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Bariatric surgeries induce marked and durable weight loss in individuals with morbid

obesity through powerful effects on both food intake and energy expenditure. While

alterations in gut-brain communication are increasingly implicated in the improved

eating behavior following bariatric surgeries, less is known about the mechanistic

basis for energy expenditure changes. Brown adipose tissue (BAT) and beige adipose

tissue (BeAT) have emerged as major regulators of whole-body energy metabolism in

humans as well as in rodents due to their ability to convert the chemical energy in

circulating glucose and fatty acids into heat. In this Review, we critically discuss the

steadily growing evidence from preclinical and clinical studies suggesting that Roux-en-Y

gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), the two most commonly

performed bariatric surgeries, enhance BAT/BeAT thermogenesis. We address the

documented mechanisms, highlight study limitations and finish by outlining unanswered

questions in the subject. Further understanding how and to what extent bariatric

surgeries enhance BAT/BeAT thermogenesis may not only aid in the development of

improved obesity pharmacotherapies that safely and optimally target both sides of the

energy balance equation, but also in the development of novel hyperglycemia and/or

hyperlipidemia pharmacotherapies.

Keywords: Roux-en-Y gastric bypass, vertical sleeve gastrectomy, brown adipose tissue, beige adipose tissue,

thermogenesis, obesity, uncoupling protein 1, molecular and thermal imaging

INTRODUCTION

The growing obesity pandemic is thought to primarily stem from the increased intake of processed,
caloric-dense foods coupled with an overall less active way of life (1). Despite the major health
complications, heightened mortality risk, and significant socioeconomic burden associated with
obesity (2–4), currently available treatments are of generally limited efficacy with the exception of
bariatric surgeries (5). Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) are
the two most commonly opted for procedures in the clinic (6), and sustainably induce marked
weight loss associated with a host of other health benefits (7, 8). However, these procedures
are last-resort measures due to their irreversible nature, expense and potential for complications
(9). It is therefore a pressing medical need to develop safer, noninvasive alternatives to bariatric
surgeries with wider applicability, which will invariably require a deeper understanding of their
mechanistic underpinnings.
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Because of the way they alter gastrointestinal anatomy, RYGB
and VSG were first mistakenly (and still commonly) assumed to
physically limit energy intake solely through the malabsorption
and/or volumetric restriction of ingested food (10). It is now
clear; however, that RYGB and VSG both lower defended body
fat mass through complex effects on physiology (11, 12). This,
to a large extent in humans, engenders marked and lasting
reductions in food intake driven by alterations in gut-brain
communication (13, 14). On the other hand, numerous clinical
studies indicate that RYGB and VSG paradoxically decrease
resting energy expenditure within the first year after surgery
(15), although when normalized to body weight or fat-free mass,
this converts to an increase which scales with the weight loss
that they achieve (16–18). Adding further to the uncertainty,
the situation in preclinical models appears to be quite the
opposite, since food intake suppression by both RYGB and
VSG are transient (19), while for the former procedure, total
energy expenditure increases when expressed in absolute terms
(20–22), or when normalized to body weight (23–25). These
considerations and caveats aside, RYGB has reproducibly been
shown to enhance diet-induced thermogenesis across species
(17, 18, 23, 26, 27). Furthermore, while only established so far
in rodents (25, 28), both RYGB and VSG likely at least limit the
decrease in total energy expenditure that usually accompanies
weight loss in humans too (29), possibly playing a decisive role
in the successful long-term maintenance of a negative energy
balance post-operatively. Indeed, weight regain in patients 2 years
following RYGB has been attributed to its diminished effects on
energy expenditure (30).

Incentivized by the rediscovery of functional brown adipose
tissue (BAT) by 18F-Flurodeoxyglucose positron emission
tomography-computed tomography (18F-FDGPET-CT) imaging
in adult humans (31–37), surgical scientists wasted little time
in addressing whether enhanced BAT thermogenesis may be
responsible for the influences on total energy expenditure
produced by RYGB and VSG described above. Similarly, the
increased realization that energy-storing white adipose tissue
(WAT) can adopt BAT-like characteristics by transforming into
beige adipose tissue (BeAT) [also referred to as WAT “browning”
(38)], has kindled interest in how RYGB and VSG may affect
BeAT thermogenesis as well. In this Review, we will first
provide a brief background to BAT and BeAT. We will then
discuss, in chronological order, the steadily growing number
of preclinical and clinical studies on the effects of RYGB and
VSG on BAT and BeAT with particular emphasis on their
methodology, limitations, mechanistic insights, and implications.
We will finally highlight outstanding questions and present
future perspectives.

