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Abstract

Summary: iBioProVis is an interactive tool for visual analysis of the compound bioactivity space in the context of tar-
get proteins, drugs and drug candidate compounds. iBioProVis tool takes target protein identifiers and, optionally,
compound SMILES as input, and uses the state-of-the-art non-linear dimensionality reduction method t-Distributed
Stochastic Neighbor Embedding (t-SNE) to plot the distribution of compounds embedded in a 2D map, based on the
similarity of structural properties of compounds and in the context of compounds’ cognate targets. Similar com-
pounds, which are embedded to proximate points on the 2D map, may bind the same or similar target proteins.
Thus, iBioProVis can be used to easily observe the structural distribution of one or two target proteins’ known
ligands on the 2D compound space, and to infer new binders to the same protein, or to infer new potential target(s)
for a compound of interest, based on this distribution. Principal component analysis (PCA) projection of the input
compounds is also provided, Hence the user can interactively observe the same compound or a group of selected
compounds which is projected by both PCA and embedded by t-SNE. iBioProVis also provides detailed information
about drugs and drug candidate compounds through cross-references to widely used and well-known databases, in
the form of linked table views. Two use-case studies were demonstrated, one being on angiotensin-converting en-
zyme 2 (ACE2) protein which is Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike protein re-
ceptor. ACE2 binding compounds and seven antiviral drugs were closely embedded in which two of them have
been under clinical trial for Coronavirus disease 19 (COVID-19).

Availability and implementation: iBioProVis and its carefully filtered dataset are available at https://ibpv.kansil.org/
for public use.

Contact: vatalay@metu.edu.tr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The ChEMBL database (version 25) has 1 879 206 distinct small
molecule compounds with 12 482 target proteins and 15 506 670
reported bioactivities (Mendez et al., 2019). Even if only the data in
ChEMBL are considered, there are more than 11 billion possible
compound-target protein pairs to be tested in vitro experimentally.
Unfortunately, public databases or datasets have limited coverage as
only partial information is available regarding the compound–target
interaction space, mainly due to high costs and labor requirements
associated with large-scale screening experiments. Therefore, prior

knowledge about the eventual target proteins or cellular signaling
events, in which a small molecule is involved, becomes crucial for
novel drug-target discovery (Rifaioglu et al., 2019). Furthermore,
the representation of drugs and their targets in databases lack the
comparative holistic view of the molecular action on multiple tar-
gets and structural similarity of the compounds.

A small number of studies have recently become available to
visualize the chemical space and the compound bioactivity space
(Awale and Raymond, 2016; Gaspar et al., 2015; Gütlein et al.,
2012; Janssen et al., 2019; Karlov et al., 2019). Janssen et al. (2019)
and Karlov et al. (2019) made visualization tools available, only for
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pre-computed datasets. The tool developed by Awale and Raymond
(2016) performs visualization by principal component analysis
(PCA) which is a linear and global method and may thus miss non-
linear and local relations among the input drug molecules. Another
study, Gaspar et al. (2015) only presents their results and no tool is
made available. The tool built by Gütlein et al. (2012) does not in-
volve target proteins; however, the user can apply clustering on the
compounds to observe their groupings.

We describe a tool called iBioProVis, which uses a map-based
method to embed a given set of compounds, particularly active com-
pounds in the context of their cognate target proteins, as points onto
a real-coordinate 2D space, based on the structural descriptors of
the compounds. iBioProVis allows the interactive visualization of
these embeddings. The sources of the set of compounds are not
restricted; the compounds may be coming from a list of user-defined
compounds indicated as canonical SMILES strings (e.g. the source
of this list can be the output of a machine learning method, which
predicts interacting compounds to the target of interest), drugs from
DrugBank or target proteins’ active compounds that are extracted
from a reliable compound-target bioactivity measurement dataset,
which is a carefully processed and filtered subset of the ChEMBL
(v25) database. The output is the 2D embedding of the input set of
compounds. By looking at the distribution of compounds as points
in this embedding, the user can infer that the compounds that are
close to each other may possess similar protein target characteristics.
We use the extended connectivity fingerprint (Rogers and Hahn,
2010) with bond diameter four (ECFP4) as the compound descriptor
and PCA and t-Stochastic Neighbor Embedding (t-SNE) to generate
the 2D embeddings. We also provide a reliable compound-target
bioactivity measurement dataset, which is a carefully processed and
filtered subset of ChEMBL (v25) database, to be used with
iBioProVis.

