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An improved scheme on decoy-
state method for measurement-
device-independent quantum key 
distribution
Dong Wang1,2,3,4, Mo Li1,2,3,4, Guang-Can Guo1,2,3,4 & Qin Wang1,2,3

Quantum key distribution involving decoy-states is a significant application of quantum information. 
By using three-intensity decoy-states of single-photon-added coherent sources, we propose a 
practically realizable scheme on quantum key distribution which approaches very closely the ideal 
asymptotic case of an infinite number of decoy-states. We make a comparative study between this 
scheme and two other existing ones, i.e., two-intensity decoy-states with single-photon-added 
coherent sources, and three-intensity decoy-states with weak coherent sources. Through numerical 
analysis, we demonstrate the advantages of our scheme in secure transmission distance and the final 
key generation rate.

Quantum key distribution (QKD) entails two legitimate parties, Alice and Bob, to distribute secure keys 
in the presence of an eavesdropper, Eve1. The security of QKD has been established theoretically by vir-
tue of the principle of quantum mechanics2–4. However, the security claims are based on theoretical and 
idealized assumptions, such as some convenient models on the photon sources or the detectors, which 
are not necessarily met by experimental implementations. In experiment, one usually adopts the weak 
coherent state (WCS) generated from attenuated lasers to replace the ideal single-photon source, which is 
unavailable at present. Nevertheless, there are non-negligible multi-photon components in WCS, which 
can be exploited by Eve via the photon-number-splitting (PNS) attack5–7.

To combat the PNS attack, the powerful decoy-state method is proposed8–17. Then more work about 
the decoy-state method with an arbitrary number of intensities and related security analysis for finite 
key length have been discussed18–20. The decoy-state method can be further combined with the newly 
proposed measurement-device-independent quantum key distribution (MDI-QKD) to fight all other 
potential detector side-channel attacks21–27. Through the decoy-state method, one can estimate the 
lower bound of the counting rate and the upper bound of the quantum-bit error-rate (QBER) caused 
by two-single-photon pulses, and thus obtain a lower bound for the secure key rate. In order to get 
more precise estimations, one can use better light sources with negligible vacuum component and 
multi-photon probabilities15,16, or use more intensities of decoy-states11,25. Large number of intensities 
of decoy-states will cause experimental difficulties and larger statistical fluctuations. In this report, by 
using single-photon-added coherent sources (SPACS)28,29, we propose a scheme involving only three 
intensities of decoy-states which nevertheless can approach very closely the asymptotic case involving 
infinite number of intensities.
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SPACS has a relatively high probability of single-photon and no vacuum component. In principle, the 
state α, 1  of SPACS can be generated by the elementary one-photon excitation on a coherent state28–30, 
and is theoretically described by applying the photon creation operator ˆ †a  to a coherent state α :
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It is clear that there is no vacuum term contribution in the state of SPACS. The probability of finding 
n photons is
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2  and μ is the mean photon number. SPACS has been experi-
mentally created with high efficiency and fidelity29–34. In particular, Zavatta et al. prepared the SPACS by 
a conditional technique through parametric down-conversion process30,34, where a piece of LBO crystal 
is pumped with a Ti:sapphire laser working at 393 nm, and the generated SPACS is working at 786 nm, 
the overall efficiency obtained is 60%, and the corresponding state fidelity is up to 99.5%. In general, 
almost all the conditions required for QKDs had been matched except for the signal wavelength. 
Nevertheless, we find no in-principle difficulty in generating the SPACS at telecommunication wave-
length since what we need is only to change the phase-match conditions inside nonlinear crystals, e.g., 
replacing LBO with PPKTP. Therefore, it is feasible to apply SPACS to QKD under present technology.

In this report, we apply SPACS to MDI-QKD by using three-intensity and combining the method 
proposed by Zhou et al.25. Due to the absence of vacuum component in SPACS, we need not take the 
contribution of vacuum pulses into account as in other schemes. Using only three non-zero intensities 
(two decoy-states and one signal state) of SPACS, we can get precise estimation of the counting rate and 
the quantum bit error rate (QBER) caused by single-photon pulses, which leads to significantly improved 
final key generation rate and secure transmission distance.

For our scheme, we will need the following results. First, when ⩾n 2 and 1 ≤  μx <  μy, the photon 
number distribution in a state of SPACS has the following property
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2 , ξ = , ,x y z. The last inequality is ensured by λx <  λy since 
1 ≤  μx <  μy. 
Next, when i ≤  j ≤  k and μx ≤  μy ≤  μz, it holds that
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and G(i, j, k) can be rewritten as
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which is positive due to the property of generalized Vandermonde determinant and the conditions 
i ≤  j ≤  k, λx <  λy <  λz.
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Improved 3-intensity decoy-state method for MDI-QKD
In MDI-QKD, Alice and Bob simultaneously send signals to an untrusted third party (UTP, possibly 
controlled by an eavesdropper Eve). The UTP performs a partial BSM and announces whether the meas-
urement result is successful. According to the UTP’s announcement, those successful events will be 
post-selected and further processed for the final key generation by Alice and Bob. A schematic setup 
of our three-intensity decoy-state MDI-QKD with SPACS is shown in Fig.  1. Alice and Bob need to 
randomly prepare the signals with intensities α, β, respectively, where α, β ∈  {μx, μy, μz}. Here μx and 
μy are the intensities of the two decoy-states, while μz is the intensity of the signal state, μx <  μy <  μz. 
When Alice and Bob send signals with intensities α and β, respectively, the gain and QBER are given by
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respectively. Here W represents the Z- or X-basis, and n,  m denote the number of photons sent by Alice 
and Bob, respectively. Ynm

W  denotes the yield, and enm
W  denotes the error rate, when Alice sends an n-photon 

pulse and Bob sends an m-photon pulse to the UTP. The decoy-states and signal-state are prepared in 
different bases. Hereafter we shall omit the superscript W without causing any confusion.