BAT AND BeAT

Because of the high energy demands and circulating nutrient
uptake by BAT, 18F-FDG PET-CT imaging reveals the main
classical depot in rodents and adult humans to be located in the
interscapular region and the supraclavicular region, respectively
(39). Physiologically, BAT is activated by sympathetic nerves

when ambient temperatures drop to below thermoneutrality
(referred to as temperature-induced thermogenesis) and during
feeding (referred to as diet-induced thermogenesis) as part
of physiological defense mechanisms in place to protect
against hypothermia and weight gain, respectively (40, 41).
Both these forms of adaptive thermogenesis absolutely depend
on mitochondrial uncoupling protein 1 (UCP1) (42–45), a
symporter embedded in the inner mitochondrial membrane
that exothermically dissipates the proton gradient generated
between the intermembrane space and the mitochondrial matrix
by oxidative phosphorylation (46). Brown adipocytes are in fact
optimized to generate heat in this way because of their high
mitochondrial and UCP1 content as well as their multilocular
morphology, which allows free fatty acids released by adrenergic-
mediated lipolysis to efficiently activate UCP1 (47).

The anti-obesity potential of BAT was realized early on
when its pharmacologic activation by selective beta 3 adrenergic
receptor agonists protected leptin-deficient ob/ob mice and
leptin receptor deficient fa/fa rats as well as wild-type rats on
a high-fat diet from weight gain (48, 49). Furthermore, the
sufficiency of BAT activation/expansion in protecting ob/obmice
and wild-type mice on a high-fat diet from weight gain has
also been established (50). However, while acutely activating
BAT with the selective beta 3 adrenergic agonist mirabegron
or cold exposure markedly increases energy expenditure in
healthy humans (37, 51), chronically activating/expanding
BAT through daily mirabegron treatment, cold exposure or
capsinoid treatment does not sufficiently cause weight loss
per se (51, 52), although mirabegron treatment does markedly
improve various aspects of glyceamic control (52). These
findings suggest that in the clinical setting, recruiting BAT
thermogenesis may better serve as an adjunct to promote
and/or maintain weight loss and/or to exert other metabolic
benefits (51, 52).

The term BeAT was coined to reflect its intermediate nature
between WAT and BAT (38). BeAT forms when cells similar
in size and morphology (multilocular and mitochondria-rich)
and function (highly nutrient-consuming and thermogenic) to
brown adipocytes arise in various WAT depots, most readily in
subcutaneous WAT (such as the inguinal depot in rodents or the
abdominal depot in humans), but also in visceral WAT [such
as the gonadal depot in rodents and the omentum in humans
(38)]. Evidence suggests that this can occur either through
trans-differentiation of existing white adipocytes (53–57), or
commitment of dedicated precursor cells (53, 58–60). As for BAT
thermogenesis, BeAT thermogenesis is physiologically triggered
in response to cold exposure and feeding through sympathetic
nerve activation (61, 62).

Despite total BeAT depots quantitatively contributing ∼ 60%
less than BAT to temperature-induced thermogenesis due to
lower UCP1 protein content (63), chronic activation of inguinal
or gonadal BeAT thermogenesis by a variety of pharmacologic
and genetic manipulations are sufficient to cause weight loss or
protect from weight gain in mice on a high-fat diet (64–66).
However, as for BAT thermogenesis (52), chronic activation of
abdominal subcutaneous BeAT thermogenesis by mirabegron
treatment in prediabetic, obese humans does not lead to
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significant weight loss, but it does markedly improve glycaemic
control (67).

RYGB AND BAT/BeAT THERMOGENESIS

An effective obesity treatment would in principle ideally target
both sides of the energy balance equation. Indeed, evidence from
preclinical studies suggests that in addition to suppressing food
intake, liraglutide, which is a stable analog of the gut hormone
glucagon-like peptide 1 (GLP-1) and 1 out of 5 currently
approved obesity pharmacotherapies by the FDA (68), increases
energy expenditure through stimulatory effects on BAT and BeAT
thermogenesis (69, 70). However, this does not appear to be the
case in diabetic patients (71), which may in part explain why
liraglutide achieves relatively modest weight loss compared to
bariatric surgeries in the clinic (5–10 vs. 20–30% within the first
year, respectively) (72, 73).