iBioProVis is an interactive web-based visualization tool and it
has advantages when compared with existing studies and tools. First
of all, the computation is performed in real-time and visualization
can be done for a variety of input set of compounds; i.e. iBioProVis
is not restricted in terms of datasets. iBioProVis is a web-based tool
and it does not require any installation. Since the local neighbor-
hood is essential for drug discovery and drug repurposing,
iBioProVis employs t-SNE. Additionally, a PCA projection of the
compounds is provided as well, for comparison. Furthermore, visual
analysis of the compound bioactivity space is made possible in sev-
eral contexts such as target proteins, drugs and drug candidate com-
pounds. The user has the option to select the compounds from a
reliable filtered compound-target bioactivity measurement dataset,
which is a carefully processed and filtered subset of ChEMBL (v25)
database.

2 Materials and methods

iBioProVis has its own bioactivity dataset, processed and filtered
from the ChEMBL (v25) database, which originally contains a total
of 15 506 670 data points (i.e. bioactivity measurements; Mendez
et al., 2019). After the application of several filtering and pre-
processing steps (which are outlined in the Supplementary Material
and at https://ibpv.kansil.org/dataset) to generate the iBioProVis
compound-target protein dataset, the number of bioactivity meas-
urements was reduced to 890 886 which contains 3803 unique tar-
get proteins and 581 442 unique compounds. The whole dataset is
available for download at https://ibpv.kansil.org/dataset. If the user
desires, iBioProVis embedding operations are applied to this filtered
dataset. Upon a user submission of target protein identifier(s),
iBioProVis first extracts ECFP4 for the compounds of the given tar-
get protein(s), to be used as compound feature vectors. The tool
then generates a distance matrix for the given compounds, based on
the Tanimoto coefficient. The distance matrix becomes the input to
the t-SNE algorithm which produces the 2D embeddings of the com-
pound feature vectors (van der Maaten and Hinton, 2008). Finally,
these 2D embeddings are plotted as a scatter plot and the point that
corresponds to each compound is color-labeled based on the target
protein that the compound is reported to bind to. It is also possible

to give the representations of drugs or compounds of interest in ca-
nonical SMILES notations during the input phase, to obtain their
2D embeddings along with the binders of the given target proteins.
Once the embedding process is completed and displayed, the user is
able to select a set of compounds on the constructed plot and ob-
serve their ChEMBL identifiers and the target proteins that they ac-
tively bind to. Several cross-references to widely used and well-
known biological databases are also provided so that the user can
easily relate the entities and navigate to those databases by clickable
links. The cross-referenced databases are UniProt, IntAct, PubChem,
DrugBank and Clinical Trials. These steps taken to generate the t-
SNE embeddings are given in Algorithm 1 in the Supplementary
Material and its expected complexity is O(nlogn) where n is the
total number of compounds. PCA projection of the input com-
pounds is provided as well, and the worst-case time complexity is
O(n2) when PCA is used. The Bokeh library is employed to generate
interactive and user-friendly visualizations (Bokeh Development
Team, 2019).

3 Web interface and case studies: b-adrenergic
receptors and angiotensin-converting enzyme 2

A sample web interface embedding is demonstrated in Figure 1. The
active compounds are colored either in blue or in green. Additional
user-input compounds are shown in red and drugs (approved and
experimental drugs found in the DrugBank database) are repre-
sented by diamond shapes. When a user selects a set of compounds,
the information about these compounds and their target proteins is
shown in two different tables (side table: compounds, bottom table:
drugs), where the compounds (rows) are grouped by their respective
target proteins. An additional group is created for the user-input
compounds since their target information is not presented. This in-
formation is shown under the ‘Target Information’ column.
iBioProVis provides UniProt protein accessions, gene names and
ChEMBL identifiers for the target proteins. In addition to these,
compound ChEMBL ID, molecular formulas and PubChem cross-
references are given under this table, for the selected compounds.
The second (bottom) table is reserved to present only the approved
or experimental drugs in the user’s selection. Here, iBioProVis pro-
vides drug names, and clinical trial cross-references in addition to
the aforementioned information. At the top right side of the plot,
there are buttons for easy navigation on the plot such as pan, box
zoom, box select, wheel zoom, tap, reset and save. There is a bio-
activity value filter at the bottom of the plot, which can be used
interactively to remove the compounds that do not satisfy the
selected bioactivity threshold [against the corresponding target
protein(s)].

