4 to 8 hours postburn.111,116 This
latter effect can be observed after a well-defined exposure of the skin to hot water (60◦C,
10 seconds).116

The first evidence for the importance of nociceptive C-fibers was obtained in 1983. It
has been shown that capsaicin pretreatment reduced edema formation after a mild (48˚C, 5
minutes) scalding injury,117 and that this edema was also reduced by an SP antagonist but
not by antihistamines.118,119

Burn injury leads to the release of SP and CGRP from nociceptive sensory
endings.120,121 CGRP and SP contribute to the spread of edema by acting directly on
venules to produce vasodilation. CGRP affects the regulation of local blood flow, smooth
muscle tone, and glandular secretion. Siney and Brain122 confirmed these findings in rat
dorsal skin by the use of selective SP and CGRP antagonists. SP and CGRP also seem to
play a role in the initial plasma extravasation observed after thermal injury in rat dorsal
skin.122

SP has a major role in the initial plasma extravasation after injury. Moreover, CGRP is
involved in mediating plasma extravasation for up to 15 minutes after the onset of thermal
injury.122 Löfgren et al123 demonstrated increased concentrations of CGRP-LI in a perfused
rat paw following thermal injury, and thermal injury resulted in a unilateral increase in blood
flow paralleled by an increased content of CGRP-LI and NKA-like immunoreactivity in paw
perfusate.124 The thermally induced inflammation of the rat paw caused locally increased
perfusion, which was characterized by 2 phases. Notably, the second phase was significantly
reduced by pretreatment with NK1, NK2, or CGRP receptor antagonists, suggesting that
the secondary phase is neurogenically mediated.2

The neuroendocrine system through the release of CGRP and SP may play a role in the
pathogenesis of sepsis.104 High systemic CGRP levels were associated with lethal outcome
already at the onset of sepsis, whereas high SP levels were identified as late predictive
indicators of lethal outcome.104
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Onuoha and Alpar38 examined the concentration of sensory peptides in human ther-
mal injuries, on admission and 24 hours postadmission, and their role in the metabolic,
immunological, and inflammatory complications. Basal levels of CGRP and SP were sig-
nificantly higher in patients with burn injuries than in the healthy control subjects.38 These
results support the concept that the neuroendocrine system through the release of CGRP
may play a critical role in the pathogenesis of sepsis.12,38,104

CONCLUSIONS AND FUTURE PERSPECTIVES

This review has summarized, and attempted to correlate, the inflammatory activities of
CGRP in burns. There have been previous reviews on the cardiovascular activities of
CGRP71,80,81 that relate to this fascinating peptide family.76,78 Its most important activity is
its potency in peripheral vasodilation.44,125−127 Several studies have shown that sensory pep-
tides are released from peripheral nerve endings during a noxious or thermal stimulus, such
as a scald, and may thus contribute to the pathophysiology of burn injuries.12,38,103,119−124

This suggests that, as described in this review, it probably plays an important role in the reg-
ulation of tissue perfusion, inflammation, and healing and tissue repair.12,38,103,119−124 More
information regarding the concentration of CGRP in plasma in human burns is needed. It
will be interesting to follow plasma concentration of CGRP in patients with burn injuries,
from injury to healing, analyzing the burn for extension, location, and complication (sepsis,
organ failure).

This may explain the impact of neurogenic inflammation in burn shock, and perhaps
CGRP levels can be used as a prognostic factor in the clinical setting. In this way, it may be
possible in the future to modulate the systemic response to burn to improve burn care. In
recent years, the synthesis of nonpeptides that are capable of antagonizing effects mediated
via the CGRP receptors has been a major advance.
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