In the first study attempting to address whether bariatric
surgeries enhance BAT thermogenesis, Hankir et al. (74)
performed small-animal 18F-FDG PET-CT imaging on high-
fat diet-induced obese RYGB-operated and sham-operated male
Wistar rats following acute treatment with a selective beta-
3 adrenergic receptor agonist. Unexpectedly, they found that
BAT 18F-FDG uptake was similar between surgical groups, as
was BAT Ucp1 mRNA expression determined by Northern
Blot analysis following the same thermogenic stimulus (74).
These findings provided early evidence against the outright
enhancement of BAT thermogenesis by RYGB, although 18F-
FDG PET-CT imaging has more recently been shown not to
reliably reflect UCP1 thermogenic function in BAT (75, 76).
Moreover, nomeasurements were made of energy expenditure by
indirect calorimetry or heat production in this particular study,
precluding any definitive conclusions about the effects of RYGB
on BAT thermogenesis (74).

In a subsequent more rigorous study using the same RYGB
model as Hankir et al. (74) applied to high-fat diet-induced obese
maleWistar rats, Abegg et al. (77) performed indirect calorimetry
as well as core-body and BAT temperature measurements
by radiotelemetry. Here, the authors also cleverly varied the
ambient housing temperature from mild cold stress (22◦C),
typically used inmost rodent studies, to thermoneutrality (32◦C),
with the expectation that any increase in oxygen consumption
from enhanced temperature-induced BAT thermogenesis in
RYGB-operated rats at 22◦C would be abrogated at 32◦C
(77). In addition to an obese sham-operated group, they also
incorporated a body weight-matched (BWM) sham-operated
control group to assess the specific weight loss-independent
effects of RYGB. Unexpectedly, but in line with the earlier
findings of Hankir et al. (74), there were no differences in
energy expenditure between obese sham-operated and RYGB-
operated groups or BAT/core-body temperatures regardless
of the ambient housing temperature. However, RYGB clearly
prevented the marked drop in these measures that was found
for the BWM sham-operated control group (77). These findings
suggest that while RYGB may not enhance temperature-induced
thermogenesis per se, it does prevent the marked decrease that

typically occurs with weight loss. These findings are also in line
with comparable indirect calorimetry experiments performed
on high-fat diet-induced obese mice in which RYGB similarly
prevented the decrease in energy expenditure that occurs
in BWM sham-operated mice—both under mild cold stress
conditions and thermoneutrality (25). Interestingly, RYGB-
operated mice had almost a third higher energy expenditure
compared to BWM sham-operated mice during the onset of
the dark period when they normally eat, further suggesting that
RYGB enhances diet-induced thermogenesis (25). One way this
could be achieved is through enhanced post-prandial release of
the BAT-stimulating gut hormone secretin (78). Indeed, RYGB
has recently been shown to markedly enhance post-prandial
release of secretin in obese patients at both 1 week and 3
months post-operatively (79), although how this influences BAT
thermogenesis remains to be formally assessed.

Due to the lack of a clear stimulatory effect of RYGB
on BAT function in the study of Hankir et al. (74), two
independent studies published at about the same time then
addressed the effects of RYGB on BeAT formation (80, 81).
Again using high-fat diet-induced obese RYGB-operated and
sham-operated male Wistar rats as well as a BWM sham-
operated control group, Hankir et al. (80) measured the mRNA
expression by RT-qPCR of various genes that are essential for
the thermogenic program in adipocytes including those that
encode the mitochondrial proteins UCP1 and Cidea (82), the
nuclear receptor co-activator and regulator of mitochondrial
biogenesis peroxisome proliferator associated receptor gamma
co-activator-1 alpha (PGC1-alpha) (83) and PRD1-BF1-RIZ1
homologous domain containing 16 (Prdm16) (84), as well as
BeAT-specific markers such as V-erbA-related protein (Ear2)
and transmembrane protein 26 (Tmem26) (85) in inguinal
WAT and gonadalWAT. This analysis somewhat disappointingly
revealed that there were no differences between any of the groups
studied (80), although administering a beta 3 adrenergic agonist
may have unmasked BeAT formation (38). Notably, RYGB at
least partially prevented the decrease in BAT Ucp1 mRNA
expression that was found in the BWM sham-operated group
compared to the obese sham-operated group (80). However,
it should stressed that Ucp1 mRNA levels do not provide
a reliable indicator of UCP1 thermogenic function (86, 87),
and no oxygen consumption or heat production measurements
were made in this particular study - again precluding any
definitive conclusions.