The first use-case example of iBioProVis is demonstrated on
b-adrenergic receptors (b-ARs) ADRB2 (Beta-2 adrenergic receptor)
and ADRB3 (Beta-3 adrenergic receptor) (Fig. 1). Recent studies
have shown that isoform-specific activation of b-ARs is associated
with distinct cellular events in various tissues. Hence, targeting
b-ARs selectively is important for their molecular pathology-specific
actions. Small molecules targeting ADRB2 and ADRB3 with
affinities < 10mM were embedded with iBioProVis’ interactive web
interface (Fig. 1A and B). Molecules with similar structures are
located in close vicinity, although they are reported to act on
different isoforms of b-ARs (blue versus green nodes in Fig. 1C).
Molecules shared by both proteins are represented by magenta-
colored nodes. As seen in Figure 1, Salmeterol (CHEMBL1263)
targets both isoforms of b-ARs, whereas compound
CHEMBL1800935 targets the ADRB2 protein and
CHEMBL3126381 targets the ADRB3 protein. All three com-
pounds possess very similar structure. This specific example clearly
demonstrates that although CHEMBL1800935 has been reported to
act on ARDB2, iBioProVis embedding indicates that this compound
may also act on ARDB3. Hence, by examining the embedding by
iBioProVis, one can hypothesize ARDB3 as a new target of
CHEMBL1800935. The same argument is valid for compound
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CHEMBL3126381 which acts on ARDB2 but may also act on
ARDB3.

We selected the angiotensin-converting enzyme 2 (ACE2) receptor,
which has been reported as the SARS-CoV-2 spike protein receptor

for viral entry, as the second use-case demonstration (Hoffmann et al.,
2020). ACE2 receptor (CHEMBL3736) is associated with 58 com-
pounds which satisfy the iBioProVis bioactivity dataset criteria
(Supplementary Material). The 58 compounds were embedded

Fig. 1. Comparative interactive embedding output of iBioProVis Case Study 1: b-ARs with b-adrenergic receptors (b-ARs). (A) ADRB2 (blue nodes) and ADRB3 (green nodes)

with data tables of drugs (diamonds) and ChEMBL compounds (round circles). Common small molecules acting on b-ARs are represented with magenta-colored nodes. (B

and C) Interactive zoom in to visual clusters and the nodes (D–F) Compounds in close vicinity share similar molecular structures. Case Study 2: ACE2 receptor binding 58 com-

pounds (blue nodes) and 6516 small molecule drugs (green nodes) from DrugBank were embedded together (A). Compounds targeting ACE2 are clustered in two distinct

groups. Seven antiviral drugs were closely embedded with one of the ACE2 cluster (B and C). The web link to the iBioProVis projection for Case Study 2 is given in the

Supplementary Material. (Color version of this figure is available at Bioinformatics online.)
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together with 6516 small molecule drugs from the DrugBank database
(Fig. 1, Case Study 2; Wishart et al., 2018). There are two significantly
separated clusters of ACE2 receptor binding compounds. Although
compounds of the cluster at the upper right side are defined as thiol-
based ACE2 inhibitors, the cluster of compounds in Figure 1, Case
Study 2, panel B are from another study which designed ACE2 peptid-
ase activity inhibitors (Deatonn et al., 2008; Mores et al., 2008).
These experimental inhibitors were closely embedded with seven
antiviral-protease inhibitors among which Lopivanir and Ritonavir
are currently under clinical trials for use against SARS-CoV-2 (Cao
et al., 2020; Harrison, 2020).

4 Conclusion

iBioProVis is an unprecedented tool that can be utilized for virtual
screening and for chemical genomics. It can be used for several pur-
poses, including the investigation and analysis of how active com-
pounds of different target proteins are distributed on a 2D space, as
well as the prediction of bioactivity profiles for new or uncharacter-
ized compounds, based on the features of compounds with known
bioactivity information. Furthermore, it may provide insight to drug
repurposing studies by identifying the compounds that are
embedded close to an approved drug, especially when those com-
pounds are known binders of a different target protein.
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