As demonstrated in ref. 25, as long as inequalities (1) and (2) are satisfied, we can get the lower bound 
of Y11 by using the lowest two intensities (μx and μy) for Alice and Bob such that
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Moreover, we can get an upper bound of e11 by inequalities (1) and (2) as25
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where γ =  P1(μz)P2(μz)P3(μz)G(1, 2, 3), and for ξ ∈  (x, y, z),
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In our protocol, the Z-basis is used as the key generation basis, and the X-basis is for error testing 
only. Then by inequalities (3) and (4), one can obtain the lower bound of the successful single-photon 
yield ,Y Z L

11  in the Z-basis and the upper bound of the single-photon error rate ,e X U
11  in the X-basis. The 

final secure key rate can be calculated with the observed total gains and error rates as
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Figure 1. A schematic setup of MDI-QKD using the SPACSs. Alice and Bob randomly prepare SPACSs 
in a BB84 polarization state with a polarization rotator (PR). Intensity modulator (IM) is used to generate 
decoy-states. Charlie performs a partial BSM when the signal pulses from Alice and Bob arrive at a 50:50 
beam splitter (BS). Four single-photon detectors (D1–D4) are employed to detect the results.



www.nature.com/scientificreports/

4Scientific RepoRts | 5:15130 | DOi: 10.1038/srep15130

with f being the error correction efficiency and H(p) :=  − p log2(p) −  (1 −  p)log2(1 −  p) is the binary 
Shannon entropy function.

Numerical Simulation
With inequalities (3–5) we can perform corresponding numerical simulation for our three-intensity 
MDI-QKD with SPACS. We further compare our scheme with the two-intensity MDI-QKD involving 
SPACS35 and the conventional three-intensity MDI-QKD involving WCS23. For the total gains and error 
rates, which can be directly measured from the experiment, we use the channel model and method as in27 
to estimate these values. The relevant parameters are listed in Table 1 21. During the simulation, for the 
two-intensity or our three-intensity decoy-states with SPACS, we set reasonable intensities with μx =  1.05, 
μy =  1.06 for the decoy-states, and μz =  1.10 for the signal-state. For the three-intensity decoy-states with 
WCS, we set μx =  0, μy =  0.1 for decoy-states, and optimize the intensity for the signal-state (μz) in each 
instance. Corresponding simulation results are shown in Figs 2 and 3.

In Fig. 2, we compare the estimation value of e11 between our three-intensity decoy-state method and 
the conventional two-intensity decoy-state method when both using SPACS. Obviously, by using our 
three-intensity decoy-state method, we can get significant improvement in the estimation of e11 over the 
conventional two-intensity decoy-state method. Moreover, our method approaches very closely the ideal 
value by using an infinite number of intensities of decoy-states.

In Fig. 3(a), we give the comparison of the key generation rates by using different methods, i.e., our 
three-intensity decoy-state with SPACS, the conventional two-intensity decoy-state with SPACS, and the 
three-intensity decoy-state with WCS. In each case the key generation rate has been normalized by the 
corresponding value of using an infinite number of intensities of decoy-states. We find from Fig. 3(a) that 
our scheme performs much better than the other two methods: Longer secure transmission distance and 
much higher key generation rate. In Fig. 3(b), the ratio of the key generation rate between our scheme 
and the other two methods have also been displayed. It can be seen that our scheme shows excellent 
behavior even at rather long distance (> 200 km). It exhibits tens of times or even hundreds of times of 
enhancement in the key generation rate than the three-intensity decoy-state method with WCS at long 
distances (> 150 km), see the left axis of Fig. 3(b). When compared with the conventional two-intensity 
decoy-state method with SPACS, our scheme obtains more than double enhancement in the key gener-
ation rate at very long distances (> 200 km), see the right axis of Fig. 3(b).

ηd Y0 ed e0 α f

14.5% 3.0 ×  10−6 1.5% 0.5 0.2 dB/km 1.16

Table 1.  Parameters values for simulations. ηd and Y0 are the transmittance and dark count rate; ed is 
the probability that the survived photon hits a wrong detector, which is independent of the transmission 
distance, and e0 is the error rate of dark count; α is the transmission fiber loss constant; f is the error 
correction efficiency. The UTP is located midway between Alice and Bob, and all detectors are identical.

Figure 2. Comparison of the estimated values of e11 for MDI-QKD with SPACS by using different 
number of decoy states. The dashed curve represents the result of our three-intensity decoy-state method, 
the solid curve represents the result of using an infinite number of decoy-states, and the dotted curve 
corresponds to the result of two-intensity decoy-states method.
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Conclusion
We have introduced an improved scheme on MDI-QKD involving three-intensity decoy-state with SPACS, 
and have compared its performance with two existing methods. Through numerical simulation, we have 
demonstrated that our scheme shows excellent behavior in both the secure transmission distance and the 
final key generation rate. For example, when compared with the conventional two-intensity MDI-QKD 
with SPACS, the key generation rate is enhanced by several times. Compared with the three-intensity 
MDI-QKD with WCS, our scheme not only presents almost one hundred kilometers increasing in the 
secure transmission distance, but also shows tens of times enhancement in the final key generation rate. 
We emphasize that our scheme depends on SPACS which can be generated with current technology, 
although its present setup is relatively bulky and has higher technical requirements compared with the 
WCS system. We can expect that with the development of technology, the emergence of miniaturization 
and maturing of SPACS system will cause it to replace other sources and launches a wide implementation 
in quantum key distributions in the near future.
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