In the other study assessing BeAT formation by RYGB,
Neinast et al. (81) employed high-fat diet-induced obese female
C57BL/6 mice, which is highly relevant since a vast majority
of bariatric surgeries in the clinic are performed on women.
It was unexpectedly found that RYGB-operated mice had
increased Ucp1 mRNA expression determined by RT-qPCR
and UCP1 protein expression determined by representative
immunohistochemistry in gonadal WAT as opposed to in
inguinal WAT, compared to obese sham-operated and BWM
sham-operated mice (81). Additionally, in line with the lack of
a stimulatory effect of RYGB on BAT thermogenic markers in
male rats described above, RYGB had no effect on BAT Ucp1
mRNA and UCP1 protein expressions. In order to gain insight
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into the mechanisms behind increased gonadal BeAT formation
after RYGB, the authors next turned their attention to natriuretic
peptides and their receptors, which have established roles in
stimulating BeAT thermogenesis (88). They found using RT-
qPCR an increase in gonadal WAT mRNA expression of B-
natriuretic peptide (Nppb) and natriuretic peptide receptor 2
(Npr2) in RYGB-operated mice compared to both obese and
BWM sham-operated mice in association with an increase in
mRNA expression of the beta-3 adrenergic receptor (Adrb3).
Together, these data suggest that RYGB increases B-natriuretic
peptide synthesis in gonadal WAT to cell-autonomously enhance
natriuretic peptide receptor 2 signaling in association with
increased sympathetic tone, thereby enhancing BeAT formation
in a weight-loss independent manner (81). However, it should
be kept in mind that the findings from this particular study
were only observational in nature and no energy expenditure or
heat production measurements were made. Future studies are
required employing indirect calorimetry on mice lacking either
B-natriuretic peptide or natriuretic peptide receptor 2 to establish
if RYGB does indeed enhance BeAT thermogenesis through the
aforementioned mechanism.

The enhanced BeAT formation by RYGB would receive
further support in subsequent observational mouse studies. He
et al. (89) demonstrated using RT-qPCR that Ucp1 and Prdm16
as well as thermogenic Ucp3 (90) mRNA expressions are higher
in both the subcutaneous WAT and gonadal WAT of RYGB-
operated diet-induced obese male mice compared to obese
sham-operated mice. Further, in a comprehensive tissue-wide
translational study, Ben-Zvi et al. (91) demonstrated using RNA-
sequencing thatUcp1 and CideamRNA expressions are higher in
the inguinalWAT of RYGB-operated high-fat diet-induced obese
male C57BL/6 mice compared to BWM sham-operated mice,
as was UCP1 protein expression determined by representative
immunohistochemistry. Importantly, this was complemented
with indirect calorimetry measurements which confirmed higher
energy expenditure in RYGB-operated mice compared to
BWM sham-operated mice (91). While the underlying causal
mechanisms for enhanced BeAT thermogenesis after RYGB
compared to chronic caloric restriction-induced weight loss
were not established in this particular study, mRNA expression
of the anti-inflammatory cytokine interleukin-33 (Il33) was
markedly increased in the inguinal WAT of RYGB-operated
mice (91). This is relevant since systemically administered IL-
33 can potently induce iWAT browning through a complex
localized immune cell response involving type 2 innate lymphoid
cell-derived IL-13 and eosinophil-derived IL-4 converging on
IL-4 receptors on beige adipocyte precursors to induce their
differentiation (92). Furthermore, growth hormone receptor
expression was markedly reduced for RYGB-operated mice
compared to BWM sham-operated mice throughout different
tissues (91), which in the hypothalamus has the remarkable effect
of sufficiently preventing the drop in BAT thermogenesis that
usually accompanies chronic caloric-restriction induced weight
loss (93).

The findings discussed so far collectively suggest that RYGB
enhances BeAT thermogenesis but not BAT thermogenesis.
However, this has been challenged in the most recent study on

the subject by Chen et al. (94). The authors performed small-
animal 18F-FDG PET-CT imaging on high-fat diet-induced
obese RYGB-operated and obese sham-operated male C57BL/6
mice following acute treatment with insulin. They found that
BAT 18F-FDG uptake on this occasion was increased by RYGB,
but this simply means that BAT insulin sensitivity, as opposed to
its thermogenic function, is enhanced (94). Nevertheless, RYGB
increased BATUcp1 and Prdm16mRNA expressions determined
by RT-qPCR in association with increased energy expenditure
determined by indirect calorimetry (94).

As informative as preclinical studies are, the ultimate goal is
to understand if RYGB enhances BAT/BeAT thermogenesis in
humans. Unfortunately, the number of clinical studies addressing
this question is limited, likely due to the difficulties associated
with obtaining ethical approval and recruiting patients. In an
important early clinical study by Rachid et al. (95) addressing
whether RYGB enhances BAT metabolic function, 12 obese,
non-diabetic patients underwent 18F-FDG PET-CT imaging
following acute cold exposure at baseline and 8 months
post-operatively. To further establish whether RYGB enhances
BAT thermogenic markers, supraclavicular biopsies were also
collected at these time-points for gene expression analysis by
RT-qPCR. It was found that while cold-induced supraclavicular
BAT 18F-FDG uptake was unchanged by RYGB, UCP1 mRNA
expression increased (95) although how this would affect energy
expenditure or heat production was not established. These
findings are nevertheless in line with those of Piquer-Garcia et al.
(96), who showed using infrared thermal imaging in 15 obese
patients (9 with type 2 diabetes) that acute temperature-induced
thermogenesis is not changed at 6 months after RYGB.

Concerning BeAT formation by RYGB, the tissue-wide RNA-
sequencing translational study described above by Ben-Zvi et al.
(91) revealed no effect on abdominal subcutaneousUCP1mRNA
expression or any other standard thermogenic marker, although
this was at a very early 1 month time-point post-operatively.
Interestingly, in a study performed on 23 obese women by de
Oliviera et al. (97) at baseline and the later 6 month time-
point after RYGB, abdominal subcutaneous UCP2 mRNA and
perilipin 1 (PLIN1) mRNA expressions determined by RT-
qPCR independently positively predicted weight loss. However,
this did not correlate with the weight-adjusted increase in
energy expenditure caused by RYGB (97). These preliminary
findings nevertheless suggest that in humans, RYGBmay increase
BeAT thermogenesis through a UCP1-independent mechanism
involving PLIN1-mediated fatty acid transfer from lipid droplets
to UCP2. Under conditions of oxidative stress, potentially due
to extensive remodeling of adipose tissue following RYGB,
these liberated fatty acids could be rapidly oxidized to lipid
hydroperoxides which activate UCP2-mediated proton transport
and heat production (98).

VSG AND BAT/BeAT THERMOGENESIS

Unlike RYGB, VSG does not involve gastrointestinal
reconfiguration so it can reasonably be assumed to have a
different effect on BAT/BeAT thermogenesis. Indeed, while
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there is considerable overlap in terms of the physiological
changes after both procedures (99), there are some noticeable
differences such as their effects on the gut microbiota (100–105)
which have reported roles in positively regulating BAT/BeAT
thermogenesis (106–109). In the first study addressing whether
VSG enhances BAT thermogenesis, Baraboi et al. (110)
performed a comprehensive set of experiments on high-fat
diet-induced obese VSG-operated and sham-operated as well as
BWM sham-operated male Wistar rats including small-animal
18F-Fluoro-6-thiaheptadecanoic acid (18F-FTHA) and 11C-
acetate PET-CT imaging, which measure fatty acid utilization
and mitochondrial beta oxidation, respectively, in conjunction
with indirect calorimetry measurements (110). Similar to RYGB
in rats described by Abegg et al. (77), VSG did not increase total
energy expenditure, but it did prevent the drop that occurred
in BWM sham-operated rats compared to obese sham-operated
rats (110). Additionally, similar to RYGB in rats described
by Hankir et al. (80), VSG prevented the drop in BAT Ucp1
mRNA expression determined by RT-qPCR that occurred in
BWM sham-operated rats compared to obese sham-operated
rats (110). Interestingly, VSG increased both BAT 18F-FTHA
and 11C-acetate uptake, indicating increased brown adipocyte
fatty acid utilization and beta-oxidation, respectively, compared
to both obese sham-operated and BWM sham-operated rats
(110). These findings suggest that while VSG may enhance
BAT thermogenesis, it is only sufficient to prevent the decrease
in total energy expenditure that usually accompanies caloric
restriction-induced weight loss rather than enhancing it overall.
This is nevertheless consistent with a subsequent study by
Moncada et al. (111) on high-fat diet-induced obese VSG-
operated and obese sham-operated as well as pair-fed (PF)
sham-operated male Wistar rats that underwent core-body
temperature measurements. It was found that VSG increased
core-body temperature compared to obese sham-operated
rats in association with increased BAT UCP1 protein levels
determined by Western Blot (111). Interestingly, the increase in
these measures for VSG-operated rats compared to PF sham-
operated rats was only noticeable in those not characterized as
obesity-prone, suggesting that there is a genetic component to
the effectiveness of VSG in enhancing BAT thermogenesis (111).

Having established that VSG consistently enhances BAT
thermogenesis in rats, efforts were then made to elucidate the
underlying mechanisms. Because plasma bile acids are known
to be markedly increased by VSG (112), and agonists of the bile
acid receptor TGR5 promote BAT thermogenesis in rodents and
humans (113, 114), their role in enhanced BAT thermogenesis
after VSG was tested in male high-fat diet-induced obese mice
(115). First, it was shown that TGR5 knockout mice regained
weight after VSG, unlike wild-type mice, and that this was despite
similar food intake between genotypes (115). Accordingly, TGR5
knockout mice did not exhibit the increase in energy expenditure
determined by indirect calorimetry after VSG that occurs in
wild-type mice (115). In line with these findings, the increase in
BAT Ucp1, Ucp3, and Pgc1alpha mRNA expressions determined
by RT-qPCR caused by VSG in wild-type mice was not seen
in TGR5 knockout mice (115). These results strongly suggest
that the increase in circulating bile acids caused by VSG leads

to TGR5-mediated enhancement in BAT thermogenesis thereby
contributing to a negative whole-body energy balance (115).
However, this conclusion would be more strongly supported by
performing VSG on mice lacking TGR5 specifically in BAT.

To evaluate if VSG enhances BeAT formation and assess in
detail the underlying mechanisms, Liu et al. (116) employed
streptozotocin-induced diabetic VSG-operated, obese sham-
operated and FR sham-operated male Sprague Dawley rats. It
was found that VSG increased Ucp1 and Pgc1alpha mRNA
expressions determined by RT-qPCR as well as UCP1 and
PGC-1alpha protein levels determined by both Western Blot
and representative immunohistochemistry in inguinal WAT
(116). This was associated with a strong (20-fold) increase in
sirtuin 1 (Sirt1) and adiponectin (Adipoq) mRNA expressions
and an increase in Sirt1 and adiponectin protein levels in
inguinalWAT.Mechanistic experiments in cultured 3T3-L1 cells,
a mouse white adipocyte cell line, then revealed that forced
overexpression of adiponectin increased Sirtuin 1, UCP1, and
PGC-1alpha protein levels. In turn, forced overexpression of
Sirt1 increased AMPK activation determined by phosphorylated
threonine 172 immunoblotting. Because AMPK can increase
the expression of PGC-1alpha and UCP1 in BeAT (117), its
causal role in BeAT formation after VSG was tested (115).
Strikingly, chronic (1 month) weekly administration of the
AMPK inhibitor compound C prevented the increase in Ucp1
and Pgc1alpha mRNA expressions as well as UCP1 and PGC1-
alpha protein levels in inguinal WAT caused by VSG (115).
Taken together, these impressive results suggest that VSG first
increases adiponectin expression and release from WAT, which
in turn cell-autonomously increases SIRT1 and AMPK activities
to drive BeAT formation (116). It is unfortunate however that
no measurements of energy expenditure were made by indirect
calorimetry in this particular study. Moreover, it is unclear
how inhibition of BeAT formation by compound C may have
affected body weight or any other metabolic parameter in VSG-
operated animals.

In a recent study by Harris et al. (118) aimed at elucidating
the weight loss-independent mechanisms behind improved
glycaemic control following VSG, interesting effects on adipose
tissue metabolic function and gene expression pertinent to
thermogenesis were made. Non-obese C57Bl/6 male mice
maintained on a normal chow diet first underwent VSG or sham
surgeries. Two weeks later, they were orally administered 18F-
FDG and its tissue distribution after 1 h was quantified ex vivo.
Remarkably, this revealed that VSG significantly increased 18F-
FDG uptake in iWAT and eWAT compared to sham surgery
despite similar body weights and energy expenditure determined
by indirect calorimetry between groups. Additionally, VSG-
operated mice exhibited improved oral glucose tolerance and
increased systemic carbohydrate metabolism (118). Since 18F-
FDG uptake by iWAT is increased by beta 3 adrenergic receptor
agonist-induced and cold-induced browning (39), these findings
provide further functional evidence of iWAT browning after
VSG and novel evidence of eWAT browning and suggest
that this contributes to improved glycaemic control but not
to energy expenditure changes post-operatively. Interestingly,
eWAT browning by VSG may be independent of sympathetic
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nervous system function, since neither chronic pharmacologic
beta 3 adrenergic receptor activation nor cold exposure increases
eWAT 18F-FDG uptake (39). The authors further went on to
show through RNA-sequencing that VSG reduces eWAT mRNA
levels of suppressor of zeste 12 protein homolog (Suz12) which
forms part of the polycomb repressor complex 2 (PRC2) (119).
This could potentially contribute to reduced methyltransferase
activity of PRC2, leading to reduced lysine 27 trimethylation
of histone H3 at the Ucp1 and Pgc1alpha promoters, thereby
disinhibiting their transcription (119). It would be interesting in
future studies to perform similar experiments as those of Harris
et al. (118) on mice at later timepoints after VSG to assess its
long-term effects on whole-body energy and glucose balance in
relation to brown and beige adipose tissue thermogenesis.

Lastly, to ascertain the effects of bariatric surgery (8 RYGB
and 15 VSG) on BAT function in humans, Dadson et al. (120)
performed 18F-FTHA PET-CT imaging on 23 obese patients (10
with type 2 diabetes) at baseline and 6 months post-operatively.
It was found that bariatric surgery increased supraclavicular
BAT 18F-FTHA uptake to the level of lean controls. Notably,

BAT triglyceride content was reduced by bariatric surgery as
revealed by CT, which is a proxy of enhanced BAT thermogenesis
(121). While this did not correlate with post-operative changes
in energy expenditure determined by indirect calorimetry,
it positively correlated with post-operative improvements
in insulin sensitivity (120). The findings again suggest that
while VSG may enhance BAT thermogenesis, this does not
increase energy expenditure overall but may contribute to
improved glycaemic control. The enhanced BAT thermogenesis
by VSG would receive direct support in a subsequent study
by Picquer-Garcia et al. (96). They demonstrated using
infrared thermal imaging on 15 obese patients (5 with type 2
diabetes) that VSG significantly increased acute temperature-
induced thermogenesis at the 6 month post-operative
time-point.

Concerning the effects of VSG on BeAT formation, Jahansouz
et al. (122) collected abdominal subcutaneous adipose tissue
samples from 20 obese patients at baseline and 1 week post-
operatively (122). Surprisingly, UCP1 protein levels determined
byWestern Blot were reduced by VSG. In contrast,UCP2mRNA,

FIGURE 1 | Effects of RYGB and VSG on brown and beige adipose tissue thermogenesis in rodents and humans. The studies discussed in this Review generally

show a stimulatory effect of RYGB and VSG on brown and/or beige adipose tissue thermogenesis involving canonical, UCP1-dependent or non-canonical,

UCP1-independent mechanisms. cBAT refers to classical BAT which is the interscapular depot in rodents and supraclavicular depot in humans. sWAT refers to

subcutaneous WAT which is the inguinal depot in rodents and abdominal depot in humans. vWAT refers to visceral WAT which is the epigonadal depot in rodents and

omental depot in humans. Note how sWAT in rodents and vWAT in humans have more browning potential, respectively.
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and PLIN2 mRNA expressions in abdominal subcutaneous
adipose tissue determined by RT-qPCR were increased by VSG
which associated with a 15-fold higher beta-oxidation rate ex vivo
(122). These findings are in line with those of Tarabra et al. (123)
who collected abdominal subcutaneous adipose tissue from 4 to
9 obese girls at baseline and 10 months after VSG. It was found
that VSGmarkedly increased PLIN1 protein levels determined by
Western Blot with no changes in UCP1mRNA levels determined
by RT-qPCR. However, VSG increased mRNA expression
of PGC1alpha, CIDEA, TBX1, and ADIPOQ. Interestingly,
they found that omental adipose tissue had greater UCP1,
PGC1alpha, and CIDEA mRNA expressions determined by RT-
qPCR and UCP1 protein expression revealed by representative
immunohistochemistry than abdominal subcutaneous adipose
tissue at baseline in these patients, which may have further
increased following VSG. Together, the findings of Jahansouz
et al. (122) and Tarabra et al. (123) intriguingly suggest
that as for RYGB in humans described earlier (97), VSG
may enhance (abdominal subcutaneous) BeAT thermogenesis
through a UCP1-independent, PLIN1/2- and UCP2-dependent
mechanism under conditions of oxidative stress.

CONCLUSIONS AND FUTURE STUDIES

The rodent and human studies discussed in this Review together
suggest that RYGB mainly enhances BeAT thermogenesis
while VSG mainly enhances BAT thermogenesis (Figure 1).
Interestingly, in the rodent studies in which BAT/BeAT were
not clearly recruited by RYGB (74, 77, 80), animals were post-
operatively maintained on a low-fat diet unlike the high-fat diet
used in other studies (81, 89, 91, 94). This suggests that high-fat
diets are key determinants of BAT/BeAT thermogenesis post-
operatively.

Apart for bile acids in the case for VSG, it is unclear
which peripheral signals are causally required for enhanced
BAT/BeAT thermogenesis after bariatric surgeries which could
differ according to procedure. A role for GLP-1 and the co-
released gut hormone peptide tyrosine tyrosine (PYY), the
augmented post-prandrial levels of which are a hallmark of
both RYGB and VSG (99), is at least unlikely for RYGB. This

is because systemic and central administration of the GLP-1
receptor antagonist exendin-9 was shown not to influence total
energy expenditure in RYGB-operated rats (124, 125) and mice
with combined deficiency in the GLP-1 receptor and Y2 receptor
remain fully protected by RYGB from the decrease in energy
expenditure that usually accompanies caloric-restriction-induced
weight loss (126). Postoperative shifts in the intestinal microbiota
could also potentially be responsible, especially considering that
their depletion by antibiotics prevents some of the metabolic
benefits of VSG in diet-induced obese mice through effects on
inguinal WAT (127). Moreover, the causal role of BAT/BeAT
thermogenesis in weight loss after bariatric surgeries is still
unclear. One way to formally address this issue is to perform
VSG and RYGB on UCP1-deficient mice. In the event that these
mice respond normally to bariatric surgeries, then a role for
BAT/BeAT thermogenesis in causing weight loss post-operatively
should not be fully discounted as UCP1-independent modes of
thermogenesis are increasingly being described in BAT/BeAT
(128). Indeed, a UCP1-independent form of thermogenesis
involving AMPK in inguinal WAT has recently been shown
(129), which may operate after VSG in particular (116).

The fact that increases in energy expenditure and BAT/BeAT
thermogenesis seem to be weaker or even absent in humans
compared to rodents and especially mice after RYGB and
VSG (19), serves only to emphasize that animal models of
bariatric surgeries can provide novel mechanisms for how to
promote marked and lasting weight loss. Furthermore, a direct
comparison between the effects of dieting-induced weight loss
with RYGB and VSG on energy expenditure and BAT/BeAT
thermogenesis still needs to be performed in humans, which
may translate what has already been shown in rodents. Finally,
it is possible that BAT/BeAT thermogenesis may play important
roles beyond the body weight loss induced by bariatric surgeries,
such as in improving glycaemic control and lipid homeostasis
(52, 67, 130, 131).
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